1
|
Bencheikh N, Elbouzidi A, Baraich A, Bouhrim M, Azeroual A, Addi M, Mothana RA, Al-Yousef HM, Eto B, Elachouri M. Ethnobotanical survey and scientific validation of liver-healing plants in northeastern Morocco. Front Pharmacol 2024; 15:1414190. [PMID: 39318777 PMCID: PMC11420034 DOI: 10.3389/fphar.2024.1414190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Liver diseases represent a significant global health challenge, with primary causes including excessive alcohol consumption, infections, chemotherapy, and autoimmune disorders. Medicinal plants, due to their natural bioactive compounds, hold promise for developing effective treatments and preventive measures against liver ailments. This study aimed to document the use of herbal remedies in northeastern Morocco for liver diseases and correlate these uses with scientific evidence through a bibliometric analysis. Methods An ethnobotanical survey was conducted in remote communities of northeastern Morocco from October 2020 to January 2022. A total of 189 informants were interviewed using semi-structured questionnaires to gather information on local medicinal plants used for liver ailments. The data were analyzed using four ethnobotanical quantitative indices: use value (UV), familial use value (FUV), informant consensus factor (ICF), and fidelity level (FL). Additionally, a bibliometric analysis was performed to evaluate the scientific support for the ethnopharmacological uses documented. Results The survey identified 45 plant species from 26 different families used in the treatment of liver diseases. The most frequently utilized species were Cuminum cyminum L. (UV = 0.1065), Allium sativum L. (UV = 0.1015), Salvia officinalis L. (UV = 0.0761), Asparagus officinalis L. (UV = 0.0558), and Ziziphus lotus (L.) Lam. (UV = 0.0457). The Apiaceae family showed the highest familial use value (FUV = 0.1066), followed by Alliaceae (FUV = 0.1015). Liver congestion had the highest informant consensus factor (ICF = 0.83), followed by hepatic colic (ICF = 0.80). Bibliometric analysis revealed that 61% of the plants identified had documented pharmacological effects related to liver health. Discussion The study demonstrates that traditional knowledge in northeastern Morocco encompasses a rich diversity of medicinal plants used to treat liver diseases. The high ICF values indicate a strong consensus among informants on the efficacy of these remedies. The correlation between ethnopharmacological use and scientific validation for a significant portion of these plants suggests their potential as reliable therapeutic agents for liver conditions. However, further scientific investigations are necessary to confirm their efficacy and safety in clinical settings. This research contributes valuable information for future studies on the therapeutic potential of these plants. Conclusion This ethnobotanical survey provides a comprehensive database of medicinal plants used in northeastern Morocco for liver diseases. The findings highlight the potential of these plants in developing novel treatments for hepatic conditions, although further research is essential to substantiate their therapeutic claims.
Collapse
Affiliation(s)
- Noureddine Bencheikh
- Agri-Food and Health Laboratory (AFHL), École Supérieure Normale, Hassan First University, Settat, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abdellah Baraich
- Laboratory of Bioressources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, University Sultan Moulay Slimane Faculty of Sciences and Technology Beni Mellal, Meknes, Morocco
| | - Abdelhamid Azeroual
- Agri-Food and Health Laboratory (AFHL), École Supérieure Normale, Hassan First University, Settat, Morocco
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bruno Eto
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, Lille, France
| | - Mostafa Elachouri
- Laboratory of Bioressources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| |
Collapse
|
2
|
Bahri S, Abidi A, Nahdi A, Abdennabi R, Mlika M, Ben Ali R, Jameleddine S. Olea europaea L. Leaf Extract Alleviates Fibrosis Progression and Oxidative Stress Induced by Bleomycin on a Murine Model of Lung Fibrosis. Dose Response 2023; 21:15593258231200972. [PMID: 37667683 PMCID: PMC10475267 DOI: 10.1177/15593258231200972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
In this study, we aim to investigate the effect of industrial Olea europaea L. leaf extract (OLE) against bleomycin (BLM)-induced pulmonary fibrosis (PF) in rats. Male Wistar rats were treated with a single intratracheal injection of BLM (4 mg/kg) and a daily intraperitoneal injection of OLE (10, 20, and 40 mg/kg) for 4 weeks. Results of HPLC and LC-MS analysis revealed a large amount of oleuropein (15.43%/DW) in OLE. BLM induced apparent damage of lung architecture with condensed collagen bundles, increased lipid peroxidation which has been deduced from malondialdehyde (MDA) levels: (.9 ± .13 vs .25 ± .12 nmol/mg protein) and hydroxyproline content (.601 ± .22 vs .154 ± .139 mg/g of lung tissue) and decreased catalase (CAT) (5.93.10-5 ± 4.23.10-5 vs 6.41.10-4 ± 2.33.10-4 μmol/min/mg protein) and superoxide dismutase (SOD) (28.73 ± 3.34 vs 50.13 ± 2.1 USOD/min/mg protein) levels compared to the control. OLE treatment (40 mg/kg) stabilized MDA content (.32 ± .15 and .27 ± .13 vs .9 ± .13 nmol/mg protein), normalized SOD (61.27 ± 13.37 vs 28.73 ± 3.34 USOD/min/mg protein), and CAT (5.2.10-4 ±1.8.10-4 vs 5.93.10-5 ± 4.23.10-5 μmol/min/mg protein) activities and counteracted collagen accumulation and hydroxyproline content (.222 ± .07 vs .601 ± .22 mg/g of lung tissue) in the lung parenchyma. Finally, OLE might have a potent protective effect against PF by regulating oxidative parameters and attenuating collagen deposition, due to the existence of large amount of bioactive phenolic molecules.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
- Laboratory of Quality Control, HERBES DE TUNISIE, Company AYACHI-Group, Mansoura, Siliana-Tunisia
| | - Anouar Abidi
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Unit of Functional Physiology and Valorization of Bio-Resources of the Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| | - Afef Nahdi
- Research Unit n° 17/ES/13, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Raed Abdennabi
- Laboratory of Plant Biotechnology, Faculty of Science, University of Sfax, Sfax, Tunisia
| | - Mona Mlika
- Laboratory of Anatomy and Pathology, Abderhaman Mami Hospital, Ariana, Tunisia
| | - Ridha Ben Ali
- Laboratory of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| |
Collapse
|
3
|
Casado-Díaz A, La Torre M, Priego-Capote F, Verdú-Soriano J, Lázaro-Martínez JL, Rodríguez-Mañas L, Berenguer Pérez M, Tunez I. EHO-85: A Multifunctional Amorphous Hydrogel for Wound Healing Containing Olea europaea Leaf Extract: Effects on Wound Microenvironment and Preclinical Evaluation. J Clin Med 2022; 11:1229. [PMID: 35268320 PMCID: PMC8911171 DOI: 10.3390/jcm11051229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/27/2022] Open
Abstract
The prevalence of chronic wounds is increasing due to the population aging and associated pathologies, such as diabetes. These ulcers have an important socio-economic impact. Thus, it is necessary to design new products for their treatment with an adequate cost/effectiveness ratio. Among these products are amorphous hydrogels. Their composition can be manipulated to provide a favorable environment for ulcer healing. The aim of this study was to evaluate a novel multifunctional amorphous hydrogel (EHO-85), containing Olea europaea leaf extract, designed to enhance the wound healing process. For this purpose, its moistening ability, antioxidant capacity, effect on pH in the wound bed of experimental rats, and the effect on wound healing in a murine model of impaired wound healing were assessed. EHO-85 proved to be a remarkable moisturizer and its application in a rat skin wound model showed a significant antioxidant effect, decreasing lipid peroxidation in the wound bed. EHO-85 also decreased the pH of the ulcer bed from day 1. In addition, in mice (BKS. Cg-m +/+ Leprdb) EHO-85 treatment showed superior wound healing rates compared to hydrocolloid dressing. In conclusion, EHO-85 can speed up the closure of hard-to-heal wounds due to its multifunctional properties that are able to modulate the wound microenvironment, mainly through its remarkable effect on reactive oxygen species, pH, and moistening regulation.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Clinical Management Unit of Endocrinology and Nutrition, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (F.P.-C.); (L.R.-M.)
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.L.T.); (I.T.)
| | - Manuel La Torre
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.L.T.); (I.T.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain
| | - Feliciano Priego-Capote
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (F.P.-C.); (L.R.-M.)
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.L.T.); (I.T.)
- Department of Analytical Chemistry, Institute of Nanochemistry, University of Córdoba, 14071 Córdoba, Spain
| | - José Verdú-Soriano
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain;
| | - José Luis Lázaro-Martínez
- Diabetic Foot Unit, University Podiatry Clinic, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Leocadio Rodríguez-Mañas
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (F.P.-C.); (L.R.-M.)
- Department of Geriatrics, Hospital Universitario de Getafe, 28905 Madrid, Spain
| | - Miriam Berenguer Pérez
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain;
| | - Isaac Tunez
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.L.T.); (I.T.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
4
|
A Novel Pro-Melanogenic Effect of Standardized Dry Olive Leaf Extract on Primary Human Melanocytes from Lightly Pigmented and Moderately Pigmented Skin. Pharmaceuticals (Basel) 2021; 14:ph14030252. [PMID: 33799651 PMCID: PMC7999707 DOI: 10.3390/ph14030252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Benolea® (EFLA®943) is a standardized dry olive leaf extract (DOLE) considered safe for food consumption and has demonstrated superior pharmaceutical benefits such as antioxidant, anti-obesity, and anti-hypertensive activities. However, there is no study on its effects on melanogenesis yet. Disruption in the sequence of steps in melanogenesis can lead to hypopigmentary disorders which occur due to reduced production or export of pigment melanin in the skin. There is a need for safe and nontoxic therapeutics for the treatment of hypopigmentation disorders. Herein, we studied the effects of DOLE over a concentration range of 10-200 µg/mL on melanin synthesis and melanin secretion in B16F10 mouse melanoma cells and MNT-1 human melanoma cells and validated our results in primary human melanocytes (obtained from lightly pigmented (LP) and moderately pigmented (MP) cells) as well as their cocultures with keratinocytes. The capacity of melanocytes to export melanosomes was also estimated indirectly by the quantitation of melanocyte dendrite lengths and numbers. Our results show that DOLE significantly enhanced levels of extracellular melanin in the absence of effects on intracellular melanin, demonstrating that this plant extract's pro-melanogenic activity is primarily based on its capacity to augment melanin secretion and stimulate melanocyte dendricity. In summary, our preliminary results demonstrate that DOLE may hold promise as a pro-pigmenting agent for vitiligo therapy and gray hair treatment by its exclusive and novel mechanism of functioning as a dendrite elongator. Further studies to elucidate the mechanisms of action of the pro-melanogenic activity and effects of DOLE on melanosome export as well as the last steps of melanogenesis are warranted.
Collapse
|
5
|
Taamalli A, Feriani A, Lozano-Sanchez J, Ghazouani L, El Mufti A, Allagui MS, Segura-Carretero A, Mhamdi R, Arráez-Roman D. Potential Hepatoprotective Activity of Super Critical Carbon Dioxide Olive Leaf Extracts against CCl 4-Induced Liver Damage. Foods 2020; 9:foods9060804. [PMID: 32570798 PMCID: PMC7353501 DOI: 10.3390/foods9060804] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
Virgin olive oil has demonstrated its effective activity against oxidative stress. However, data on the bioactive effect of olive leaves or their major constituents on the liver are scarce. The present research work was conducted to evaluate the hepatoprotective effects of supercritical carbon dioxide (SC-CO2) extracts from fresh and dried olive leaves on hepatotoxicity caused by carbon tetrachloride (CCl4) in rat models. For this purpose, healthy albino rats of 180–250 g weight were used. The assessment of biochemical markers was carried out on blood and liver tissue. Then, a histopathological study was carried out on liver tissue. The obtained results showed that fresh and dried olive leaf extracts ameliorate the perturbed biochemical parameters caused by CCl4 treatment. Furthermore, the results registered for the histopathological study are in accordance with the biochemical parameters and the protective capacity of SC-CO2 extracts against DNA damage, indicating that olive leaf extracts helped to improve liver fibrosis caused by CCl4 treatment.
Collapse
Affiliation(s)
- Amani Taamalli
- Department of Chemistry, College of Sciences, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 39524, Saudi Arabia;
- Laboratoire de Biotechnologie de l’Olivier, Centre de Biotechnologie de Borj-Cedria, B.P.901, Hammam-Lif 2050, Tunisia;
| | - Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa 2112, Tunisia; (A.F.); (L.G.); (A.E.M.)
| | - Jesús Lozano-Sanchez
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain; (A.S.-C.); (D.A.-R.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Lakhdar Ghazouani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa 2112, Tunisia; (A.F.); (L.G.); (A.E.M.)
| | - Afoua El Mufti
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa 2112, Tunisia; (A.F.); (L.G.); (A.E.M.)
| | - Mohamed Salah Allagui
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax, Sfax 3018, Tunisia;
| | - Antonio Segura-Carretero
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain; (A.S.-C.); (D.A.-R.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Ridha Mhamdi
- Laboratoire de Biotechnologie de l’Olivier, Centre de Biotechnologie de Borj-Cedria, B.P.901, Hammam-Lif 2050, Tunisia;
| | - David Arráez-Roman
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain; (A.S.-C.); (D.A.-R.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
6
|
Chen R, Wang Q, Zhao L, Yang S, Li Z, Feng Y, Chen J, Ong CN, Zhang H. Lomatogonium Rotatum for Treatment of Acute Liver Injury in Mice: A Metabolomics Study. Metabolites 2019; 9:metabo9100227. [PMID: 31615066 PMCID: PMC6836280 DOI: 10.3390/metabo9100227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Lomatogonium rotatum (L.) Fries ex Nym (LR) is used as a traditional Mongolian medicine to treat liver and bile diseases. This study aimed to investigate the hepatoprotective effect of LR on mice with CCl4-induced acute liver injury through conventional assays and metabolomics analysis. This study consisted of male mice (n = 23) in four groups (i.e., control, model, positive control, and LR). The extract of whole plant of LR was used to treat mice in the LR group. Biochemical and histological assays (i.e., serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), and histological changes of liver tissue) were used to evaluate LR efficacy, and metabolomics analysis based on GC-MS and LC-MS was conducted to reveal metabolic changes. The conventional analysis and metabolomic profiles both suggested that LR treatment could protect mice against CCl4-induced acute liver injury. The affected metabolic pathways included linoleic acid metabolism, α-linolenic acid metabolism, arachidonic acid metabolism, CoA biosynthesis, glycerophospholipid metabolism, the TCA cycle, and purine metabolism. This study identified eight metabolites, including phosphopantothenic acid, succinic acid, AMP, choline, glycerol 3-phosphate, linoleic acid, arachidonic acid, and DHA, as potential biomarkers for evaluating hepatoprotective effect of LR. This metabolomics study may shed light on possible mechanisms of hepatoprotective effect of LR.
Collapse
Affiliation(s)
- Renhao Chen
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Qi Wang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China.
| | - Lanjun Zhao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Shilin Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Zhifeng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China.
| | - Jiaqing Chen
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
7
|
Žuntar I, Putnik P, Bursać Kovačević D, Nutrizio M, Šupljika F, Poljanec A, Dubrović I, Barba FJ, Režek Jambrak A. Phenolic and Antioxidant Analysis of Olive Leaves Extracts ( Olea europaea L.) Obtained by High Voltage Electrical Discharges (HVED). Foods 2019; 8:foods8070248. [PMID: 31288471 PMCID: PMC6678916 DOI: 10.3390/foods8070248] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023] Open
Abstract
Background: The aim of this study was to evaluate high voltage electrical discharges (HVED) as a green technology, in order to establish the effectiveness of phenolic extraction from olive leaves against conventional extraction (CE). HVED parameters included different green solvents (water, ethanol), treatment times (3 and 9 min), gases (nitrogen, argon), and voltages (15, 20, 25 kV). Methods: Phenolic compounds were characterized by ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS), while antioxidant potency (total phenolic content and antioxidant capacity) were monitored spectrophotometrically. Data for Near infrared spectroscopy (NIR) spectroscopy, colorimetry, zeta potential, particle size, and conductivity were also reported. Results: The highest yield of phenolic compounds was obtained for the sample treated with argon/9 min/20 kV/50% (3.2 times higher as compared to CE). Obtained results suggested the usage of HVED technology in simultaneous extraction and nanoformulation, and production of stable emulsion systems. Antioxidant capacity (AOC) of obtained extracts showed no significant difference upon the HVED treatment. Conclusions: Ethanol with HVED destroys the linkage between phenolic compounds and components of the plant material to which they are bound. All extracts were compliant with legal requirements regarding content of contaminants, pesticide residues and toxic metals. In conclusion, HVED presents an excellent potential for phenolic compounds extraction for further use in functional food manufacturing.
Collapse
Affiliation(s)
- Irena Žuntar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Marinela Nutrizio
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Filip Šupljika
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Poljanec
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Dubrović
- Teaching Institute for Public health of Primorje-Gorski Kotar County, 51000 Rijeka, Croatia
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
| |
Collapse
|