1
|
Yu T, Hu T, Na K, Zhang L, Lu S, Guo X. Glutamine-derived peptides: Current progress and future directions. Compr Rev Food Sci Food Saf 2024; 23:e13386. [PMID: 38847753 DOI: 10.1111/1541-4337.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.
Collapse
Affiliation(s)
- Tianfei Yu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Tianshuo Hu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Wuhan City, China
| |
Collapse
|
2
|
Bataglini C, Ramos Mariano I, Azevedo SCF, Freire VN, Natali MRM, Dias Pedrosa MM, Peralta RM, Sa-Nakanishi AB, Bracht L, Ferreira Godoy VA, Bracht A, Comar JF. Insulin degludec and glutamine dipeptide modify glucose homeostasis and liver metabolism in diabetic mice undergoing insulin-induced hypoglycemia. J Appl Biomed 2021; 19:210-219. [PMID: 34907740 DOI: 10.32725/jab.2021.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 10/21/2021] [Indexed: 11/05/2022] Open
Abstract
This study investigated whether a 30-day co-treatment with 1 g/kg glutamine dipeptide (GdiP) and 1 U/kg regular (rapid acting) or 5 U/kg degludec (long acting) insulins modifies glucose homeostasis and liver metabolism of alloxan-induced type 1 diabetic (T1D) male Swiss mice undergoing insulin-induced hypoglycemia (IIH). Glycemic curves were measured in fasted mice after IIH with 1 U/kg regular insulin. One hour after IIH, the lipid profile and AST and ALT activities were assayed in the serum. Morphometric analysis was assessed in the liver sections stained with hematoxylin-eosin and glycolysis, glycogenolysis, gluconeogenesis and ureagenesis were evaluated in perfused livers. T1D mice receiving GdiP or the insulins had a smaller blood glucose drop at 60 minutes after IIH, which was not sustained during the subsequent period up to 300 minutes. The 30-day treatment of T1D mice with insulin degludec, but not with regular insulin, improved fasting glycemia, body weight gain and serum activity of AST and ALT. Treatments with insulin degludec, GdiP and insulin degludec + GdiP decreased the liver capacity in synthesizing glucose from alanine. GdiP, in combination with both insulins, was associated with increases in the serum triglycerides and, in addition, regular insulin and GdiP increased AST and ALT activities, which could be the consequence of hepatic glycogen overload. GdiP and the insulins improved the IIH, although to a small extent. Caution is recommended, however, with respect to the use of GdiP because of its increasing effects on serum triglycerides and AST plus ALT activities.
Collapse
Affiliation(s)
- Camila Bataglini
- State University of Maringa, Department of Biochemistry, Maringa, PR, Brazil
| | - Isabela Ramos Mariano
- State University of Maringa, Department of Physiological Sciences, Maringa, PR, Brazil
| | | | | | | | | | | | | | - Livia Bracht
- State University of Maringa, Department of Biochemistry, Maringa, PR, Brazil
| | | | - Adelar Bracht
- State University of Maringa, Department of Biochemistry, Maringa, PR, Brazil
| | | |
Collapse
|
3
|
Jafari-Vayghan H, Varshosaz P, Hajizadeh-Sharafabad F, Razmi HR, Amirpour M, Tavakoli-Rouzbehani OM, Alizadeh M, Maleki V. A comprehensive insight into the effect of glutamine supplementation on metabolic variables in diabetes mellitus: a systematic review. Nutr Metab (Lond) 2020; 17:80. [PMID: 32983244 PMCID: PMC7517657 DOI: 10.1186/s12986-020-00503-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is one of the most important threats to human health in the twenty-first century.
The use of complementary and alternative medicine to prevent, control, and reduce the complications of diabetes mellitus is increasing at present. Glutamine amino acid is known as a functional food.
The purpose of this systematic review is to determine the potential role of glutamine supplementation on metabolic variables in diabetes mellitus. For this review, PubMed, SCOPUS, Embase, ProQuest, and Google Scholar databases were searched from inception through April 2020. All clinical trial and animal studies assessing the effects of glutamine on diabetes mellitus were eligible for inclusion. 19 studies of 1482 articles met the inclusion criteria. Of the 19 studies, nine studies reported a significant increase in serum GLP-1 levels. Also, eight studies showed reducing in serum levels of fasting blood sugar, four studies reducing in postprandial blood sugar, and triglyceride after glutamine supplementation. Although glutamine resulted in a significant increase in insulin production in seven studies, the findings on Hb-A1c levels were inconclusive. In addition to, despite of the results was promising for the effects of glutamine on weight changes, oxidative stress, and inflammation, more precise clinical trials are needed to obtain more accurate results. In conclusion, glutamine supplementation could improve glycemic control and levels of incretins (such as GLP-1 and GIP) in diabetes mellitus. However, more studies are needed for future studies.
Collapse
Affiliation(s)
- Hamed Jafari-Vayghan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Parisa Varshosaz
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON Canada
| | - Fatemeh Hajizadeh-Sharafabad
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Razmi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Amirpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Mariano IR, Yamada LA, Soares Rabassi R, Rissi Sabino VL, Bataglini C, Azevedo SCSF, Garcia RF, Pedrosa MMD. Differential Responses of Liver and Hypothalamus to the Nutritional Condition During Lactation and Adult Life. Front Physiol 2020; 11:553. [PMID: 32581843 PMCID: PMC7291834 DOI: 10.3389/fphys.2020.00553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/30/2020] [Indexed: 01/21/2023] Open
Abstract
It was previously reported that liver glucose metabolism in rats under caloric restriction differs from that of freely-fed rats. This study hypothesized that these changes (1) were related to the expression of hypothalamic neuropeptides involved in metabolic control, and (2) were not a residual effect of litter size. To those purposes, liver glucose metabolism and hypothalamic expression of the orexigenic neuropeptides NPY (neuropeptide Y) and AgRP (agouti gene-related peptide); and of the anorexigenic neuropeptides POMC (pro-opiomelanocortin) and CART (cocaine- and amphetamine-related transcripts) were investigated. Male Wistar rats from two different litter sizes (G6 and G12, with 6 or 12 pups, respectively) were subjected to free feeding (GL, ad libitum), 50% caloric restriction (GR) or caloric restriction+ad libitum refeeding (GRL) until the age of 90 days. Biometric values were lower in GR than in GL, while in GRL they were totally or partially recovered. Blood glucose variation during the pyruvate tolerance test (PTT) was small in GR. During in situ liver perfusion, total, basal, and adrenaline-stimulated liver glucose outputs were high in GR, but additional glucose output in the presence of alanine was negligible. Refeeding (GRL) yielded values close to those of GL. Litter size did not consistently influence any of these variables. The expression of transcripts of the hypothalamic neuropeptides was responsive to feeding regimen, litter size and/or their interaction and differed from G6 to G12, while the metabolic changes of the liver were qualitatively equal in both GR. Therefore, the changes in glucose metabolism in the liver of rats under caloric restriction were not determined by either litter size or hypothalamic neuropeptide expression and were linked only to the prevailing feeding regimen of the adult animal.
Collapse
Affiliation(s)
- Isabela Ramos Mariano
- Laboratory of Physiological Sciences and Hepatic Metabolism, Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | - Laís Akemi Yamada
- Laboratory of Physiological Sciences and Hepatic Metabolism, Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | - Renan Soares Rabassi
- Laboratory of Physiological Sciences and Hepatic Metabolism, Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | - Vanessa Lara Rissi Sabino
- Laboratory of Physiological Sciences and Hepatic Metabolism, Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | - Camila Bataglini
- Laboratory of Physiological Sciences and Hepatic Metabolism, Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | | | - Rosângela Fernandes Garcia
- Laboratory of Physiological Sciences and Hepatic Metabolism, Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | - Maria Montserrat Diaz Pedrosa
- Laboratory of Physiological Sciences and Hepatic Metabolism, Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| |
Collapse
|
5
|
Individual differences in glucocorticoid regulation: Does it relate to disease risk and resilience? Front Neuroendocrinol 2020; 56:100803. [PMID: 31697962 PMCID: PMC7189329 DOI: 10.1016/j.yfrne.2019.100803] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/03/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
Glucocorticoid (GC) signaling varies among individuals, and this variation may relate to individual differences in health outcomes. To determine if and which aspects of signaling (basal, circadian, integrative, or reactivity) are associated with specific health outcomes, we reviewed recent studies that relate GCs to health outcomes. We identified papers through PubMed and reviewed 100 original research articles related to mental health, cardiovascular health, cancer, diabetes, obesity, pulmonary health, sleep, and fitness. Many studies reported elevated GC secretion associated with worse health, but this was only particularly true for integrative GC measures. On the other hand, accentuated cortisol awakening response and a steeper circadian rhythm were both associated with positive health outcomes. Overall, relationships between GC secretion and health outcomes were relatively weak. This systematic review of relationships between GC metrics and health outcomes highlights the importance of careful consideration when selecting methods to measure GC regulation in health research.
Collapse
|
6
|
Cui B, Luo Y, Tian P, Peng F, Lu J, Yang Y, Su Q, Liu B, Yu J, Luo X, Yin L, Cheng W, An F, He B, Liang D, Wu S, Chu P, Song L, Liu X, Luo H, Xu J, Pan Y, Wang Y, Li D, Huang P, Yang Q, Zhang L, Zhou BP, Liu S, Xu G, Lam EWF, Kelley KW, Liu Q. Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells. J Clin Invest 2019; 129:1030-1046. [PMID: 30688660 PMCID: PMC6391112 DOI: 10.1172/jci121685] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic stress triggers activation of the sympathetic nervous system and drives malignancy. Using an immunodeficient murine system, we showed that chronic stress-induced epinephrine promoted breast cancer stem-like properties via lactate dehydrogenase A-dependent (LDHA-dependent) metabolic rewiring. Chronic stress-induced epinephrine activated LDHA to generate lactate, and the adjusted pH directed USP28-mediated deubiquitination and stabilization of MYC. The SLUG promoter was then activated by MYC, which promoted development of breast cancer stem-like traits. Using a drug screen that targeted LDHA, we found that a chronic stress-induced cancer stem-like phenotype could be reversed by vitamin C. These findings demonstrated the critical importance of psychological factors in promoting stem-like properties in breast cancer cells. Thus, the LDHA-lowering agent vitamin C can be a potential approach for combating stress-associated breast cancer.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Pengfei Tian
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Qitong Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Bing Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jiachuan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xi Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Liu Yin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Sijin Wu
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Peng Chu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Luyao Song
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jie Xu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yujia Pan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Dangsheng Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Qingkai Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Suling Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Eric W.-F. Lam
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Keith W. Kelley
- Laboratory of Immunophysiology, Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, and Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|