1
|
Ajiboye OM, Ogunwenmo KO, Adewumi AG, Mohanye CC. Parkia biglobosa Jacq. (Locust Bean) leaves and seeds extracts attenuates diabetic-linked cognitive dysfunction in streptozotocin-induced male wistar rats. Metab Brain Dis 2024; 40:76. [PMID: 39714608 DOI: 10.1007/s11011-024-01514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Diabetes Mellitus is a metabolic disorder characterized by high blood glucose levels, causing significant morbidity and mortality rates. This study investigated the antidiabetic, neuroprotective, and antioxidant effects of ethanol extracts of Parkia biglobosa (PB) leaves and seeds in streptozotocin (STZ)-induced diabetic rats. The administration of STZ significantly elevated fasting blood glucose levels (FBGL) to 355-400 mg/mL compared to 111 mg/mL in normal controls, indicating hyperglycemia. Treatment with PB extracts at 100 mg/kg and 200 mg/kg significantly (p < 0.05) reduced FBGL in a dose-dependent manner. No significant difference was observed between the effects of metformin and PB extracts at 200 mg/kg. Cognitive dysfunction, assessed using the Y-maze test, was significantly improved in groups treated with PB extracts (p < 0.05), particularly at 200 mg/kg, through inhibition of cholinesterase activity and protection against oxidative damage. Both PB extracts also demonstrated significant inhibition (p < 0.05) of α-amylase and α-glucosidase activity, reducing postprandial hyperglycemia, with a stronger inhibition at 200 mg/kg. Additionally, PB extracts significantly increased catalase (CAT) and superoxide dismutase (SOD) activities, reversing the diabetes-induced decline in antioxidant enzyme levels. Monoamine oxidase (MAO) activity, elevated in diabetic conditions, was significantly downregulated by PB treatment, further contributing to neuroprotection. The neuroprotective effects may be attributed to the inhibition of cholinesterase and MAO, which help maintain neurotransmitter levels, alongside the antioxidant properties that mitigate oxidative stress in the brain. These findings suggest that PB extracts could serve as a natural therapeutic agent for diabetes management, with its effects comparable to metformin at higher doses.
Collapse
Affiliation(s)
- Oluwapelumi M Ajiboye
- Department of Basic Science, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.
| | - Kayode O Ogunwenmo
- Department of Basic Science, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Aderiike G Adewumi
- Department of Basic Science, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Clinton C Mohanye
- Department of Basic Science, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
2
|
Sumbul‐Sekerci B, Velioglu HA, Sekerci A. Diabetes-related clinical and microstructural white matter changes in patients with Alzheimer's disease. Brain Behav 2024; 14:e3533. [PMID: 38715429 PMCID: PMC11077244 DOI: 10.1002/brb3.3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
AIM Although there exists substantial epidemiological evidence indicating an elevated risk of dementia in individuals with diabetes, our understanding of the neuropathological underpinnings of the association between Type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) remains unclear. This study aims to unveil the microstructural brain changes associated with T2DM in AD and identify the clinical variables contributing to these changes. METHODS In this retrospective study involving 64 patients with AD, 31 individuals had concurrent T2DM. The study involved a comparative analysis of diffusion tensor imaging (DTI) images and clinical features between patients with and without T2DM. The FSL FMRIB software library was used for comprehensive preprocessing and tractography analysis of DTI data. After eddy current correction, the "bedpost" model was utilized to model diffusion parameters. Linear regression analysis with a stepwise method was used to predict the clinical variables that could lead to microstructural white matter changes. RESULTS We observed a significant impairment in the left superior longitudinal fasciculus (SLF) among patients with AD who also had T2DM. This impairment in patients with AD and T2DM was associated with an elevation in creatine levels. CONCLUSION The white matter microstructure in the left SLF appears to be sensitive to the impairment of kidney function associated with T2DM in patients with AD. The emergence of AD in association with T2DM may be driven by mechanisms distinct from the typical AD pathology. Compromised renal function in AD could potentially contribute to impaired white matter integrity.
Collapse
Affiliation(s)
- Betul Sumbul‐Sekerci
- Department of Clinical Pharmacy, Faculty of PharmacyBezmialem Vakıf UniversityIstanbulTurkey
| | - Halil Aziz Velioglu
- Center for Psychiatric NeuroscienceFeinstein Institutes for Medical ResearchManhassetNew YorkUSA
- Department of Neuroscience, Faculty of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Abdusselam Sekerci
- Department of Internal Medicine, Faculty of MedicineBezmialem Vakif UniversityIstanbulTurkey
| |
Collapse
|
3
|
Zhao Q, Du X, Liu F, Zhang Y, Qin W, Zhang Q. ECHDC3 Variant Regulates the Right Hippocampal Microstructural Integrity and Verbal Memory in Type 2 Diabetes Mellitus. Neuroscience 2024; 538:30-39. [PMID: 38070593 DOI: 10.1016/j.neuroscience.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
ECHDC3 is a risk gene for white matter (WM) hyperintensity and is associated with insulin resistance. This study aimed to investigate whether ECHDC3 variants selectively regulate brain WM microstructures and episodic memory in patients with type 2 diabetes mellitus (T2DM). We enrolled 106 patients with T2DM and 111 healthy controls. A voxel-wise general linear model was employed to explore the interaction effect between ECHDC3 rs11257311 polymorphism and T2DM diagnosis on fractional anisotropy (FA). A linear modulated mediation analysis was conducted to examine the potential of FA value to mediate the influence of T2DM on episodic memory in an ECHDC3-dependent manner. We observed a noteworthy interaction between genotype and diagnosis on FA in the right inferior temporal WM, right anterior limb of the internal capsule, right frontal WM, and the right hippocampus. Modulated mediation analysis revealed a significant ECHDC3 modulation on the T2DM → right hippocampal FA → short-term memory pathway, with only rs11257311 G risk homozygote demonstrating significant mediation effect. Together, our findings provide evidence of ECHDC3 modulating the effect of T2DM on right hippocampal microstructural impairment and short-term memory decline, which might be a neuro-mechanism for T2DM related episodic memory impairment.
Collapse
Affiliation(s)
- Qiyu Zhao
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Du
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yang Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Quan Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
4
|
Cui F, Ouyang ZQ, Zeng YZ, Ling BB, Shi L, Zhu Y, Gu HY, Jiang WL, Zhou T, Sun XJ, Han D, Lu Y. Effects of hypertension on subcortical nucleus morphological alternations in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1201281. [PMID: 37780620 PMCID: PMC10534025 DOI: 10.3389/fendo.2023.1201281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Objectives Type 2 diabetes mellitus(T2DM) and hypertension(HTN) are common comorbidities, and known to affect the brain. However, little is known about the effects of the coexisting HTN on brain in T2DM patients. So we aim to investigate the impact of HTN on the subcortical nucleus morphological alternations in T2DM patients. Materials & methods This work was registered by the clinicaltrials.gov (grant number NCT03564431). We recruited a total of 92 participants, comprising 36 only T2DM patients, 28 T2DM patients with HTN(T2DMH) and 28 healthy controls(HCs) in our study. All clinical indicators were assessed and brain image data was collected for each participant. Voxel-based morphometry(VBM), automatic volume and vertex-based shape analyses were used to determine the subcortical nucleus alternations from each participant's 3D-T1 brain images and evaluate the relationship between the alternations and clinical indicators. Results T2DMH patients exhibited volumetric reduction and morphological alterations in thalamus compared to T2DM patients, whereas T2DM patients did not demonstrate any significant subcortical alterations compared to HCs. Furthermore, negative correlations have been found between thalamic alternations and the duration of HTN in T2DMH patients. Conclusion Our results revealed that HTN may exacerbate subcortical nucleus alternations in T2DM patients, which highlighted the importance of HTN management in T2DM patients to prevent further damage to the brain health.
Collapse
Affiliation(s)
- Feng Cui
- Department of Medical Imaging, Laboratory of Brain Function, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhi-Qiang Ouyang
- Department of Medical Imaging, Laboratory of Brain Function, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi-Zhen Zeng
- Department of Medical Imaging, Laboratory of Brain Function, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bing-Bing Ling
- Department of Medical Imaging, Laboratory of Brain Function, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li Shi
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun Zhu
- Department of Medical Imaging, Laboratory of Brain Function, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - He-Yi Gu
- Department of Medical Imaging, Laboratory of Brain Function, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wan-Lin Jiang
- Department of Medical Imaging, Laboratory of Brain Function, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ting Zhou
- Department of Medical Imaging, Laboratory of Brain Function, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xue-Jin Sun
- Department of Medical Imaging, Laboratory of Brain Function, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dan Han
- Department of Medical Imaging, Laboratory of Brain Function, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi Lu
- Department of Medical Imaging, Laboratory of Brain Function, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Shekarchian M, Peeri M, Azarbayjani MA. Physical activity in a swimming pool attenuates memory impairment by reducing glutamate and inflammatory cytokines and increasing BDNF in the brain of mice with type 2 diabetes. Brain Res Bull 2023; 201:110725. [PMID: 37543294 DOI: 10.1016/j.brainresbull.2023.110725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Type 2 diabetes is a risk factor for the development of cognitive impairment. Increasing evidence suggests that regular exercise is beneficial for the treatment of clinical symptoms in diabetic patients. The current study aimed to evaluate whether increasing physical activity through swimming training can reduce memory impairment in an animal model of type 2 diabetes. Diabetes and non-diabetes mice underwent swimming training for four weeks, and then working, spatial, and recognition memory were evaluated using three behavioral tests. Body weight, glucose, and insulin resistance were monitored. We also measured inflammatory cytokines (interleukin (IL)- 6, IL-1β, and tumor-necrosis-factor (TNF)-α), an anti-inflammatory cytokine (IL-10), and brain-derived-neurotrophic-factor (BDNF), and glutamate levels in the hippocampus or prefrontal cortex of mice. The findings showed that diabetes increased body weight, glucose, and insulin resistance, impaired working, spatial and recognition memory, increased levels of IL-6, IL-1β, TNF-α, and glutamate levels, and decreased BDNF in the hippocampus of diabetic mice. While higher physical activity was associated with reduced body weight, glucose, and insulin resistance, attenuated memory impairment, IL-6, IL-1β, TNF-α, and glutamate, and increased BDNF levels in the hippocampus and prefrontal cortex of diabetic mice. This study shows that swimming training can normalize body weight and glucose-insulin axis and reduce inflammation and glutamate in the hippocampus and enhance the neurotrophic system in both the hippocampus and prefrontal cortex of diabetic mice. This study also suggests that higher physical activity through swimming training can improve cognitive impairment in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Mandana Shekarchian
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
6
|
Roy B, Choi SE, Freeby MJ, Kumar R. Microstructural brain tissue changes contribute to cognitive and mood deficits in adults with type 2 diabetes mellitus. Sci Rep 2023; 13:9636. [PMID: 37316507 PMCID: PMC10267112 DOI: 10.1038/s41598-023-35522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) patients show brain tissue changes in mood and cognitive regulatory sites, but the nature and extent of tissue injury and their associations with symptoms are unclear. Our aim was to examine brain tissue damage in T2DM over controls using mean diffusivity (MD) computed from diffusion tensor imaging (DTI), and assess correlations with mood and cognitive symptoms in T2DM. We collected DTI series (MRI), mood, and cognitive data, from 169 subjects (68 T2DM and 101 controls). Whole-brain MD-maps were calculated, normalized, smoothed, and compared between groups, as well as correlated with mood and cognition scores in T2DM subjects. Type 2 diabetes patients showed altered cognitive and mood functions over control subjects. Multiple brain sites in T2DM patients showed elevated MD values, indicating chronic tissue changes, including the cerebellum, insula, and frontal and prefrontal cortices, cingulate, and lingual gyrus. Associations between MD values and mood and cognition scores appeared in brain sites mediating these functions. Type 2 diabetes patients show predominantly chronic brain tissue changes in areas mediating mood and cognition functions, and tissue changes from those regions correlate with mood and cognitive symptoms suggesting that the microstructural brain changes may account for the observed functional deficits.
Collapse
Affiliation(s)
- Bhaswati Roy
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 56-141 CHS, 10833 Le Conte Ave, Los Angeles, CA, 90095-1763, USA
| | - Sarah E Choi
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew J Freeby
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - Rajesh Kumar
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 56-141 CHS, 10833 Le Conte Ave, Los Angeles, CA, 90095-1763, USA.
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Prajjwal P, Asharaf S, Makhanasa D, Yamparala A, Tariq H, Aleti S, Gadam S, Vora N. Association of Alzheimer's dementia with oral bacteria, vitamin B12, folate, homocysteine levels, and insulin resistance along with its pathophysiology, genetics, imaging, and biomarkers. Dis Mon 2023; 69:101546. [PMID: 36931946 DOI: 10.1016/j.disamonth.2023.101546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Alzheimer's disease is a prevalent form of dementia, particularly among the elderly population. It is characterized by progressive cognitive decline and neurodegeneration. Despite numerous studies, the exact cause of Alzheimer's disease remains uncertain, and various theories have been proposed, including Aβ amyloid deposition in the brain and tau protein hyper-phosphorylation. This review article explores the potential pathogenesis of Alzheimer's disease, focusing on the effects of derangements in the levels of vitamin B12, folate, and homocysteine, as well as the impact of oral bacteria causing periodontitis and insulin resistance, and their relationship to Alzheimer's. Studies have shown that high levels of homocysteine and low levels of vitamin B12 and folate, are associated with an increased risk of developing Alzheimer's disease. The article also explores the link between Alzheimer's disease and oral bacteria, specifically dental infections and periodontitis, which contribute to the inflammatory processes in the nervous system of Alzheimer's patients. There could be derangement in the insulin signaling further causing disruption in glucose metabolism within the brain, suggesting that Alzheimer's disease may represent a form of type 2 diabetes mellitus associated with the brain, commonly known as type 3 diabetes. Neuroimaging techniques, including MRI, PET, and tau PET, can identify the predictive characteristics of Alzheimer's disease, with amyloid PET being the most useful in ruling out the disease. The article concludes by stressing the importance of understanding genetic and neuroimaging factors in the diagnosing and treating Alzheimer's disease.
Collapse
Affiliation(s)
| | - Shahnaz Asharaf
- Internal Medicine, Travancore Medical College, Kollam, Kerala, India
| | | | | | - Halla Tariq
- Internal Medicine, Multan Medical and Dental College, Multan, Pakistan
| | - Soumya Aleti
- Internal Medicine, Berkshire Medical Center, Pittsfield, MA, USA
| | - Srikanth Gadam
- Internal Medicine, Postdoctoral Research Fellow, Mayo Clinic, USA
| | - Neel Vora
- Internal Medicine, B. J. Medical College, Ahmedabad, India
| |
Collapse
|
8
|
Zhang T, Shaw M, Cherbuin N. Association between Type 2 Diabetes Mellitus and Brain Atrophy: A Meta-Analysis. Diabetes Metab J 2022; 46:781-802. [PMID: 35255549 PMCID: PMC9532183 DOI: 10.4093/dmj.2021.0189] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is known to be associated with cognitive decline and brain structural changes. This study systematically reviews and estimates human brain volumetric differences and atrophy associated with T2DM. METHODS PubMed, PsycInfo and Cochrane Library were searched for brain imaging studies reporting on brain volume differences between individuals with T2DM and healthy controls. Data were examined using meta-analysis, and association between age, sex, diabetes characteristics and brain volumes were tested using meta-regression. RESULTS A total of 14,605 entries were identified; after title, abstract and full-text screening applying inclusion and exclusion criteria, 64 studies were included and 42 studies with compatible data contributed to the meta-analysis (n=31,630; mean age 71.0 years; 44.4% male; 26,942 control; 4,688 diabetes). Individuals with T2DM had significantly smaller total brain volume, total grey matter volume, total white matter volume and hippocampal volume (approximately 1% to 4%); meta-analyses of smaller samples focusing on other brain regions and brain atrophy rate in longitudinal investigations also indicated smaller brain volumes and greater brain atrophy associated with T2DM. Meta-regression suggests that diabetes-related brain volume differences start occurring in early adulthood, decreases with age and increases with diabetes duration. CONCLUSION T2DM is associated with smaller total and regional brain volume and greater atrophy over time. These effects are substantial and highlight an urgent need to develop interventions to reduce the risk of T2DM for brain health.
Collapse
Affiliation(s)
- Tianqi Zhang
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Marnie Shaw
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| |
Collapse
|
9
|
Brain structural alterations detected by an automatic quantified tool as an indicator for MCI diagnosing in type 2 diabetes mellitus patients: a magnetic resonance imaging study. Heliyon 2022; 8:e09390. [PMID: 35647347 PMCID: PMC9136264 DOI: 10.1016/j.heliyon.2022.e09390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 12/02/2021] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background and objectives Type 2 diabetes mellitus (T2DM) is an important risk factors for mild cognitive impairment (MCI). Structural magnetic resonance imaging (sMRI) is an effective and widely used method to investigate brain pathomorphological injury in neural diseases. In present study, we aimed to determine the brain regional alterations that correlated to the incidence of MCI in T2DM patients. Materials and methods Eighteen T2DM patients with and without MCI (DMCI/T2DM) respectively, and eighteen age/gender-matched healthy controls (HC) were recruited. Brain MRI imagines of all the individuals were subjected to automatic quantified brain sub-structure volume segmentation and measurement by Dr. brain ™ software. The relative volume of total gray matter (TGM), total white matter (TWM), and 68 pairs (left and right) of brain sub-structures were compared between the three groups. Cognitive function correlation analysis and receiver operating characteristic (ROC) curve analysis were conducted in the MCI-related brain regions in T2DM patients, and we utilized a machine learning method to classify the three group of subjects. Results 10 and 27 brain sub-structures with significant relative volumetric alterations were observed in T2DM patients without MCI and T2DM patients with MCI, respectively (p < 0.05). Compared with T2DM patients without MCI, eight critical regions include right anterior orbital gyrus, right calcarine and cerebrum, left cuneus, left entorhinal area, left frontal operculum, right medial orbital gyrus, right occipital pole, left temporal pole had significant lower volumetric ratio in T2DM patients with MCI (p < 0.05). Among them, the decrease of volumetric ratio in several regions had a positive correlation with Montreal Cognitive Assessment (MoCA) scores and Mini-Mental State Examination (MMSE) scores. The classification results conducted based on these regions as features by random forest algorithm yielded good accuracies of T2DM/HC 69.4%, DMCI/HC 72.2% and T2DM/DMCI 69.4%. Conclusions Certain brain regional structural lesions occurred in patients with T2DM, and this condition was more serious in T2DM patients combined with MCI. A systematic way of segmenting and measuring the whole brain has a potential clinical value for predicting the presence of MCI for T2DM patients.
Collapse
|
10
|
Bashir J, Yarube IU. Occurrence of mild cognitive impairment with hyperinsulinaemia in Africans with advanced type 2 diabetes mellitus. IBRO Neurosci Rep 2022; 12:182-187. [PMID: 35746970 PMCID: PMC9210459 DOI: 10.1016/j.ibneur.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/09/2022] [Indexed: 11/08/2022] Open
Abstract
There is paucity of information on the prevalence of mild cognitive impairment (MCI) among individuals with type 2 diabetes mellitus (T2DM) in sub-Saharan Africa, including Nigeria. In addition, the role of hyperinsulinaemia in the development of MCI needs further investigation. This study sought to assess cognition and hyperinsulinaemia, with the associated characteristics in patients with advanced T2DM. Cognition was assessed using Montreal cognitive assessment test (MoCA), while fasting plasma insulin was measured using an ELISA kit. Sixty one diabetic subjects and 32 non-diabetic controls, matched for age, gender and level of education were studied. The diabetics had MCI while the controls had normal cognitive function. About 88.5% of the diabetic subjects had MCI, in contrast with only 50% of the non-diabetic controls. The most significantly affected cognitive domains among the diabetics were executive function, naming, attention, abstraction and delayed recall. Among the diabetics, MCI correlated with age, weight and body mass index (BMI); and in addition, age and weight found to be significant predictors of MCI. Plasma insulin concentration among the diabetics (16.24 ± 13.5 µIU/ml) was more than twice that of the controls (7.59 ± 2.9 µIU/ml). Hyperinsulinaemia among the diabetics correlated with weight, BMI, blood pressure and fasting blood sugar (FBS). Glycated haemoglobin and FBS levels were higher among diabetics compared with the controls. In conclusion, Africans with advanced T2DM show multi-domain MCI with high prevalence, coexisting with hyperinsulinaemia. Majority of the patients have diabetic complications and poor glycaemic control. Hyperinsulinaemia may play a complementary role in the pathophysiology of MCI in T2DM. Patients with advanced T2DM manifest multi-domain MCI with up to 88% prevalence. There is hyperinsulinaemia coexisting with the MCI among patients with advanced 2DM. Majority of the patients have diabetic complications and poor glycaemic control.
Collapse
|
11
|
Inflammasome NLRP3 Potentially Links Obesity-Associated Low-Grade Systemic Inflammation and Insulin Resistance with Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22115603. [PMID: 34070553 PMCID: PMC8198882 DOI: 10.3390/ijms22115603] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia. Metabolic disorders including obesity and type 2 diabetes mellitus (T2DM) may stimulate amyloid β (Aβ) aggregate formation. AD, obesity, and T2DM share similar features such as chronic inflammation, increased oxidative stress, insulin resistance, and impaired energy metabolism. Adiposity is associated with the pro-inflammatory phenotype. Adiposity-related inflammatory factors lead to the formation of inflammasome complexes, which are responsible for the activation, maturation, and release of the pro-inflammatory cytokines including interleukin-1β (IL-1β) and interleukin-18 (IL-18). Activation of the inflammasome complex, particularly NLRP3, has a crucial role in obesity-induced inflammation, insulin resistance, and T2DM. The abnormal activation of the NLRP3 signaling pathway influences neuroinflammatory processes. NLRP3/IL-1β signaling could underlie the association between adiposity and cognitive impairment in humans. The review includes a broadened approach to the role of obesity-related diseases (obesity, low-grade chronic inflammation, type 2 diabetes, insulin resistance, and enhanced NLRP3 activity) in AD. Moreover, we also discuss the mechanisms by which the NLRP3 activation potentially links inflammation, peripheral and central insulin resistance, and metabolic changes with AD.
Collapse
|
12
|
Zhang X, Yu Y, Shi ZS, Xu K, Feng JH, Li ZY, Zhang XN, Shen SN, Yang Y, Yan LF, Zhang J, Sun Q, Hu B, Cui GB, Wang W. Increased resting state functional irregularity of T2DM brains with high HbA1c: sign for impaired verbal memory function? Brain Imaging Behav 2021; 15:772-781. [PMID: 32712796 DOI: 10.1007/s11682-020-00285-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Glycosylated hemoglobin A1c (HbA1c) has been considered as a key contributor to impaired cognition in type 2 diabetes mellitus (T2DM) brains. However, how does it affect the brain and whether the glucose controlling can slow down the process are still unknown. In the current study, T2DM patients with high glycosylated hemoglobin level (HGL) and controls with normal glycosylated hemoglobin level (NGL) were enrolled to investigate the relationships between HbA1c, brain imaging characteristics and cognitive function. First, a series of cognitive tests including California Verbal Learning Test (CVLT) were conducted. Then, the functional irregularity based on resting state functional magnetic resonance imaging data was evaluated via a new data-driven brain entropy (BEN) mapping analysis method. We found that the HGLs exhibited significantly increased BEN in the right precentral gyrus (PreCG.R), the right middle frontal gyrus (MFG.R), the triangular and opercular parts of the right inferior frontal gyrus (IFGtriang.R and IFGoperc.R). The strengths of the functional connections of PreCG.R with the brainstem/cerebellum were decreased. Partial correlation analysis showed that HbA1c had a strong positive correlation to regional BEN and negatively correlated with some CVLT scores. Negative correlations also existed between the BEN of PreCG.R/IFGoperc.R and some CVLT scores, suggesting the correspondence between higher HbA1c, increased BEN and decreased verbal memory function. This study demonstrated the potential of BEN in exploring the functional alterations affected by HbA1c and interpreting the verbal memory function decline. It will help understanding the neurophysiological mechanism of T2DM-induced cognitive decline and taking effective prevention or treatment measures.
Collapse
Affiliation(s)
- Xin Zhang
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Ying Yu
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhe-Sheng Shi
- Student Brigade, Fourth Military Medical University, 169 Changle Road, Xi'an, 710032, Shaanxi, China
| | - Ke Xu
- Student Brigade, Fourth Military Medical University, 169 Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jia-Hao Feng
- Student Brigade, Fourth Military Medical University, 169 Changle Road, Xi'an, 710032, Shaanxi, China
| | - Ze-Yang Li
- Student Brigade, Fourth Military Medical University, 169 Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xiang-Nan Zhang
- Department of Science and Technology Affairs, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Shu-Ning Shen
- Department of Stomatology, PLA 984 Hospital, Beijing, 100094, China
| | - Yang Yang
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Lin-Feng Yan
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jin Zhang
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qian Sun
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bo Hu
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Guang-Bin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| | - Wen Wang
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
13
|
Huang X, Wen Z, Qi CX, Tong Y, Shen Y. Dynamic Changes of Amplitude of Low-Frequency Fluctuations in Patients With Diabetic Retinopathy. Front Neurol 2021; 12:611702. [PMID: 33643197 PMCID: PMC7905082 DOI: 10.3389/fneur.2021.611702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Growing evidence demonstrate that diabetic retinopathy (DR) patients have a high risk of cognitive decline and exhibit abnormal brain activity. However, neuroimaging studies thus far have focused on static cerebral activity changes in DR patients. The characteristics of dynamic cerebral activity in patients with DR are poorly understood. Purpose: The purpose of the study was to investigate the dynamic cerebral activity changes in patients with DR using the dynamic amplitude of low-frequency fluctuation (dALFF) method. Materials and methods: Thirty-four DR patients (18 men and 16 women) and 38 healthy controls (HCs) (18 males and 20 females) closely matched in age, sex, and education were enrolled in this study. The dALFF method was used to investigate dynamic intrinsic brain activity differences between the DR and HC groups. Results: Compared with HCs, DR patients exhibited increased dALFF variability in the right brainstem, left cerebellum_8, left cerebellum_9, and left parahippocampal gyrus. In contrast, DR patients exhibited decreased dALFF variability in the left middle occipital gyrus and right middle occipital gyrus. Conclusion: Our study highlighted that DR patients showed abnormal variability of dALFF in the visual cortices, cerebellum, and parahippocampal gyrus. These findings suggest impaired visual and motor and memory function in DR individuals. Thus, abnormal dynamic spontaneous brain activity might be involved in the pathophysiology of DR.
Collapse
Affiliation(s)
- Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Ophthalmology, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen-Xing Qi
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Tong
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Alotaibi A, Tench C, Stevenson R, Felmban G, Altokhis A, Aldhebaib A, Dineen RA, Constantinescu CS. Investigating Brain Microstructural Alterations in Type 1 and Type 2 Diabetes Using Diffusion Tensor Imaging: A Systematic Review. Brain Sci 2021; 11:brainsci11020140. [PMID: 33499073 PMCID: PMC7911883 DOI: 10.3390/brainsci11020140] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/13/2022] Open
Abstract
Type 1 and type 2 diabetes mellitus have an impact on the microstructural environment and cognitive functions of the brain due to its microvascular/macrovascular complications. Conventional Magnetic Resonance Imaging (MRI) techniques can allow detection of brain volume reduction in people with diabetes. However, conventional MRI is insufficiently sensitive to quantify microstructural changes. Diffusion Tensor Imaging (DTI) has been used as a sensitive MRI-based technique for quantifying and assessing brain microstructural abnormalities in patients with diabetes. This systematic review aims to summarise the original research literature using DTI to quantify microstructural alterations in diabetes and the relation of such changes to cognitive status and metabolic profile. A total of thirty-eight published studies that demonstrate the impact of diabetes mellitus on brain microstructure using DTI are included, and these demonstrate that both type 1 diabetes mellitus and type 2 diabetes mellitus may affect cognitive abilities due to the alterations in brain microstructures.
Collapse
Affiliation(s)
- Abdulmajeed Alotaibi
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
- School of Applied Medical Sciences, King Saud bin Abdul-Aziz University for Health Sciences, Riyadh 14611, Saudi Arabia;
- Correspondence: ; Tel.: +44-115-823-1443; Fax: +44-115-9709738
| | - Christopher Tench
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
| | - Rebecca Stevenson
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
| | - Ghadah Felmban
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
- School of Applied Medical Sciences, King Saud bin Abdul-Aziz University for Health Sciences, Riyadh 14611, Saudi Arabia;
| | - Amjad Altokhis
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
- School of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Ali Aldhebaib
- School of Applied Medical Sciences, King Saud bin Abdul-Aziz University for Health Sciences, Riyadh 14611, Saudi Arabia;
| | - Rob A. Dineen
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
- NIHR Nottingham Biomedical Research Centre, Nottingham NG1 5DU, UK
| | - Cris S. Constantinescu
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
| |
Collapse
|
15
|
Yu ZW, Liu R, Li X, Wang Y, Fu YH, Li HY, Yuan Y, Gao XY. Potential roles of Glucagon-like peptide-1 and its analogues in cognitive impairment associated with type 2 diabetes mellitus. Mech Ageing Dev 2020; 190:111294. [DOI: 10.1016/j.mad.2020.111294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
|
16
|
Cardiometabolic determinants of early and advanced brain alterations: Insights from conventional and novel MRI techniques. Neurosci Biobehav Rev 2020; 115:308-320. [DOI: 10.1016/j.neubiorev.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
|
17
|
Disturbances in brain energy metabolism in insulin resistance and diabetes and Alzheimer's disease - Learnings from brain imaging biomarkers. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:111-130. [PMID: 32739001 DOI: 10.1016/bs.irn.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Medical imaging techniques, such as structural and functional magnetic resonance imaging and positron emission tomography, have been used to gain a better understanding of the alterations of the metabolic processes in the brain relating to type 2 diabetes melltius, insulin resistance and Alzheimer's disease. These studies have shown that there are several similarities in the effects that these seemingly disparate diseases have on the brain, and that some of the abnormalities are reversed by metabolic interventions. This review provides an overview of the overlap between these diseases using medical imaging, focusing on glucose metabolism, mitochondrial function and lipid metabolism.
Collapse
|
18
|
Ding G, Chopp M, Li L, Zhang L, Davoodi-Bojd E, Li Q, Wei M, Zhang Z, Jiang Q. Differences between normal and diabetic brains in middle-aged rats by MRI. Brain Res 2019; 1724:146407. [PMID: 31465773 PMCID: PMC8063608 DOI: 10.1016/j.brainres.2019.146407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 01/01/2023]
Abstract
Normal aging is a risk factor for metabolic disorders such as diabetes, and diabetes is also a recognized cause of accelerated aging. Being able to distinguish changes caused by normal aging from those caused by diabetes, would provide insight into how the aging brain interacts with diabetes. Eight types of MRI metric maps (magnetization relaxation time constants of T1 and T2, cerebral blood flow, cerebrovascular permeability, mean diffusivity, diffusion fractional anisotropy, mean diffusion kurtosis and diffusion directional entropy) were generated for all rats from the three groups of normal young, healthy and 1.5-month diabetic middle-aged rats under investigation. Measurements of multiple MRI indices of cerebral white and gray matter from animals of the three groups provide complementary results and insight into differences between healthy and diabetic white / gray matter in the mid-aged rats. Our data indicate that MRI may distinguish between the normal and diabetes in mid-aged rat brains by measuring either T1 and T2 of gray matter, or fractional anisotropy of white matter and gray matter. Therefore, MRI can distinguish changes of cerebral tissue due to the normal aging from diabetic aging, which may lead to be able to better understand how diabetes accelerates aging in normal brain.
Collapse
Affiliation(s)
- Guangliang Ding
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Lian Li
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Qingjiang Li
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Min Wei
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
19
|
Sanjari Moghaddam H, Ghazi Sherbaf F, Aarabi MH. Brain microstructural abnormalities in type 2 diabetes mellitus: A systematic review of diffusion tensor imaging studies. Front Neuroendocrinol 2019; 55:100782. [PMID: 31401292 DOI: 10.1016/j.yfrne.2019.100782] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with deficits in the structure and function of the brain. Diffusion tensor imaging (DTI) is a highly sensitive method for characterizing cerebral tissue microstructure. Using PRISMA guidelines, we identified 29 studies which have demonstrated widespread brain microstructural impairment and topological network disorganization in patients with T2DM. Most consistently reported structures with microstructural abnormalities were frontal, temporal, and parietal lobes in the lobar cluster; corpus callosum, cingulum, uncinate fasciculus, corona radiata, and internal and external capsules in the white matter cluster; thalamus in the subcortical cluster; and cerebellum. Microstructural abnormalities were correlated with pathological derangements in the endocrine profile as well as deficits in cognitive performance in the domains of memory, information-processing speed, executive function, and attention. Altogether, the findings suggest that the detrimental effects of T2DM on cognitive functions might be due to microstructural disruptions in the central neural structures.
Collapse
Affiliation(s)
| | - Farzaneh Ghazi Sherbaf
- Neuroradiology Division, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Neuroradiology Division, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran.
| |
Collapse
|
20
|
Brain White Matter: A Substrate for Resilience and a Substance for Subcortical Small Vessel Disease. Brain Sci 2019; 9:brainsci9080193. [PMID: 31398858 PMCID: PMC6721396 DOI: 10.3390/brainsci9080193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 01/01/2023] Open
Abstract
Age-related brain white matter disease is a form of small vessel disease (SVD) that may be associated with lacunar and other small subcortical infarcts, cerebral microbleeds, and perivascular spaces. This common form of cerebrovascular disease may manifest clinically as cognitive impairment of varying degrees and difficulty with mobility. Whereas some persons show cognitive decline and mobility failure when there are brain white matter hyperintensities (WMH) and acute stroke, others recover, and not everyone with brain white matter disease is disabled. Thus, repair or compensation of brain white matter may be possible, and furthermore, certain vascular risks, such as raised blood pressure, are targets for prevention of white matter disease or are administered to reduce the burden of such disease. Vascular risk modification may be useful, but alone may not be sufficient to prevent white matter disease progression. In this chapter, we specifically focus on WMH of vascular origin and explore white matter development, plasticity, and enduring processes of myelination across the health span in the context of experimental and human data, and compare and contrast resilient brain white matter propensity to a diseased white matter state. We conclude with thoughts on novel ways one might study white matter resilience, and predict future healthy cognitive and functional outcomes.
Collapse
|
21
|
Meusel LAC, Greenwood CE, Maione A, Tchistiakova E, MacIntosh BJ, Anderson ND. Cardiovascular risk and encoding-related hippocampal connectivity in older adults. BMC Neurosci 2019; 20:37. [PMID: 31366391 PMCID: PMC6668059 DOI: 10.1186/s12868-019-0518-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/16/2019] [Indexed: 01/10/2023] Open
Abstract
Background Cardiovascular conditions contribute to brain volume loss, reduced cerebrovascular health, and increased dementia risk in aging adults. Altered hippocampal connectivity has also been observed in individuals with cardiovascular conditions, yet the functional consequences of these changes remain unclear. In the present study, we collected functional magnetic resonance imaging data during memory encoding and used a psychophysiological interaction analysis to examine whether cardiovascular burden, indexed using the Framingham risk score, was associated with encoding-related hippocampal connectivity and task performance in cognitively-intact older adults between 65 and 85 years of age. Our goal was to better understand the early functional consequences of vascular and metabolic dysfunction in those at risk for cognitive decline. Results High Framingham risk scores were associated with lower total brain volumes. In addition, those with high Framingham risk scores showed an altered relationship between left hippocampal-medial prefrontal coupling and task performance compared to those with low Framingham risk scores. Specifically, we found a significant interaction of Framingham risk and learning on connectivity between the left hippocampus and primarily left midline prefrontal regions comprising the left ventral anterior cingulate cortex and medial prefrontal cortex. Those with lower Framingham risk scores showed a pattern of weaker connectivity between left hippocampal and medial prefrontal regions associated with better task performance. Those with higher Framingham risk scores showed the opposite pattern; stronger connectivity was associated with better performance. Conclusions Findings from the current study show that amongst older adults with cardiovascular conditions, higher Framingham risk is associated with lower brain volume and altered left hippocampal-medial prefrontal coupling during task performance compared to those with lower Framingham risk scores. This may reflect a compensatory mechanism in support of memory function and suggests that older adults with elevated cardiovascular risk are vulnerable to early Alzheimer disease-like dysfunction within the episodic memory system.
Collapse
Affiliation(s)
- Liesel-Ann C Meusel
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
| | - Carol E Greenwood
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea Maione
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
| | - Ekaterina Tchistiakova
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicole D Anderson
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada. .,Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Xu J, Chen F, Liu T, Wang T, Zhang J, Yuan H, Wang M. Brain Functional Networks in Type 2 Diabetes Mellitus Patients: A Resting-State Functional MRI Study. Front Neurosci 2019; 13:239. [PMID: 30941007 PMCID: PMC6433793 DOI: 10.3389/fnins.2019.00239] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/28/2019] [Indexed: 11/13/2022] Open
Abstract
Background Previous diabetes mellitus studies of cognitive impairments in the early stages have focused on changes in brain structure and function, and more recently the focus has shifted to the relationships between encephalic regions and diversification of network topology. However, studies examining network topology in diabetic brain function are still limited. Methods The study included 102 subjects; 55 type 2 diabetes mellitus (T2DM) patients plus 47 healthy controls. All subjects were examined by resting-state functional magnetic resonance imaging (rs-fMRI) scan. According to Automated Anatomical Labeling, the brain was divided into 90 anatomical regions, and every region corresponds to a brain network analysis node. The whole brain functional network was constructed by thresholding the correlation matrices of the 90 brain regions, and the topological properties of the network were computed based on graph theory. Then, the topological properties of the network were compared between different groups by using a non-parametric test. Finally, the associations between differences in topological properties and the clinical indicators were analyzed. Results The brain functional networks of both T2DM patients and healthy controls were found to possess small-world characteristics, i.e., normalized clustering coefficient (γ) > 1, and normalized characteristic path length (λ) close to 1. No significant differences were found in the small-world characteristics (σ). Second, the T2DM patient group displayed significant differences in node properties in certain brain regions. Correlative analytic results showed that the node degree of the right inferior temporal gyrus (ITG) and the node efficiencies of the right ITG and superior temporal gyrus of T2DM patients were positively correlated with body mass index. Conclusion The brain network of T2DM patients has the same small-world characteristics as normal people, but the normalized clustering coefficient is higher and the normalized characteristic path length is lower than that of the normal control group, indicating that the brain function network of the T2DM patients has changed. The changes of node properties were mostly concentrated in frontal lobe, temporal lobe and posterior cingulate gyrus. The abnormal changes in these indices in T2DM patients might be explained as a compensatory behavior to reduce cognitive impairments, which is achieved by mobilizing additional neural resources, such as the excessive activation of the network and the efficient networking of multiple brain regions.
Collapse
Affiliation(s)
- Jian Xu
- Department of Medical Information Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, China.,School of Information Engineering, Hubei University for Nationalities, Enshi, China
| | - Fuqin Chen
- Department of Medical Information Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, China
| | - Taiyuan Liu
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ting Wang
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Junran Zhang
- Department of Medical Information Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Dong Y, Wang Q, Yao H, Xiao Y, Wei J, Xie P, Hu J, Chen W, Tang Y, Zhou H, Liu J. A promising structural magnetic resonance imaging assessment in patients with preclinical cognitive decline and diabetes mellitus. J Cell Physiol 2019; 234:16838-16846. [PMID: 30786010 DOI: 10.1002/jcp.28359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 01/18/2023]
Abstract
Subjective cognitive decline (SCD) is frequently reported in diabetic patients. Diabetes mellitus (DM) is associated with changes in the microstructure of the brain arise in diabetic patients, including changes in gray matter volume (GMV). However, the underlying mechanisms of changes in GMV in DM patients with cognitive impairment remain uncertain. Here, we present an overview of amyloid-β-dependent cognitive impairment in DM patients with SCD. Moreover, we review the evolving insights from studies on the GMV changes in GMV and cognitive dysfunction to which provide the mechanisms of cognitive impairment in T2DM. Ultimately, the novel structural magnetic resonance imaging (MRI) protocol was used for detecting neuroimaging biomarkers that can predict the clinical outcomes in diabetic patients with SCD. A reliable MRI protocol would be helpful to detect neurobiomarkers, and to understand the pathological mechanisms of preclinical cognitive impairment in diabetic patients.
Collapse
Affiliation(s)
- Yulan Dong
- Department of Radiology, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Qi Wang
- Department of Radiology, the Hunan Province Hospital, Changsha, China
| | - Hailun Yao
- Institute of Pharmacy and Medical Technology, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan, China
| | - Yawen Xiao
- Department of Radiology, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Jiaohong Wei
- Department of Radiology, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Peihan Xie
- Department of Radiology, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Jun Hu
- Department of Radiology, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Wen Chen
- Department of Radiology, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Yan Tang
- Department of Ultrasound, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Hong Zhou
- Department of Radiology, the First Affiliated Hospital of University of South China, Hengyang, China.,Hengyang Medical College, University of South China, Hengyang, China
| | - Jincai Liu
- Department of Radiology, the First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
24
|
Xu J, Guan X, Li H, Xu X, Zhang M. Integration and segregation of functional segmented anterior and posterior hippocampal networks in memory performance. Behav Brain Res 2019; 364:256-263. [PMID: 30768997 DOI: 10.1016/j.bbr.2019.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE To determine the association between functional connectivity (FC) of functional-segmented anterior and posterior portions of the hippocampus and performance on verbal and visual memory tests in a young, healthy population. METHODS We recruited 100 healthy participants in the age of 19-29. Resting state fMRI data were acquired and voxel-wise correlation analysis was performed to functionally divide the hippocampus. We investigated the inter-hemispheric hippocampal-cortical functional connectivity after the participants took the assessment of episodic memory using verbal (California Verbal Learning Test II, CVLT-II) and visual subtests (Rey-Osterrieth Complex Figure, ROCF). The partial correlations were used to identify the association between the intra-hemispheric hippocampal-cortical mean resting correlation and memory performance. RESULTS The results showed that the anterior and posterior hippocampal networks involved differently in verbal and visual memory. Intra-hemispheric FC between left posterior hippocampus and posterior parahippocampal gyrus (PPHG) was positively correlated with CVLT-II Trail 2 Immediate Free Recall (r = 0.223, p = 0.029). Intra-hemispheric FC between left posterior hippocampus and posterior cingulate (PCC) was negatively correlated with ROCF Immediate Recall (r = -0.217 p = 0.034). Intra-hemispheric FC between left anterior hippocampus and temporal pole (TP) negatively correlated with ROCF Delayed Recall (r = -0.228, p = 0.025). Split half resampling procedure results showed some repeatability in our subjects. CONCLUSION The present results demonstrated that, the anterior hippocampus was specifically involved in the visual memory processing, whereas the posterior hippocampus contributed to both the verbal and visual memories, which may have implications for a functionally synergetic and dissociable role of the hippocampus in different kinds of memory.
Collapse
|
25
|
Rosenberg J, Lechea N, Pentang GN, Shah NJ. What magnetic resonance imaging reveals - A systematic review of the relationship between type II diabetes and associated brain distortions of structure and cognitive functioning. Front Neuroendocrinol 2019; 52:79-112. [PMID: 30392901 DOI: 10.1016/j.yfrne.2018.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Due to its increasing prevalence, Type 2 diabetes mellitus (T2DM) represents a major health challenge for modern society. Despite it being of fundamental interest, only a few MRI studies have conducted statistical analyses to draw scientifically valid conclusions about the complex interplay of T2DM and its associated clinical, structural, functional, metabolite, as well as cognitive distortions. Therefore, a systematic review of 68 manuscripts, following the PRISMA guidelines, was conducted. Notably, although the associations between imaging, clinical, and cognitive variables are not fully homogeneous, findings show a clear trend towards a link between altered brain structure and a decline in cognitive processing ability. The results of the review highlight the heterogeneity of the methods used across manuscripts in terms of assessed clinical variables, imaging, and data analysis methods. This is particularly significant as, if the subjects' criteria are not carefully considered, results are easily prone to confounding factors.
Collapse
Affiliation(s)
- Jessica Rosenberg
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JARA - Translational Brain Medicine & INM-11, RWTH Aachen University, 52074 Aachen, Germany; Department of Neurology, University Clinic Aachen, 52074 Aachen, Germany.
| | - Nazim Lechea
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Gael N Pentang
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JARA - Translational Brain Medicine & INM-11, RWTH Aachen University, 52074 Aachen, Germany; Department of Neurology, University Clinic Aachen, 52074 Aachen, Germany; Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Sun Q, Chen GQ, Wang XB, Yu Y, Hu YC, Yan LF, Zhang X, Yang Y, Zhang J, Liu B, Wang CC, Ma Y, Wang W, Han Y, Cui GB. Alterations of White Matter Integrity and Hippocampal Functional Connectivity in Type 2 Diabetes Without Mild Cognitive Impairment. Front Neuroanat 2018; 12:21. [PMID: 29615873 PMCID: PMC5869188 DOI: 10.3389/fnana.2018.00021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/06/2018] [Indexed: 12/26/2022] Open
Abstract
Aims: To investigate the white matter (WM) integrity and hippocampal functional connectivity (FC) in type 2 diabetes mellitus (T2DM) patients without mild cognitive impairment (MCI) by using diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI), respectively. Methods: Twelve T2DM patients without MCI and 24 age, sex and education matched healthy controls (HC) were recruited. DTI and rs-fMRI data were subsequently acquired on a 3.0T MR scanner. Tract-based spatial statistics (TBSS) combining region of interests (ROIs) analysis was used to investigate the alterations of DTI metrics (fractional anisotropy (FA), mean diffusivity (MD), λ1 and λ23) and FC measurement was performed to calculate hippocampal FC with other brain regions. Cognitive function was evaluated by using Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Brain volumes were also evaluated among these participants. Results: There were no difference of MMSE and MoCA scores between two groups. Neither whole brain nor regional brain volume decrease was revealed in T2DM patients without MCI. DTI analysis revealed extensive WM disruptions, especially in the body of corpus callosum (CC). Significant decreases of hippocampal FC with certain brain structures were revealed, especially with the bilateral frontal cortex. Furthermore, the decreased FA in left posterior thalamic radiation (PTR) and increased MD in the splenium of CC were closely related with the decreased hippocampal FC to caudate nucleus and frontal cortex. Conclusions: T2DM patients without MCI showed extensive WM disruptions and abnormal hippocampal FC. Moreover, the WM disruptions and abnormal hippocampal FC were closely associated. HighlightsT2DM patients without MCI demonstrated no obvious brain volume decrease. Extensive white matter disruptions, especially within the body of corpus callosum, were revealed with DTI analysis among the T2DM patients. Despite no MCI in T2DM patients, decreased functional connectivity between hippocampal region and some critical brain regions were detected. The alterations in hippocampal functional connectivity were closely associated with those of the white matter structures in T2DM patients.
This trial was registered to ClinicalTrials.gov (NCT02420470, https://www.clinicaltrials.gov/).
Collapse
Affiliation(s)
- Qian Sun
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Guan-Qun Chen
- Department of Neurology, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Xi-Bin Wang
- Department of Medical Image Diagnosis, Hanzhong Central Hospital, Hanzhong, China
| | - Ying Yu
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Yu-Chuan Hu
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Xin Zhang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Jin Zhang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Bin Liu
- Student Brigade, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Cong-Cong Wang
- Student Brigade, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Yi Ma
- Student Brigade, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Ying Han
- Department of Neurology, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
27
|
Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 2018; 14:168-181. [PMID: 29377010 DOI: 10.1038/nrneurol.2017.185] [Citation(s) in RCA: 971] [Impact Index Per Article: 138.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable overlap has been identified in the risk factors, comorbidities and putative pathophysiological mechanisms of Alzheimer disease and related dementias (ADRDs) and type 2 diabetes mellitus (T2DM), two of the most pressing epidemics of our time. Much is known about the biology of each condition, but whether T2DM and ADRDs are parallel phenomena arising from coincidental roots in ageing or synergistic diseases linked by vicious pathophysiological cycles remains unclear. Insulin resistance is a core feature of T2DM and is emerging as a potentially important feature of ADRDs. Here, we review key observations and experimental data on insulin signalling in the brain, highlighting its actions in neurons and glia. In addition, we define the concept of 'brain insulin resistance' and review the growing, although still inconsistent, literature concerning cognitive impairment and neuropathological abnormalities in T2DM, obesity and insulin resistance. Lastly, we review evidence of intrinsic brain insulin resistance in ADRDs. By expanding our understanding of the overlapping mechanisms of these conditions, we hope to accelerate the rational development of preventive, disease-modifying and symptomatic treatments for cognitive dysfunction in T2DM and ADRDs alike.
Collapse
|
28
|
Li W, Huang E. An Update on Type 2 Diabetes Mellitus as a Risk Factor for Dementia. J Alzheimers Dis 2018; 53:393-402. [PMID: 27163819 DOI: 10.3233/jad-160114] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the rapidly expanding evidence on brain structural and functional changes in type 2 diabetes mellitus (T2DM) patients, there is an increasing need to update our understanding on how T2DM associates with dementia as well as the underlying pathophysiological mechanisms. A literature search of T2DM and dementia or cognition impairments was carried out in electronic databases Medline, EMBASE, and Google Scholar. In this review, the chosen evidence was limited to human subject studies only, and data on either type 1 diabetes mellitus (T1DM) or non-classified diabetes were excluded. T2DM is a risk factor for both vascular dementia (VaD) and Alzheimer's disease (AD), although AD pathological marker studies have not provided sufficient evidence. T2DM interacts additively or synergistically with many factors, including old age, hypertension, total cholesterol, and APOEɛ4 carrier status for impaired cognition functions seen in patients with T2DM. In addition, comorbid T2DM can worsen the clinical presentations of patients with either AD or VaD. In summary, T2DM increases the risk for AD through different mechanisms for VaD although some mechanisms may overlap. Tau-related neurofibrillary tangles instead of amyloid-β plaques are more likely to be the pathological biomarkers for T2DM-related dementia. Degeneration of neurons in the brain, impaired regional blood supply/metabolism, and genetic predisposition are all involved in T2DM-associated dementia or cognitive impairments.
Collapse
Affiliation(s)
- Wei Li
- Master of Physician Assistant Studies, School of Health and Rehabilitation Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Edgar Huang
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
29
|
Moran C, Beare R, Phan T, Starkstein S, Bruce D, Romina M, Srikanth V. Neuroimaging and its Relevance to Understanding Pathways Linking Diabetes and Cognitive Dysfunction. J Alzheimers Dis 2017; 59:405-419. [DOI: 10.3233/jad-161166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chris Moran
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Aged Care Services, Caulfield Hospital, Alfred Health, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Richard Beare
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Thanh Phan
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Sergio Starkstein
- Fremantle Hospital, WA, Australia
- University of Western Australia, WA, Australia
| | - David Bruce
- Fremantle Hospital, WA, Australia
- University of Western Australia, WA, Australia
| | - Mizrahi Romina
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Power MC, Tingle JV, Reid RI, Huang J, Sharrett AR, Coresh J, Griswold M, Kantarci K, Jack CR, Knopman D, Gottesman RF, Mosley TH. Midlife and Late-Life Vascular Risk Factors and White Matter Microstructural Integrity: The Atherosclerosis Risk in Communities Neurocognitive Study. J Am Heart Assoc 2017; 6:JAHA.117.005608. [PMID: 28522676 PMCID: PMC5524102 DOI: 10.1161/jaha.117.005608] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Diffusion tensor imaging measures of white matter (WM) microstructural integrity appear to provide earlier indication of WM injury than WM hyperintensities; however, risk factors for poor WM microstructural integrity have not been established. Our study quantifies the association between vascular risk factors in midlife and late life with measures of late‐life WM microstructural integrity. Methods and Results We used data from 1851 participants in ARIC (Atherosclerosis Risk in Communities Study) who completed 3‐T magnetic resonance imaging, including diffusion tensor imaging, as part of the ARIC Neurocognitive Study (ARIC‐NCS). We quantified the association among lipids, glucose, and blood pressure from the baseline ARIC visit (1987–1989, ages 44–65, midlife) and visit 5 of ARIC (2011–2013, ages 67–90, late life, concurrent with ARIC‐NCS) with regional and overall WM mean diffusivity and fractional anisotropy obtained at ARIC visit 5 for ARIC participants. We also considered whether these associations were independent of or modified by WM hyperintensity volumes. We found that elevated blood pressure in midlife and late life and elevated glucose in midlife, but not late life, were associated with worse late‐life WM microstructural integrity. These associations were independent of the degree of WM hyperintensity, and the association between glucose and WM microstructural integrity appeared stronger for those with the least WM hyperintensity. There was little support for an adverse association between lipids and WM microstructural integrity. Conclusions Hypertension in both midlife and late life and elevated glucose in midlife are related to worse WM microstructural integrity in late life.
Collapse
Affiliation(s)
- Melinda C Power
- Department of Epidemiology and Biostatistics, George Washington University Milken Institute School of Public Health, Washington, DC
| | - Jonathan V Tingle
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, MS
| | | | - Juebin Huang
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| | | | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| | - Michael Griswold
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, MS
| | | | | | | | - Rebecca F Gottesman
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD.,Department of Neurology, Johns Hopkins University, Baltimore, MD
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
31
|
Alfaro FJ, Lioutas VA, Pimentel DA, Chung CC, Bedoya F, Yoo WK, Novak V. Cognitive decline in metabolic syndrome is linked to microstructural white matter abnormalities. J Neurol 2016; 263:2505-2514. [PMID: 27730376 DOI: 10.1007/s00415-016-8292-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/21/2023]
Abstract
Subjects with metabolic syndrome (MetS) often show worse cognitive performance compared with the healthy population. We investigated whether microstructural white matter abnormalities are associated with cognitive performance in adults with MetS using diffusion tensor MR imaging. A total of 32 subjects with MetS (age 64.8 ± 7.8, 56.25 % female) and 23 age-, gender-, and education-matched healthy controls completed a battery of neuropsychological tests and diffusion tensor imaging (DTI) at 3-T MRI. Brain global and regional volumes, white matter fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (LD) were calculated. The least-square models adjusted for age, sex, HbA1c, hypertension, body mass index, hyperlipidemia, and white matter hyperintensities were used to evaluate the relationship between cognitive function and DTI. The MetS group had worse performance in verbal fluency (VF) and learning and memory function (total VF: T score (p = 0.01), VF: animals T score (p = 0.0001), Hopkins Verbal Learning Test (HVLT): Total recall T score (p = 0.0001), and HVLT: delayed recall T score (p = 0.002), as compared with controls. In the MetS group, abnormalities in diffusivity measures were associated with worse cognitive performance [VF: animals T score and left post-central gyrus-LD (p = 0.0007, r adj 0.4), R angular gyrus-RD (p = 0.0008, r adj 0.3), L supra-marginal gyrus-RD (p = 0.009, r adj 0.2) after adjusting for age, sex, HbA1c, 24 h mean BP, presence of hyperlipidemia, and global white matter hyperintensities]. Microstructural white matter abnormalities in the MetS group might be the underlying mechanisms of worse verbal learning and memory performance.
Collapse
Affiliation(s)
- Freddy J Alfaro
- Department of Neurology, Beth Israel Deaconess Medical Center, 185 Pilgrim Road, Palmer 127, Boston, MA, 02215, USA
| | - Vasileios-Arsenios Lioutas
- Department of Neurology, Beth Israel Deaconess Medical Center, 185 Pilgrim Road, Palmer 127, Boston, MA, 02215, USA
| | - Daniela A Pimentel
- Department of Neurology, Beth Israel Deaconess Medical Center, 185 Pilgrim Road, Palmer 127, Boston, MA, 02215, USA
| | - Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Francisco Bedoya
- Department of Neurology, Beth Israel Deaconess Medical Center, 185 Pilgrim Road, Palmer 127, Boston, MA, 02215, USA
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Chooncheon, Korea
- Hallym Institute of Translational Genomics and Bioinformatics, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, 185 Pilgrim Road, Palmer 127, Boston, MA, 02215, USA.
| |
Collapse
|
32
|
van Bussel FCG, Backes WH, Hofman PAM, van Boxtel MPJ, Schram MT, Stehouwer CDA, Wildberger JE, Jansen JFA. Altered Hippocampal White Matter Connectivity in Type 2 Diabetes Mellitus and Memory Decrements. J Neuroendocrinol 2016; 28:12366. [PMID: 26791354 DOI: 10.1111/jne.12366] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/23/2015] [Accepted: 01/14/2016] [Indexed: 01/06/2023]
Abstract
Type 2 diabetes mellitus is associated with cognitive decrements. Specifically affected cognitive domains are learning and memory, for which the hippocampus plays an essential role. The pathophysiological mechanism remains to be revealed. The present study examined whether local hippocampal microstructure and white matter connectivity are related to type 2 diabetes and memory performance. Forty participants with type 2 diabetes and 38 participants without type 2 diabetes underwent detailed cognitive assessment and 3-Tesla diffusion magnetic resonance imaging (MRI). Diffusion MRI was performed to assess microstructure (fractional anisotropy and mean diffusivity) and white matter connectivity (tract volume) of the hippocampus, which were compared between participants with and without type 2 diabetes. No differences in hippocampal microstructure were observed. Participants with type 2 diabetes had fewer white matter connections between the hippocampus and frontal lobe (P = 0.017). Participants who scored lower on memory function, regardless of type 2 diabetes, had fewer white matter connections between the hippocampus and temporal lobe (P = 0.017). Taken together, type 2 diabetes and memory decrements appear to be associated with altered hippocampal white matter connectivity.
Collapse
Affiliation(s)
- F C G van Bussel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
| | - W H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - P A M Hofman
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
| | - M P J van Boxtel
- School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M T Schram
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - C D A Stehouwer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J E Wildberger
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
33
|
Hou YC, Yang SH, Wu YT, Lai CH. Alterations of neocortico-limbic association fibers and correlation with diet in prediabetes diagnosed by impaired fasting glucose. J Magn Reson Imaging 2016; 43:1500-6. [PMID: 26756544 DOI: 10.1002/jmri.25127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To assess the existence of alterations in the micro-integrity of the fasciculus in prediabetic subjects. The issue of micro-integrity in white matter tracts has not been adequately addressed in prediabetes. MATERIALS AND METHODS Sixty-four prediabetic subjects and 54 controls were enrolled. All participants completed 24-hour diet records and 3-day diet records and received diffusion tensor imaging at 3T. The data for white matter micro-integrity were analyzed and compared between prediabetic subjects and controls with age and gender as covariates. In addition, voxel-wise regression between white matter micro-integrity, diet, and preprandial glucose levels were used to explore the relationship between white matter micro-integrity and diet or serum glucose levels. RESULTS We found that prediabetic subjects had significant reductions in the micro-integrity of bilateral anterior thalamic radiation, left inferior longitudinal fasciculus, and left superior longitudinal fasciculus (corrected P < 0.05). In addition, total carbohydrate intake amount and preprandial serum glucose levels were negatively correlated with the micro-integrity in the left inferior longitudinal fasciculus and left anterior thalamic radiation (r: -0.47, corrected P < 0.05). CONCLUSION Restrictive alterations in the white matter micro-integrity of the anterior thalamic radiation and inferior and superior longitudinal fasciculi might represent the initial "hot spots" for white matter tract alterations, which might play a role in the development of prediabetes. J. Magn. Reson. Imaging 2016;43:1500-1506.
Collapse
Affiliation(s)
- Yi-Cheng Hou
- Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC
| | - Shwu-Huey Yang
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chien-Han Lai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Psychiatry, Cheng Hsin General Hospital, Taipei City, Taiwan, ROC
| |
Collapse
|
34
|
Chen Y, Liu Z, Zhang J, Tian G, Li L, Zhang S, Li X, Chen K, Zhang Z. Selectively Disrupted Functional Connectivity Networks in Type 2 Diabetes Mellitus. Front Aging Neurosci 2015; 7:233. [PMID: 26696885 PMCID: PMC4675853 DOI: 10.3389/fnagi.2015.00233] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/27/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The high prevalence of type 2 diabetes mellitus (T2DM) in individuals over 65 years old and cognitive deficits caused by T2DM have attracted broad attention. The pathophysiological mechanism of T2DM-induced cognitive impairments, however, remains poorly understood. Previous studies have suggested that the cognitive impairments can be attributed not only to local functional and structural abnormalities but also to specific brain networks. Thus, our aim is to investigate the changes of global networks selectively affected by T2DM. METHODS A resting state functional network analysis was conducted to investigate the intrinsic functional connectivity in 37 patients with diabetes and 40 healthy controls who were recruited from local communities in Beijing, China. RESULTS We found that patients with T2DM exhibited cognitive function declines and functional connectivity disruptions within the default mode network, left frontal parietal network, and sensorimotor network. More importantly, the fasting glucose level was correlated with abnormal functional connectivity. CONCLUSION These findings could help to understand the neural mechanisms of cognitive impairments in T2DM and provide potential neuroimaging biomarkers that may be used for early diagnosis and intervention in cognitive decline.
Collapse
Affiliation(s)
- Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University , Beijing , China ; BABRI Centre, Beijing Normal University , Beijing , China
| | - Zhen Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University , Beijing , China ; BABRI Centre, Beijing Normal University , Beijing , China
| | - Junying Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University , Beijing , China ; BABRI Centre, Beijing Normal University , Beijing , China
| | - Guihua Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine , Beijing , China
| | - Linzi Li
- School of Life Sciences, Fudan University , Shanghai , China
| | - Sisi Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University , Beijing , China ; BABRI Centre, Beijing Normal University , Beijing , China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University , Beijing , China ; BABRI Centre, Beijing Normal University , Beijing , China
| | - Kewei Chen
- BABRI Centre, Beijing Normal University , Beijing , China ; Banner Alzheimer's Institute , Phoenix, AZ , USA
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University , Beijing , China ; BABRI Centre, Beijing Normal University , Beijing , China
| |
Collapse
|
35
|
Regional brain shrinkage over two years: individual differences and effects of pro-inflammatory genetic polymorphisms. Neuroimage 2014; 103:334-348. [PMID: 25264227 DOI: 10.1016/j.neuroimage.2014.09.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/29/2014] [Accepted: 09/17/2014] [Indexed: 02/04/2023] Open
Abstract
We examined regional changes in brain volume in healthy adults (N=167, age 19-79years at baseline; N=90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the Hc, CbH, In, OF, and PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants modified shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1β C-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFR C677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC, thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan.
Collapse
|
36
|
Wisse LEM, de Bresser J, Geerlings MI, Reijmer YD, Portegies MLP, Brundel M, Kappelle LJ, van der Graaf Y, Biessels GJ. Global brain atrophy but not hippocampal atrophy is related to type 2 diabetes. J Neurol Sci 2014; 344:32-6. [PMID: 24958596 DOI: 10.1016/j.jns.2014.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/10/2014] [Accepted: 06/03/2014] [Indexed: 02/08/2023]
Abstract
AIMS It has been suggested that in patients with type 2 diabetes mellitus (T2DM), brain atrophy is most pronounced in the hippocampus, but this has not been investigated systematically. The present pooled analysis of three studies examined if hippocampal atrophy is more prominent than global brain atrophy in patients with T2DM relative to controls. METHODS Data were derived from a cohort study of patients with vascular disease (SMART-Medea (T2DM=120; no T2DM=502)), and from two case-control studies (UDES1 (T2DM=61; controls=30) and UDES2 (T2DM=54; controls=53)). In SMART-Medea and UDES1, hippocampal volume was obtained by manual tracing on 1.5 Tesla (T) MRI scans. Total brain and intracranial volume (ICV) were determined by an automated segmentation method. In UDES2, hippocampal and total brain volume were determined by FreeSurfer and ICV by manual segmentation on 3 T MRI scans. RESULTS The pooled analyses, adjusted for age and sex, showed a significant negative relation between T2DM and total brain-to-ICV ratio (standardized mean difference=-1.24%, 95% CI: -1.63; -0.86), but not between T2DM and hippocampal-to-ICV ratio (0.00%, 95% CI: -0.01; 0.00) or between T2DM and hippocampal-to-total brain volume ratio (0.01%, 95% CI: -0.01; 0.02). In patients with T2DM no associations were found between brain volume measures and HbA1c or memory. CONCLUSION Patients with T2DM had greater brain atrophy but not hippocampal atrophy, compared to controls. These findings do not support specific vulnerability of the hippocampus in patients with T2DM.
Collapse
Affiliation(s)
- Laura E M Wisse
- UMC Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands; UMC Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | | | - Mirjam I Geerlings
- UMC Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands.
| | - Yael D Reijmer
- UMC Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht, The Netherlands; J. Philip Kistler Stroke Center, MA General Hospital, Harvard Medical School, Boston, USA
| | | | - Manon Brundel
- UMC Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - L Jaap Kappelle
- UMC Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Yolanda van der Graaf
- UMC Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands
| | - Geert Jan Biessels
- UMC Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | | | | |
Collapse
|