1
|
Peng Y, Zhang M, Yan J, Wang R, Xin Y, Zheng X, Zhu L, Fei W, Zhao M. Emerging bioengineering breakthroughs in precision diagnosis and therapy for endometriosis and adenomyosis. J Mater Chem B 2025; 13:742-762. [PMID: 39717994 DOI: 10.1039/d4tb01755b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Endometriosis and adenomyosis are debilitating gynecological conditions that severely affect the quality of life of women. Traditional diagnostic and treatment methods, including laparoscopic surgery and hormonal therapy, face significant limitations such as incomplete lesion detection, high recurrence rates, and adverse side effects. Emerging bioengineering technologies offer promising solutions for precise diagnosis and therapy of these diseases. Advances in biomarker detection through electrochemical immunosensors, including specific molecular markers like cytokines and growth factors, have improved their early diagnosis. Innovative imaging techniques, such as near-infrared fluorescence imaging, magnetic resonance imaging, and photoacoustic imaging, enhance lesion visualization and surgical precision. In therapeutic applications, bioengineered drug delivery systems enable targeted therapy by modifying drug carriers with ligands targeting highly expressed receptors in endometriotic lesions. Such strategies could improve drug accumulation at target sites and reduce damage to healthy tissues. Integrating external energy (including lasers, focused ultrasound, and magnetic fields) with nanoplatforms offers key benefits for treating endometriosis and adenomyosis, allowing precise delivery of energy-responsive molecules to lesions and minimizing damage to healthy tissues. Additionally, novel approaches, such as immunotherapy, gene therapy, ferroptosis induction, and synthetic lethal activation, offer new avenues for effective treatment of endometriosis and adenomyosis. Significantly, this paper discusses the advantages of precision diagnosis and treatment of endometriosis in preserving the fertility of women of reproductive age. This review highlights the potential of bioengineering breakthroughs to transform the diagnosis and management of endometriosis and adenomyosis, emphasizing their role in advancing precision medicine and improving women's health.
Collapse
Affiliation(s)
- Yujie Peng
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Jingjing Yan
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Rong Wang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Yu Xin
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoling Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Libo Zhu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Chen Z, Gong C, Tang Y, Zhu Y, Wang S, Ge RS, Ying Y. Inhibitory effects of parabens on human and rat 17β-hydroxysteroid dehydrogenase 1: Mechanisms of action and impact on hormone synthesis. Toxicology 2024; 506:153873. [PMID: 38986729 DOI: 10.1016/j.tox.2024.153873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Parabens are commonly used preservatives in cosmetics, food, and pharmaceutical products. The objective of this study was to examine the effect of nine parabens on human and rat 17β-hydroxysteroid dehydrogenase 1 (17β-HSD1) in human placental and rat ovarian cytosols, as well as on estradiol synthesis in BeWo cells. The results showed that the IC50 values for these compounds varied from methylparaben with the weakest inhibition (106.42 μM) to hexylparaben with the strongest inhibition (2.05 μM) on human 17β-HSD1. Mode action analysis revealed that these compounds acted as mixed inhibitors. For rats, the IC50 values ranged from the weakest inhibition for methylparaben (no inhibition at 100 μM) to the most potent inhibition for hexylparaben (0.87 μM), and they functioned as mixed inhibitors. Docking analysis indicated that parabens bind to the region bridging the NADPH and steroid binding sites of human 17β-HSD1 and the NADPH binding site of rat 17β-HSD1. Bivariate correlation analysis demonstrated negative correlations between LogP, molecular weight, heavy atoms, and apolar desolvation energy, and the IC50 values of these compounds. In conclusion, this study identified the inhibitory effects of parabens and their binding mechanisms on human and rat 17β-HSD1, as well as their impact on hormone synthesis.
Collapse
Affiliation(s)
- Zouqi Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chaochao Gong
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Male Health and Environment of Wenzhou, Zhejiang Province 325000, China.
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
3
|
Lu R, Zhu J, Li X, Zeng C, Huang Y, Peng C, Zhou Y, Xue Q. ERβ-activated LINC01018 promotes endometriosis development by regulating the CDC25C/CDK1/CyclinB1 pathway. J Genet Genomics 2024; 51:617-629. [PMID: 38224945 DOI: 10.1016/j.jgg.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Endometriosis refers to as an estrogen-dependent disease. Estrogen receptor β (ERβ), the main estrogen receptor subtype which is encoded by the estrogen receptor 2 (ESR2) gene, can mediate the action of estrogen in endometriosis. Although selective estrogen receptor modulators can target the ERβ, they are not specific due to the wide distribution of ERβ. Recently, long noncoding RNAs have been implicated in endometriosis. Therefore, we aim to explore and validate the downstream regulatory mechanism of ERβ, and to investigate the potential role of long intergenic noncoding RNA 1018 (LINC01018) as a nonhormonal treatment for endometriosis. Our study demonstrates that the expression levels of ESR2 and LINC01018 are increased in ectopic endometrial tissues and reveals a significant positive correlation between the ESR2 and LINC01018 expression. Mechanistically, ERβ directly binds to an estrogen response element located in the LINC01018 promoter region and activates LINC01018 transcription. Functionally, ERβ can regulate the CDC25C/CDK1/CyclinB1 pathway and promote ectopic endometrial stromal cell proliferation via LINC01018 in vitro. Consistent with these findings, the knockdown of LINC01018 inhibits endometriotic lesion proliferation in vivo. In summary, our study demonstrates that the ERβ/LINC01018/CDC25C/CDK1/CyclinB1 signaling axis regulates endometriosis progression.
Collapse
Affiliation(s)
- Ruihui Lu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Jingwen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Xin Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Yan Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Chao Peng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Yingfang Zhou
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
4
|
Zhong Q, Qin S, Lai H, Yao S, Chen S. Risk factors for postoperative recurrence of cesarean scar endometriosis. AJOG GLOBAL REPORTS 2024; 4:100349. [PMID: 38720991 PMCID: PMC11077162 DOI: 10.1016/j.xagr.2024.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND The increasing global prevalence of cesarean scar endometriosis necessitates a thorough understanding of the risk factors for postoperative recurrence, as this is crucial for developing preventive strategies and informed decision-making. OBJECTIVE To obtain insight into the clinical risk factors for postoperative recurrence of cesarean scar endometriosis following open lesion resection. STUDY DESIGN The cohort for this study comprised 272 women, including 26 patients with postoperative recurrence and 246 without recurrence. Various parameters, including baseline characteristics, preoperative, intraoperative, and postoperative conditions, and follow-up information, were analyzed. A comparison of these parameters was made between patients with and without postoperative recurrence. Time-to-recurrence analyses were conducted using Cox's univariate and multivariate proportional hazard analyses, the Kaplan-Meier method, and the log-rank test. RESULTS The results revealed significant differences between patients with and without postoperative recurrence in terms of visual analog scale for abdominal pain (P=.008), method of surgery (P<.001), and incision length (P=.002). The Cox proportional hazard model identified the visual analog scale for abdominal pain ≥4 as a significant risk factor for postoperative recurrence (hazard ratio, 3.72 [95% confidence interval, 1.65-8.43]; P=.002). In addition, patients who received removal of scar, excision of mass, and exploration underneath the scar (named as integrated excision) had a lower risk of recurrence than those who received local excision of mass (hazard ratio, 0.14 [95% confidence interval, 0.04-0.48]; P=.002). Furthermore, older patients (aged ≥35 years) were found to have a lower risk of postoperative recurrence than those <35 years (hazard ratio, 0.35 [95% confidence interval, 0.12-1.04]; P=.058). In addition, the depth of involvement was identified as a meaningful factor in postoperative recurrence for patients with local excision of mass, as determined by the log-rank test (P=.018). CONCLUSION The study highlights that the visual analog scale for abdominal pain ≥4 is a risk factor for the recurrence of cesarean scar endometriosis after open lesion resection. Furthermore, the surgical method of integrated excision was identified as a protective factor.
Collapse
Affiliation(s)
- Qiyu Zhong
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou (Drs Zhong, Lai, and Chen)
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou (Drs Zhong, Lai, and Chen)
| | - Shuhang Qin
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou (Drs Qin and Yao)
| | - Huiling Lai
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou (Drs Zhong, Lai, and Chen)
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou (Drs Zhong, Lai, and Chen)
| | - Shuzhong Yao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou (Drs Qin and Yao)
| | - Shuqin Chen
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou (Drs Zhong, Lai, and Chen)
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou (Drs Zhong, Lai, and Chen)
| |
Collapse
|
5
|
Su C, Wan S, Ding J, Ni G, Ding H. Blood lipids mediate the effects of gut microbiome on endometriosis: a mendelian randomization study. Lipids Health Dis 2024; 23:110. [PMID: 38627726 PMCID: PMC11020997 DOI: 10.1186/s12944-024-02096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND There is evidence for an association between the gut microbiome and endometriosis. However, their causal relationship and the mediating role of lipid metabolism remain unclear. METHODS Using genome-wide association study (GWAS) data, we conducted a bidirectional Mendelian randomization (MR) analysis to investigate the causal relationships between gut microbiome and endometriosis. The inverse variance weighted (IVW) method was used as the primary model, with other MR models used for comparison. Sensitivity analysis based on different statistical assumptions was used to evaluate whether the results were robust. A two-step MR analysis was further conducted to explore the mediating effects of lipids, by integrating univariable MR and the multivariate MR method based on the Bayesian model averaging method (MR-BMA). RESULTS We identified four possible intestinal bacteria genera associated with the risk of endometriosis through the IVW method, including Eubacterium ruminantium group (odds ratio [OR] = 0.881, 95% CI: 0.795-0.976, P = 0.015), Anaerotruncus (OR = 1.252, 95% CI: 1.028-1.525, P = 0.025), Olsenella (OR = 1.110, 95% CI: 1.007-1.223, P = 0.036), and Oscillospira (OR = 1.215, 95% CI: 1.014-1.456, P = 0.035). The further two-step MR analysis identified that the effect of Olsenella on endometriosis was mediated by triglycerides (proportion mediated: 3.3%; 95% CI = 1.5-5.1%). CONCLUSION This MR study found evidence for specific gut microbiomes associated with the risk of endometriosis, which might partially be mediated by triglycerides.
Collapse
Affiliation(s)
- Chang Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, China
| | - Su Wan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jin Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Guantai Ni
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.
| | - Huafeng Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, China.
| |
Collapse
|
6
|
Shi H, Xu K, Huang M, Mao M, Ou J. Regulatory mechanism of GPER in the invasion and migration of ectopic endometrial stromal cells in endometriosis. Women Health 2024; 64:109-120. [PMID: 38148599 DOI: 10.1080/03630242.2023.2296522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
Endometriosis (EMS) is a chronic inflammatory disorder of high incidence that causes serious reproductive consequences. High estrogen production is a consistently observed endocrine feature of EMS. The present study aims to probe the molecular mechanism of G protein-coupled estrogen receptor 1 (GPER) in the invasion and migration of ectopic endometrial stromal cells (Ect-ESCs) and provides a new rationale for EMS treatment. Eutopic and ectopic endometrial tissues were collected from 41 EMS patients, and primary ESCs were separated. GPER, miR-16-5p, and miR-103a-3p levels in cells and tissues were determined by qRT-PCR or Western blot assay. Cell viability, proliferation, invasion, and migration were evaluated by CCK-8, colony formation, and Transwell assays. The upstream miRNAs of GPER were predicted by databases, and dual-luciferase assay was performed to validate the binding of miR-16-5p and miR-103a-3p to GPER 3'UTR. GPER was highly expressed in EMS tissues and Ect-ESCs. Inhibition of GPER mitigated the proliferation, invasion, and migration of Ect-ESCs. GPER was regulated by miR-16-5p and miR-103a-3p. Overexpression of miR-16-5p and miR-103a-3p negatively regulated GPER expression and inhibited the invasion and migration of Ect-ESC. In conclusion, GPER promoted the invasion and migration of Ect-ESCs, which can be reversed by upstream miR-16-5p and miR-103a-3p.
Collapse
Affiliation(s)
- Hongyan Shi
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo City, China
| | - Kejun Xu
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo City, China
| | - Mengna Huang
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo City, China
| | - Meiya Mao
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo City, China
| | - Jilan Ou
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo City, China
| |
Collapse
|
7
|
Vercellini P, Bandini V, Viganò P, Di Stefano G, Merli CEM, Somigliana E. Proposal for targeted, neo-evolutionary-oriented, secondary prevention of early-onset endometriosis and adenomyosis. Part I: pathogenic aspects. Hum Reprod 2024; 39:1-17. [PMID: 37951243 PMCID: PMC10876119 DOI: 10.1093/humrep/dead229] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/17/2023] [Indexed: 11/13/2023] Open
Abstract
The potential for repeated ovulation and menstruation is thought to have provided a Darwinian advantage during the Palaeolithic. Reproductive conditions remained relatively stable until the pre-industrial era, characterized by late menarche, very young age at first birth, multiple pregnancies, and prolonged periods of lactational amenorrhoea. For hundreds of thousands of years, menstruators experienced few ovulatory cycles, even though they were genetically adapted to ovulate and menstruate every month. In the post-industrial era, the age at menarche gradually declined, the age at first birth progressively increased, and breastfeeding became optional and often of short duration. This created a mismatch between genetic adaptation and socio-environmental evolution, so that what was initially a probable reproductive advantage subsequently contributed to increased susceptibility to diseases associated with lifetime oestrogen exposure, such as ovarian, endometrial and breast cancer and, hypothetically, also those associated with the number of ovulatory menstruations, such as endometriosis and adenomyosis. The incidence of endometriosis shows a steep and progressive increase around the age of 25 years, but given the consistently reported delay in diagnosis, the actual incidence curve should be shifted to the left, supporting the possibility that the disease has its roots in adolescence. This raises the question of whether, from an evolutionary point of view, anovulation and amenorrhoea should not still be considered the physiological state, especially in the postmenarchal period. However, an increase in the frequency of endometriosis in recent decades has not been demonstrated, although this deserves further epidemiological investigation. In addition, as endometriosis occurs in a minority of individuals exposed to retrograde menstruation, other important pathogenic factors should be scrutinised. Research should be resumed to explore in more detail the transtubal reflux of not only blood, but also endometrial cells, and whether they are systematically present in the peritoneal fluid after menstruation. If repetitive ovulatory menstruation during the early reproductive years is shown to increase the risk of endometriosis and adenomyosis development and progression in susceptible individuals, hormonal interventions could be used as secondary prevention in symptomatic adolescents.
Collapse
Affiliation(s)
- Paolo Vercellini
- Department of Clinical Sciences and Community Health, Academic Centre for Research on Adenomyosis and Endometriosis, Università degli Studi, Milano, Italy
- Gynecology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Veronica Bandini
- Department of Clinical Sciences and Community Health, Academic Centre for Research on Adenomyosis and Endometriosis, Università degli Studi, Milano, Italy
| | - Paola Viganò
- Department of Clinical Sciences and Community Health, Academic Centre for Research on Adenomyosis and Endometriosis, Università degli Studi, Milano, Italy
- Gynecology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giorgia Di Stefano
- Gynecology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Edgardo Somigliana
- Department of Clinical Sciences and Community Health, Academic Centre for Research on Adenomyosis and Endometriosis, Università degli Studi, Milano, Italy
- Gynecology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
8
|
Pant A, Dakal TC, Moar K, Dhabhai B, Arora TK, Sharma NK, Ranga V, Maurya PK. Assessment of MMP14, CAV2, CLU and SPARCL1 expression profiles in endometriosis. Pathol Res Pract 2023; 251:154892. [PMID: 37898038 DOI: 10.1016/j.prp.2023.154892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Endometriotic cells exhibit a notable degree of invasiveness and some characteristics of tissue remodeling underlying lesion formation. In this regard, do matrix metalloproteinases 14 (MMP14) and other related genes such as SPARC-like protein 1 (SPARCL1), caveolin 2 (CAV2), and clusterin (CLU) exert any significant influence in the processes of endometriosis development and pathophysiology is not apparent. We aim to assess whether these genes could serve as potential diagnostic biomarkers in endometriosis. Microarray-based gene expression analysis was performed on total RNA extracted from endometriotic tissue samples treated with and without gonadotropin-releasing hormone agonist (GnRHa). The GnRHa untreated patients were considered the control group. The validation of genes was performed using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis showed significant downregulation in the expression of MMP14 (p = 0.024), CAV2 (p = 0.017), and upregulation of CLU (p = 0.005) in endometriosis patients treated with GnRHa. SPARCL1 did not show any significant (p = 0.30) change in the expression compared to the control group. These data have the potential to contribute to the comprehension of the molecular pathways implicated in the remodeling of the extracellular matrix, which is a vital step for the physiology of the endometrium. Based on the result, it is concluded that changes in the expression of MMP14, CAV2, and CLU post-treatment imply their role in the pathophysiology of endometriosis and may serve as a potential diagnostic biomarker of endometriosis in response to GnRHa treatment in patients with ovarian endometrioma.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Taruna K Arora
- Reproductive Biology and Maternal Child Health Division, Indian Council of Medical Research, New Delhi 110029, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vipin Ranga
- Department of Biotechnology-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat 785013, Assam, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
9
|
Hu S, Ding Q, Zhang W, Kang M, Ma J, Zhao L. Gut microbial beta-glucuronidase: a vital regulator in female estrogen metabolism. Gut Microbes 2023; 15:2236749. [PMID: 37559394 PMCID: PMC10416750 DOI: 10.1080/19490976.2023.2236749] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
A growing amount of evidence has supported that gut microbiota plays a vital role in the reproductive endocrine system throughout a woman's whole life, and gut microbial β-glucuronidase (gmGUS) is a key factor in regulating host estrogen metabolism. Moreover, estrogen levels also influence the composition as well as the diversity of gut microbiota. In normal condition, the gmGUS-estrogen crosstalk maintains body homeostasis of physiological estrogen level. Once this homeostasis is broken, the estrogen metabolism will be disturbed, resulting in estrogen-related diseases, such as gynecological cancers, menopausal syndrome, etc. together with gut microbial dysbiosis, which may accelerate these pathological processes. In this review, we highlight the regulatory role of gmGUS on the physical estrogen metabolism and estrogen-related diseases, summarize the present evidence of the interaction between gmGUS and estrogen metabolism, and unwrap the potential mechanisms behind them. Finally, gmGUS may become a potential biomarker for early diagnosis of estrogen-induced diseases. Regulating gmGUS activity or transplanting gmGUS-producing microbes shows promise for treating estrogen-related diseases.
Collapse
Affiliation(s)
- Shiwan Hu
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Mengjiao Kang
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|