1
|
Jasemi S, Simula ER, Yasushi K, Sechi LA. Unveiling the impact of simulated microgravity on HSV-1 infection, neuroinflammation, and endogenous retroviral activation in SH-SY5Y cells. J Neurovirol 2025:10.1007/s13365-025-01251-0. [PMID: 40111700 DOI: 10.1007/s13365-025-01251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Microgravity (µg) during spaceflight affects cellular and molecular functions of both human cells and microbial pathogens, influencing viral replication and the host immune system. This study aimed to investigate the effects of simulated µg on Herpes Simplex Virus-1 (HSV-1) replication, host pro-inflammatory cytokine, and human endogenous retrovirus (HERV) activation in human neuroblastoma SH-SY5Y cells. Our results show that µg has a negative impact on HSV-1 replication, leading to significantly reduced viral titers and lower expression levels of HSV-1 early genes (ICP0, ICP4, and ICP27) compared to 1 gravity (1 g) conditions. Interestingly, despite lower viral titers and HSV-1 gene expressions under µg condition, we observed higher levels of HERVs and pro-inflammatory cytokine gene expression. In addition, there was a significant correlation between HSV-1 immediate-early genes with HERVs and pro-inflammatory cytokine gene expression, with stronger correlations observed under µg conditions. Taken together, µg reduces HSV-1 replication and increases host pro-inflammatory and HERVs gene expression, which demands further investigation for human health protection in space.
Collapse
Affiliation(s)
- Seyedesomaye Jasemi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Elena Rita Simula
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Kawaguchi Yasushi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy.
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy.
| |
Collapse
|
2
|
Zhang Q, Hsia SC, Martin-Caraballo M. Regulation of voltage-gated sodium channels by TNF-α during herpes simplex virus latency establishment. J Neurovirol 2024; 30:513-523. [PMID: 39367281 PMCID: PMC11998310 DOI: 10.1007/s13365-024-01229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
During lytic or latent infection of sensory neurons with herpes simplex virus type 1 (HSV-1) there are significant changes in the expression of voltage-gated Na+ channels, which may disrupt the transmission of pain information. HSV-1 infection can also evoke the secretion of various pro-inflammatory cytokines, including TNF-α and IL-6. In this work, we hypothesized that TNF-α regulates the expression of Na+ channels during HSV-1 latency establishment in ND7/23 sensory-like neurons. Latency establishment was mimicked by culturing HSV-1 infected ND7/23 cells in the presence of acyclovir (ACV) for 3 days. Changes in the functional expression of voltage-gated Na+ channels were assessed by whole-cell recordings. Our results demonstrate that infection of ND7/23 cells with the HSV-1 strain McKrae with GFP expression (M-GFP) causes a significant decrease in sodium currents during latency establishment. Exposure of ND7/23 cells to TNF-α during latency establishment reverses the effect of HSV-1, resulting in a significant increase in sodium current density. However, Na+ currents were not restored by 3 day-treatment with IL-6. There were no changes in the pharmacological and biophysical properties of sodium currents promoted by TNF-α, including sensitivity to tetrodotoxin and the current-voltage relationship. TNF-α stimulation of ND7/23 cells increases p38 signaling. Inhibition of p38 signaling with SB203580 or SB202190 eliminates the stimulatory effect of TNF-α on sodium currents. These results indicate that TNF-α signaling in sensory neurons during latency establishment upregulates the expression of voltage-gated Na+ channels in order to maintain the transmission of pain information.
Collapse
Affiliation(s)
- Qiaojuan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Shao-Chung Hsia
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Miguel Martin-Caraballo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA.
| |
Collapse
|
3
|
Souza LRQ, Pedrosa CGDS, Puig-Pijuan T, da Silva Dos Santos C, Vitória G, Delou JMA, Setti-Perdigão P, Higa LM, Tanuri A, Rehen SK, Guimarães MZP. Saxitoxin potentiates human neuronal cell death induced by Zika virus while sparing neural progenitors and astrocytes. Sci Rep 2024; 14:22809. [PMID: 39354036 PMCID: PMC11445263 DOI: 10.1038/s41598-024-73873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
The Zika virus (ZIKV) epidemic declared in Brazil between 2015 and 2016 was associated with an increased prevalence of severe congenital malformations, including microcephaly. The distribution of microcephaly cases was not uniform across the country, with a disproportionately higher incidence in the Northeast region (NE). Our previous work demonstrated that saxitoxin (STX), a toxin present in the drinking water reservoirs of the NE, exacerbated the damaging effects of ZIKV on the developing brain. We hypothesized that the impact of STX might vary among different neural cell types. While ZIKV infection caused severe damages on astrocytes and neural stem cells (NSCs), the addition of STX did not exacerbate these effects. We observed that neurons subjected to STX exposure were more prone to apoptosis and displayed higher ZIKV infection rate. These findings suggest that STX exacerbates the harmful effects of ZIKV on neurons, thereby providing a plausible explanation for the heightened severity of ZIKV-induced congenital malformations observed in Brazil's NE. This study highlights the importance of understanding the interactive effects of environmental toxins and infectious pathogens on neural development, with potential implications for public health policies.
Collapse
Affiliation(s)
- Leticia R Q Souza
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Carolina G da S Pedrosa
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Teresa Puig-Pijuan
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | | | - Gabriela Vitória
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - João M A Delou
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Pedro Setti-Perdigão
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Luiza M Higa
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Stevens Kastrup Rehen
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marília Zaluar P Guimarães
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil.
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
| |
Collapse
|
4
|
Ambrosini AE, Borg KM, Deshmukh N, Berry MJ, Enquist LW, Hogue IB. Alpha herpesvirus exocytosis from neuron cell bodies uses constitutive secretory mechanisms, and egress and spread from axons is independent of neuronal firing activity. PLoS Pathog 2024; 20:e1012139. [PMID: 38578790 PMCID: PMC11023632 DOI: 10.1371/journal.ppat.1012139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/17/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Alpha herpesviruses naturally infect the peripheral nervous system, and can spread to the central nervous system, causing severe debilitating or deadly disease. Because alpha herpesviruses spread along synaptic circuits, and infected neurons exhibit altered electrophysiology and increased spontaneous activity, we hypothesized that alpha herpesviruses use activity-dependent synaptic vesicle-like regulated secretory mechanisms for egress and spread from neurons. Using live-cell fluorescence microscopy, we show that Pseudorabies Virus (PRV) particles use the constitutive Rab6 post-Golgi secretory pathway to exit from the cell body of primary neurons, independent of local calcium signaling. Some PRV particles colocalize with Rab6 in the proximal axon, but we did not detect colocalization/co-transport in the distal axon. Thus, the specific secretory mechanisms used for viral egress from axons remains unclear. To address the role of neuronal activity more generally, we used a compartmentalized neuron culture system to measure the egress and spread of PRV from axons, and pharmacological and optogenetics approaches to modulate neuronal activity. Using tetrodotoxin to silence neuronal activity, we observed no inhibition, and using potassium chloride or optogenetics to elevate neuronal activity, we also show no increase in virus spread from axons. We conclude that PRV egress from neurons uses constitutive secretory mechanisms: generally, activity-independent mechanisms in axons, and specifically, the constitutive Rab6 post-Golgi secretory pathway in cell bodies.
Collapse
Affiliation(s)
- Anthony E. Ambrosini
- Department of Molecular Biology, and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Kayla M. Borg
- ASU-Banner Neurodegenerative Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Nikhil Deshmukh
- Department of Molecular Biology, and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Michael J. Berry
- Department of Molecular Biology, and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Lynn W. Enquist
- Department of Molecular Biology, and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Ian B. Hogue
- ASU-Banner Neurodegenerative Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
5
|
Luo B, Ding L. Ion channels and ions as therapeutic targets and strategies for herpes simplex virus infection. Future Virol 2022. [DOI: 10.2217/fvl-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herpes simplex virus (HSV) is a highly contagious virus that cannot be completely cured currently. Existing treatment methods are mainly nucleoside antiviral drugs, and the emergence of drug-resistant strains severely limits their use. There is an urgent need to discover antiviral drugs that act on new targets. Ion channels, a class of cellular proteins with a wide range of functions, have become critical host factors for a wide variety of viral infections. Ion channel blockers have been shown to have antiviral activity. In this study, we discuss the role of ion channels and ions in the HSV life cycle, and the potential of targeting ion channels as a novel, pharmacologically safe and wide-range antiviral treatment option.
Collapse
Affiliation(s)
- Binhua Luo
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science & Technology, Xianning, 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, 437100, China
| | - Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science & Technology, Xianning, 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, 437100, China
| |
Collapse
|
6
|
Quo vadis Cardiac Glycoside Research? Toxins (Basel) 2021; 13:toxins13050344. [PMID: 34064873 PMCID: PMC8151307 DOI: 10.3390/toxins13050344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG’s toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations. These growth inhibitory effects are often observed only in cancer cells, thereby, offering a possibility for CGs to be repositioned for cancer treatment serving not only as chemotherapeutic agents but also as immunogenic cell death triggers. Therefore, here, we report on CG’s chemical structures, production optimization, and biological activity with possible use in cancer therapy, as well as, discuss their antiviral potential which was discovered quite recently. Special attention has been devoted to digitoxin, digoxin, and ouabain.
Collapse
|
7
|
Souza E Souza KFC, Moraes BPT, Paixão ICNDP, Burth P, Silva AR, Gonçalves-de-Albuquerque CF. Na +/K +-ATPase as a Target of Cardiac Glycosides for the Treatment of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:624704. [PMID: 33935717 PMCID: PMC8085498 DOI: 10.3389/fphar.2021.624704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified for the first time in Wuhan, China, causes coronavirus disease 2019 (COVID-19), which moved from epidemic status to becoming a pandemic. Since its discovery in December 2019, there have been countless cases of mortality and morbidity due to this virus. Several compounds such as chloroquine, hydroxychloroquine, lopinavir-ritonavir, and remdesivir have been tested as potential therapies; however, no effective treatment is currently recommended by regulatory agencies. Some studies on respiratory non-enveloped viruses such as adenoviruses and rhinovirus and some respiratory enveloped viruses including human respiratory syncytial viruses, influenza A, parainfluenza, SARS-CoV, and SARS-CoV-2 have shown the antiviral activity of cardiac glycosides, correlating their effect with Na+/K+-ATPase (NKA) modulation. Cardiac glycosides are secondary metabolites used to treat patients with cardiac insufficiency because they are the most potent inotropic agents. The effects of cardiac glycosides on NKA are dependent on cell type, exposure time, and drug concentration. They may also cause blockage of Na+ and K+ ionic transport or trigger signaling pathways. The antiviral activity of cardiac glycosides is related to cell signaling activation through NKA inhibition. Nuclear factor kappa B (NFκB) seems to be an essential transcription factor for SARS-CoV-2 infection. NFκB inhibition by cardiac glycosides interferes directly with SARS-CoV-2 yield and inflammatory cytokine production. Interestingly, the antiviral effect of cardiac glycosides is associated with tyrosine kinase (Src) activation, and NFκB appears to be regulated by Src. Src is one of the main signaling targets of the NKA α-subunit, modulating other signaling factors that may also impair viral infection. These data suggest that Src-NFκB signaling modulated by NKA plays a crucial role in the inhibition of SARS-CoV-2 infection. Herein, we discuss the antiviral effects of cardiac glycosides on different respiratory viruses, SARS-CoV-2 pathology, cell signaling pathways, and NKA as a possible molecular target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Kauê Francisco Corrêa Souza E Souza
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Neûrologia/Neurociências, Hospital Antônio Pedro Universidade Federal Fluminense, Niterói, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Biologia Celular e Molecular (PPGBMC), Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Modulation of Voltage-Gated Sodium Channel Activity in Human Dorsal Root Ganglion Neurons by Herpesvirus Quiescent Infection. J Virol 2020; 94:JVI.01823-19. [PMID: 31694955 DOI: 10.1128/jvi.01823-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanisms of pain associated with alphaherpesvirus latency are not clear. We hypothesize that the voltage-gated sodium channels (VGSC) on the dorsal root ganglion (DRG) neurons controlling electrical impulses may have abnormal activity during latent viral infection and reactivation. We used herpes simplex virus 1 (HSV-1) to infect the human DRG-derived neuronal cell line HD10.6 in order to study the establishment and maintenance of viral latency, viral reactivation, and changes in the functional expression of VGSCs. Differentiated cells exhibited robust tetrodotoxin (TTX)-sensitive sodium currents, and acute infection significantly reduced the functional expression of VGSCs within 24 h and completely abolished VGSC activity within 3 days. A quiescent state of infection mimicking latency can be achieved in the presence of acyclovir (ACV) for 7 days followed by 5 days of ACV washout, and then the viruses can remain dormant for another 3 weeks. It was noted that during the establishment of HSV-1 latency, the loss of VGSC activity caused by HSV-1 infection could not be blocked by ACV treatment. However, neurons with continued ACV treatment for another 4 days showed a gradual recovery of VGSC functional expression. Furthermore, the latently infected neurons exhibited higher VGSC activity than controls. The overall regulation of VGSCs by HSV-1 during quiescent infection was proved by increased transcription and possible translation of Nav1.7. Together, these observations demonstrated a very complex pattern of electrophysiological changes during HSV infection of DRG neurons, which may have implications for understanding of the mechanisms of virus-mediated pain linked to latency and reactivation.IMPORTANCE The reactivation of herpesviruses, most commonly varicella-zoster virus (VZV) and pseudorabies virus (PRV), may cause cranial nerve disorder and unbearable pain. Clinical studies have also reported that HSV-1 causes postherpetic neuralgia and chronic occipital neuralgia in humans. The current work meticulously studies the functional expression profile changes of VGSCs during the processes of HSV-1 latency establishment and reactivation using human dorsal root ganglion-derived neuronal HD10.6 cells as an in vitro model. Our results indicated that VGSC activity was eliminated upon infection but steadily recovered during latency establishment and that latent neurons exhibited even higher VGSC activity. This finding advances our knowledge of how ganglion neurons generate uncharacteristic electrical impulses due to abnormal VGSC functional expression influenced by the latent virus.
Collapse
|
9
|
Hamdi H, Robin E, Stahl JP, Doche E, Azulay JP, Chabardes S, Bartolomei F, Regis J. Anterior Thalamic Stimulation Induced Relapsing Encephalitis. Stereotact Funct Neurosurg 2019; 97:132-136. [PMID: 31055582 DOI: 10.1159/000499072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
Abstract
Deep brain stimulation of the anterior thalamic nucleus is one of the promising therapeutic options for epilepsy. Several studies are still under way to further strengthen and clarify the mechanism, efficacy, and complications. Contrary to hardware-related and operation-related events, the stimulation-related adverse effect is mild, target-dependent, and adjustable. We present a case of relapsing herpes simplex encephalitis (HSE) as a newly reported and potentially fatal stimulation-related adverse effect following stimulation of the anterior thalamic nucleus (ANT-DBS) accompanied by fever, confusion, and cognitive impairment in a 32-year-old epileptic patient with a history of herpes meningoencephalitis 31 years earlier. The T2-weighted/FLAIR high-signal intensity in the temporal lobe developed at a "distance" from the stimulation target. The positive polymerase chain reaction of herpes virus deoxyribonucleic acid in the cerebrospinal fluid confirmed the diagnosis. The condition improved partially on acyclovir and stimulation stopped. Seizures disappeared and then returned after few months. The unique case report presents a rationale for considering history of herpes encephalitis as a relative contraindication for ANT-DBS, and HSE relapse should be suspected in patients with post-stimulation fever and/or altered consciousness.
Collapse
Affiliation(s)
- Hussein Hamdi
- Service de Neurochirurgie Fonctionnelle et Stéréotaxique, INSERM, UMR 1106, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France, .,Functional Neurosurgery and Stereotaxy Unit, Neurological Surgery Department, Tanta University, Tanta, Egypt,
| | - Elsa Robin
- Service de Neurologie et pathologie du mouvement, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Jean-Paul Stahl
- Service de Maladies infectieuses et tropicales, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Emilie Doche
- Service de Neurologie et Unité Neurovasculaire, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Jean-Philippe Azulay
- Service de Neurologie et pathologie du mouvement, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Stephan Chabardes
- Service de Neurochirurgie, INSERM, U836, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Fabrice Bartolomei
- Service de Neurophysiologie Clinique, INSERM, UMR 1106, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Jean Regis
- Service de Neurochirurgie Fonctionnelle et Stéréotaxique, INSERM, UMR 1106, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| |
Collapse
|
10
|
Volatile Organic Compound Gamma-Butyrolactone Released upon Herpes Simplex Virus Type -1 Acute Infection Modulated Membrane Potential and Repressed Viral Infection in Human Neuron-Like Cells. PLoS One 2016; 11:e0161119. [PMID: 27537375 PMCID: PMC4990300 DOI: 10.1371/journal.pone.0161119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/29/2016] [Indexed: 12/14/2022] Open
Abstract
Herpes Simplex Virus Type -1 (HSV-1) infections can cause serious complications such as keratitis and encephalitis. The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress. An additional objective was to study if any VOCs released from acute epithelial infection may influence subsequent neuronal infection to facilitate latency. To investigate these hypotheses, Vero cells were infected with HSV-1 and the emission of VOCs was analyzed using two-dimensional gas chromatograph/mass spectrometry (2D GC/MS). It was observed that the concentrations of gamma-butyrolactone (GBL) in particular changed significantly after a 24-hour infection. Since HSV-1 may establish latency in neurons after the acute infection, GBL was tested to determine if it exerts neuronal regulation of infection. The results indicated that GBL altered the resting membrane potential of differentiated LNCaP cells and promoted a non-permissive state of HSV-1 infection by repressing viral replication. These observations may provide useful clues towards understanding the complex signaling pathways that occur during the HSV-1 primary infection and establishment of viral latency.
Collapse
|
11
|
GC-MS-Based Metabonomic Profiling Displayed Differing Effects of Borna Disease Virus Natural Strain Hu-H1 and Laboratory Strain V Infection in Rat Cortical Neurons. Int J Mol Sci 2015; 16:19347-68. [PMID: 26287181 PMCID: PMC4581300 DOI: 10.3390/ijms160819347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/25/2015] [Accepted: 08/03/2015] [Indexed: 11/23/2022] Open
Abstract
Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. Previous studies have revealed that metabolic perturbations are associated with BDV infection. However, the pathophysiological effects of different viral strains remain largely unknown. Rat cortical neurons infected with human strain BDV Hu-H1, laboratory BDV Strain V, and non-infected control (CON) cells were cultured in vitro. At day 12 post-infection, a gas chromatography coupled with mass spectrometry (GC–MS) metabonomic approach was used to differentiate the metabonomic profiles of 35 independent intracellular samples from Hu-H1-infected cells (n = 12), Strain V-infected cells (n = 12), and CON cells (n = 11). Partial least squares discriminant analysis (PLS-DA) was performed to demonstrate discrimination between the three groups. Further statistical testing determined which individual metabolites displayed significant differences between groups. PLS-DA demonstrated that the whole metabolic pattern enabled statistical discrimination between groups. We identified 31 differential metabolites in the Hu-H1 and CON groups (21 decreased and 10 increased in Hu-H1 relative to CON), 35 differential metabolites in the Strain V and CON groups (30 decreased and 5 increased in Strain V relative to CON), and 21 differential metabolites in the Hu-H1 and Strain V groups (8 decreased and 13 increased in Hu-H1 relative to Strain V). Comparative metabonomic profiling revealed divergent perturbations in key energy and amino acid metabolites between natural strain Hu-H1 and laboratory Strain V of BDV. The two BDV strains differentially alter metabolic pathways of rat cortical neurons in vitro. Their systematic classification provides a valuable template for improved BDV strain definition in future studies.
Collapse
|
12
|
Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection. Nat Chem Biol 2014; 10:861-7. [PMID: 25195012 DOI: 10.1038/nchembio.1628] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/31/2014] [Indexed: 01/06/2023]
Abstract
DNA in the human Herpes simplex virus type 1 (HSV-1) capsid is packaged to a tight density. This leads to tens of atmospheres of internal pressure responsible for the delivery of the herpes genome into the cell nucleus. In this study we show that, despite its liquid crystalline state inside the capsid, the DNA is fluid-like, which facilitates its ejection into the cell nucleus during infection. We found that the sliding friction between closely packaged DNA strands, caused by interstrand repulsive interactions, is reduced by the ionic environment of epithelial cells and neurons susceptible to herpes infection. However, variations in the ionic conditions corresponding to neuronal activity can restrict DNA mobility in the capsid, making it more solid-like. This can inhibit intranuclear DNA release and interfere with viral replication. In addition, the temperature of the human host (37 °C) induces a disordering transition of the encapsidated herpes genome, which reduces interstrand interactions and provides genome mobility required for infection.
Collapse
|
13
|
Huang R, Gao H, Zhang L, Jia J, Liu X, Zheng P, Ma L, Li W, Deng J, Wang X, Yang L, Wang M, Xie P. Borna disease virus infection perturbs energy metabolites and amino acids in cultured human oligodendroglia cells. PLoS One 2012; 7:e44665. [PMID: 22970281 PMCID: PMC3436876 DOI: 10.1371/journal.pone.0044665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/10/2012] [Indexed: 11/23/2022] Open
Abstract
Background Borna disease virus is a neurotropic, non-cytolytic virus that has been widely employed in neuroscientific research. Previous studies have revealed that metabolic perturbations are associated with Borna disease viral infection. However, the pathophysiological mechanism underlying its mode of action remains unclear. Methodology Human oligodendroglia cells infected with the human strain Borna disease virus Hu-H1 and non-infected matched control cells were cultured in vitro. At day 14 post-infection, a proton nuclear magnetic resonance-based metabonomic approach was used to differentiate the metabonomic profiles of 28 independent intracellular samples from Borna disease virus-infected cells (n = 14) and matched control cells (n = 14). Partial least squares discriminant analysis was performed to demonstrate that the whole metabonomic patterns enabled discrimination between the two groups, and further statistical testing was applied to determine which individual metabolites displayed significant differences between the two groups. Findings Metabonomic profiling revealed perturbations in 23 metabolites, 19 of which were deemed individually significant: nine energy metabolites (α-glucose, acetate, choline, creatine, formate, myo-inositol, nicotinamide adenine dinucleotide, pyruvate, succinate) and ten amino acids (aspartate, glutamate, glutamine, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine, valine). Partial least squares discriminant analysis demonstrated that the whole metabolic patterns enabled statistical discrimination between the two groups. Conclusion Borna disease viral infection perturbs the metabonomic profiles of several metabolites in human oligodendroglia cells cultured in vitro. The findings suggest that Borna disease virus manipulates the host cell’s metabolic network to support viral replication and proliferation.
Collapse
Affiliation(s)
- Rongzhong Huang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Hongchang Gao
- Department of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Liang Zhang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jianmin Jia
- Department of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Xia Liu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Lihua Ma
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wenjuan Li
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jing Deng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiao Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Liu Yang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Mingju Wang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
14
|
Control of HSV-1 latency in human trigeminal ganglia--current overview. J Neurovirol 2011; 17:518-27. [PMID: 22139603 DOI: 10.1007/s13365-011-0063-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/13/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
Although recurrent Herpes simplex virus type 1 (HSV-1) infections are quite common in humans, little is known about the exact molecular mechanisms involved in latency and reactivation of the virus from its stronghold, the trigeminal ganglion. After primary infection, HSV-1 establishes latency in sensory neurons, a state that lasts for the life of the host. Reactivation of the virus leads to recurrent disease, ranging from relatively harmless cold sores to ocular herpes. If herpes encephalitis-often a devastating disease-is also caused by reactivation or a new infection, is still a matter of debate. It is widely accepted that CD8(+) T cells as well as host cellular factors play a crucial role in maintaining latency. At least in the animal model, IFNγ and Granzyme B secretion of T cells were shown to be important for control of viral latency. Furthermore, the virus itself expresses factors that regulate its own latency-reactivation cycle. In this regard, the latency associated transcript, immediate-early proteins, and viral miRNAs seem to be the key players that control latency and reactivation on the viral side. This review focuses on HSV-1 latency in humans in the light of mechanisms learned from animal models.
Collapse
|
15
|
Sidorkiewicz M, Brocka M, Bronis M, Grek M, Jozwiak B, Piekarska A, Bartkowiak J. The altered expression of α1 and β3 subunits of the gamma-aminobutyric acid A receptor is related to the hepatitis C virus infection. Eur J Clin Microbiol Infect Dis 2011; 31:1537-42. [PMID: 22080424 PMCID: PMC3364423 DOI: 10.1007/s10096-011-1475-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/20/2011] [Indexed: 01/02/2023]
Abstract
The modulation of the gamma-aminobutyric acid type A (GABA A) receptors activity was observed in several chronic hepatitis failures, including hepatitis C. The expression of GABA A receptor subunits α1 and β3 was detected in peripheral blood mononuclear cells (PBMCs) originated from healthy donors. The aim of the study was to evaluate if GABA A α1 and β3 expression can also be observed in PBMCs from chronic hepatitis C (CHC) patients and to evaluate a possible association between their expression and the course of hepatitis C virus (HCV) infection. GABA A α1- and β3-specific mRNAs presence and a protein expression in PBMCs from healthy donors and CHC patients were screened by reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. In patients, HCV RNA was determined in sera and PBMCs. It was shown that GABA A α1 and β3 expression was significantly different in PBMCs from CHC patients and healthy donors. In comparison to healthy donors, CHC patients were found to present an increase in the expression of GABA A α1 subunit and a decrease in the expression of β3 subunit in their PBMCs. The modulation of α1 and β3 GABA A receptors subunits expression in PBMCs may be associated with ongoing or past HCV infection.
Collapse
Affiliation(s)
- M Sidorkiewicz
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang L, Che YC, Cun W, Li WZ, Liao Y, Liu LD, Li QH. Biological analysis of HSV-1 immediate-early proteins ICP0, ICP22, and ICP27 in neuroblastoma cells. Virol Sin 2008. [DOI: 10.1007/s12250-008-2937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
17
|
Su CT, Hsu JTA, Hsieh HP, Lin PH, Chen TC, Kao CL, Lee CN, Chang SY. Anti-HSV activity of digitoxin and its possible mechanisms. Antiviral Res 2008; 79:62-70. [PMID: 18353452 DOI: 10.1016/j.antiviral.2008.01.156] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 01/18/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) can establish latent infection in the nervous system and usually leads to life-threatening diseases in immunocompromised individuals upon reactivation. Treatment with conventional nucleoside analogue such as acyclovir is effective in most cases, but drug-resistance may arise due to prolonged treatment in immunocompromised individuals. In this study, we identified an in-use medication, digitoxin, which actively inhibited HSV-1 replication with a 50% effective concentration (EC(50)) of 0.05 microM. The 50% cytotoxicity concentration (CC(50)) of digitoxin is 10.66 microM and the derived selective index is 213. Several structural analogues of digitoxin such as digoxin, ouabain octahydrate and G-strophanthin also showed anti-HSV activity. The inhibitory effects of digitoxin are likely to be introduced at the early stage of HSV-1 replication and the virus release stage. The observation that digitoxin can inhibit acyclovir-resistant viruses further implicates that digitoxin represents a novel drug class with distinct antiviral mechanisms from traditional drugs.
Collapse
Affiliation(s)
- Chun-Ting Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lin CH, Juan SH, Wang CY, Sun YY, Chou CM, Chang SF, Hu SY, Lee WS, Lee YH. Neuronal activity enhances aryl hydrocarbon receptor-mediated gene expression and dioxin neurotoxicity in cortical neurons. J Neurochem 2007; 104:1415-29. [PMID: 17973980 DOI: 10.1111/j.1471-4159.2007.05098.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor activated by dioxin and polyaromatic hydrocarbons. Recent studies have revealed that AhR activity in central neurons depends on the NMDA receptor. In this study, we investigated how the neuronal activity influence AhR-mediated dioxin-responsive gene expression and neurotoxicity. Our results show that activation of AhR by the selective agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin induced dioxin-responsive gene expression and calcium entry, which were attenuated by AhR small interfering RNA, the NMDA receptor channel blocker MK801, and the action potential blocker tetrodotoxin (TTX). In addition, AhR-mediated gene expression was enhanced in neurons during synaptogenesis (10 days in vitro) compared with younger neurons (4 days in vitro), as was sensitivity to TTX and MK801. Furthermore, TTX and MK801 differentially affected the association of AhR and its transcriptional co-activator cAMP-responsive-element binding protein with the cytochrome P450 1A1 (cyp1A1) gene enhancer. Calcium/calmodulin-dependent protein kinase IV, the cAMP-responsive-element binding protein activating enzyme, was also activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin in an activity-dependent manner. Finally, we found that neuronal susceptibility to dioxin insult was also maturation and activity-dependent. Together, the results suggest that neuronal activity may facilitate AhR-mediated calcium signaling, which in turn enhances AhR-mediated gene regulation and mediated maturation-dependent dioxin neurotoxicity.
Collapse
Affiliation(s)
- Chun-Hua Lin
- Division of Cell Physiology and Neuroscience, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|