1
|
Rahman MA, Redoy MRA, Chowdhury R, Al-Mamun M. Effect of dietary supplementation of plantain herb, lemongrass and their combination on milk yield, immunity, liver enzymes, serum, and milk mineral status in dairy cows. J Adv Vet Anim Res 2024; 11:185-193. [PMID: 38680813 PMCID: PMC11055577 DOI: 10.5455/javar.2024.k764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/29/2023] [Accepted: 02/15/2024] [Indexed: 05/01/2024] Open
Abstract
Objective This research aimed to assess the effects of dried plantain herb, lemongrass, and their combination on milk yield, immunological, liver enzymatic, serum, and milk mineral status in dairy cows. Materials and Methods Twenty cows were arbitrarily assigned to 4 diets. Cows were given a basal ration considered as control diet (CL-D) having 14.93% crude protein (CP)and 10.96 MJ ME per kg dry matter (DM). Each cow was given 100 gm plantain, 100 gm lemongrass, and 50 gm plantain + 50 gm lemongrass with CL-D and taken as plantain diet (PT-D), lemongrass diet (LG-D), and plantain-lemongrass diet (PL-D), daily for 63 days, respectively. Blood and milk samples were taken four times at an interval of 14 days. Data were analyzed using a two-way repeated measures analysis of covariance. Results Better DM consumption and milk yield were observed in the PT-D and LG-D compared to the CL-D (p ≤ 0.05). LG-D improved the milk's total solids, protein, and fat compared to CL-D (p < 0.05). Substantially, herbal groups improved serum albumin and reduced globulin concentrations compared to CL-D. LG-D had the highest serum immunoglobulin G, while herbal groups effectively reduced the liver enzymes compared to CL-D. Herbal groups did not affect serum and milk's calcium and phosphorus concentrations, while LG-D and PL-D substantially improved serum and milk zinc concentrations. Conclusions Both plantain and lemongrass improved dairy cows' DM consumption and milk yield. Plantain and/or lemongrass enhanced the immune system and liver health, but not serum and milk calcium and phosphorus level. Lemongrass and a combination of plantain and lemongrass increased the serum and milk zinc concentrations.
Collapse
Affiliation(s)
- Md. Aliar Rahman
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Rahat Ahmad Redoy
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rakhi Chowdhury
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Al-Mamun
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
2
|
Liu Y, Jin R, Lv Q, Zhang Q, Zheng M. Screening and Evaluation of Children's Sensitively Toxic Chemicals in New Mosquito Repellent Products Based on a Nationwide Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2704-2715. [PMID: 38286788 DOI: 10.1021/acs.est.3c10510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
New mosquito repellent products (NMRPs) are emerging popular repellents among children. There are increasing reports on children's sensitization reactions caused by NMRPs, while regulations on their productions, sales, or usage are still lacking. One of the reasons could be the missing comprehensive risk assessment. We first conducted a nationwide investigation on children's NMRP usage preferences. Then, we high-throughput screened volatile or semivolatile organic chemicals (VOCs/SVOCs) in five representative NMRPs by the headspace gas chromatography-orbitrap high-resolution mass spectrometry analytical method. After that, toxic compounds were recognized based on the toxicity forecaster (ToxCast) database. A total of 277 VOCs/SVOCs were recognized, and 70 of them were identified as toxic compounds. In a combination of concentrations, toxicities, absorption, distribution, metabolism, and excretion characteristics in the body, 28 chemicals were finally proposed as priority-controlled compounds in NMRPs. Exposure risks of recognized toxic chemicals through NMRPs by inhalation and dermal intake for children across the country were also assessed. Average daily intakes were in the range of 0.20-7.31 mg/kg/day for children in different provinces, and the children in southeastern coastal provinces were found to face higher exposure risks. By controlling the high-priority chemicals, the risks were expected to be reduced by about 46.8% on average. Results of this study are therefore believed to evaluate exposure risks, encourage safe production, and promote reasonable management of NMRPs.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Qing Lv
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qing Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Mayack BK. Modeling disruption of Apis mellifera (honey bee) odorant-binding protein function with high-affinity binders. J Mol Recognit 2023; 36:e3008. [PMID: 36792370 DOI: 10.1002/jmr.3008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Chemical toxins pose a great threat to honey bee health because they affect memory and cognition, diminish immunity, and increase susceptibility to infection, resulting in decreased colony performance, reproduction, and survival. Although the behavioral effects of sub-lethal chemical exposure on honey bees have been intensively studied, how xenobiotics affect olfaction, at the molecular level, still needs to be elucidated. In the present work, in silico tools, such as molecular docking, binding free energy calculations, and molecular dynamics simulations are used to predict if environmental chemicals have stronger binding affinities to honey bee antennal odorant-binding protein 14 (OBP14) than the representative floral odors citralva, eugenol, and the fluorescent probe 1-N-phenylnaphthylamine. Based on structural analysis, 21 chemicals from crop pesticides, household appliances, cosmetics, food, public health-related products, and other sources, many of which are pervasive in the hive environment, have higher binding affinities than the floral odors. These results suggest that chemical exposures are likely to interfere with the honey bee's sense of smell and this disruptive mechanism may be responsible for the lower associative learning and memory based on olfaction found in bees exposed to pesticides. Moreover, bees mainly rely on olfactory cues to perceive their environment and orient themselves as well as to discriminate and identify their food, predators, nestmates, and diseased individuals that need to be removed with hygienic behavior. In summary, sub-lethal exposure to environmental toxins can contribute to colony collapse in several ways from the disruption of proper olfaction functioning.
Collapse
Affiliation(s)
- Berin Karaman Mayack
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, California, USA.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| |
Collapse
|
4
|
Rahman MA, Sultana S, Redoy MRA, Debi MR, Chowdhury R, Al-Mamun M. Combined impact of lemongrass and spearmint herbs on performance, serum metabolites, liver enzymes, and meat quality of broiler. J Adv Vet Anim Res 2022; 9:712-719. [PMID: 36714510 PMCID: PMC9868796 DOI: 10.5455/javar.2022.i640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023] Open
Abstract
Objectives This study aimed to assess the influence of feeding fresh lemongrass (Cymbopogon citratus) or spearmint (Mentha spicata) and their combination on performance, serum metabolites, liver enzymes, and meat quality in broilers. Materials and Methods A total of 168 day-old Indian River chicks were arbitrarily offered four experimental rations: (i) control ration (CT-R): corn-soya-based ration, (ii) lemongrass ration (LG-R): CT-R + 1.0% DM of lemongrass; (iii) spearmint ration (SM-R): CT-R + 1.0% DM of spearmint; and (iv) lemongrass-spearmint ration (LS-R): CT-R + 0.5% DM from both lemongrass and spearmint. Each ration was given to 42 birds for a duration of 35 days, with 3 replications and 14 birds each. Results Elevated body weight gain was observed in LG-R (1,502 gm), LS-R (1,492 gm), and SM-R (1,474 gm) compared to CT-R (1,451 gm) (p = 0.078). Herbal rations successfully reduced almost 3%-5% of serum and meat total cholesterol concentrations compared to CT-R. Compared to CT-R, the highest zinc and iron concentrations of serum and meat were measured in LG-R and SM-R, respectively, while both minerals of serum and meat were observed to be better in LS-R (p < 0.05). Herbal rations significantly improved serum liver enzyme activity and ameliorated the red color of breast and thigh meat but failed to improve the lightness and yellowness of both types of meat compared to CT-R. Conclusions LG-R, SM-R, and LS-R improved bird performance, liver health, and meat color, and lowered serum and meat cholesterol levels. But among them, LS-R efficaciously increased the serum and meat zinc and iron concentrations.
Collapse
|
5
|
Yue K, Liu Z, Pi Z, Li H, Wang Y, Song F, Liu Z. Network Pharmacology Combined with Metabolomics Approach to Investigate the Toxicity Mechanism of Paclobutrazol. Chem Res Toxicol 2022; 35:626-635. [PMID: 35298131 DOI: 10.1021/acs.chemrestox.1c00404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paclobutrazol (PBZ) is a commonly used plant growth regulator (PGR) with good antibacterial activity. It has widespread applications in agricultural production. However, there is limited research reported on the potential risks of human health resulting from PBZ residues. In this study, using Sprague-Dawley rats, we carried out a systematic study on the hepatotoxicity and nephrotoxicity of PBZ in different doses (0.2, 0.5, and 1.0 g/kg). The metabolic profiles and network pharmacology were combined to construct a PBZ-endogenous substances-gene-hepatorenal diseases network to elucidate the underlying mechanism of PBZ's hepatorenal toxicity. At first, metabolomics analysis was done to investigate the metabolites and the related metabolic pathways associated with PBZ. Secondly, the network pharmacology approach was used in further exploration of the toxic targets. Additionally, molecular docking was carried out to investigate the interactions between PBZ and potential targets. The results indicated that PBZ showed obvious toxicity towards the liver and kidney of rats. The metabolomics analysis showed that PBZ mainly affected 4 metabolic pathways, including tryptophan metabolism, arachidonic acid metabolism, linoleic acid metabolism, and purine metabolism. Network pharmacology and molecular docking revealed that CYP1A2, CYP2A6, CYP2E1, MAOA, PLA2G2A, PTGS1, and XDH were critical targets for PBZ hepatorenal toxicity. This preliminary study revealed PBZ's hepatorenal toxicity and provided a theoretical basis for the rational and safe use of PBZ. Furthermore, it provided possible intervention targets for further research on how to avoid or reduce the damage caused by pesticides to the human body.
Collapse
Affiliation(s)
- Kexin Yue
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Key Laboratory of Traditional Chinese Medicine Chemistry and Mass Spectrometry Jilin Province, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun, Key Laboratory of Traditional Chinese Medicine Chemistry and Mass Spectrometry Jilin Province, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Hanlin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yingping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Key Laboratory of Traditional Chinese Medicine Chemistry and Mass Spectrometry Jilin Province, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
D'Souza V, Meghashree, Badanthadka M, Mamatha BS, Vijayanarayana K. Effect of nutritional status on acetaminophen pharmacokinetic profile. Toxicol Appl Pharmacol 2022; 438:115888. [PMID: 35065993 DOI: 10.1016/j.taap.2022.115888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/19/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Short-term fasting increases acetaminophen exposure in healthy subjects, whereas no effect was observed after a high-fat diet. These findings suggest the necessity of considering nutritional status when assessing the risk of acetaminophen-induced toxicity. Further role of nutrition status on pharmacokinetic profile of acetaminophen (APAP) at toxic doses are not available. Our study aims to compare the effects of nutrition status on kinetic profile of APAP in 3 different dietary conditions like - Normal diet (ND), Low protein diet (LPD) and High fat diet (HFD) groups. To investigate the pharmacokinetic profile of APAP at toxic dose, 3 groups of animals were separated after weaning and for the next 15 weeks they were fed with their respective diets (ND, LPD and HFD). Animals were dosed with APAP (300 mg/kg p.o) and blood sampling was done at different time intervals. Plasma samples were analyzed using HPLC method. Data analysis was done by Non-compartment analysis using Phoenix WinNonlin 8.3 software. LPD group show higher values of C max, T max, T 1/2, and AUC 0-4, AUC 0-x values compared to ND and HFD groups. Our study compared APAP pharmacokinetic profile at toxic dose in three different diet regimes.
Collapse
Affiliation(s)
- Vinitha D'Souza
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangalore 575 018, India
| | - Meghashree
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangalore 575 018, India
| | - Murali Badanthadka
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangalore 575 018, India.
| | - B S Mamatha
- NUCSER, Nittte (Deemed to be University), Paneer Campus, Deralakatte, Mangalore 575 018, India
| | - K Vijayanarayana
- Dept. of Pharmacy Practice, Manipal college of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal, 576104, Karnataka, India
| |
Collapse
|
7
|
Sun Y, He M, Sun Y, Wei J. 4-O-galloylalbiflorin inhibits the activity of CYP3A, 2C9, and 2D in human liver microsomes. Xenobiotica 2021; 51:871-876. [PMID: 34082641 DOI: 10.1080/00498254.2021.1936688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effect of 4-O-galloylalbiflorin on the activity of cytochrome P450 enzymes (CYP450s) is an important factor that may induce drug-drug interaction.The effect of 4-O-galloylalbiflorin on the activity of CYP450s was evaluated in the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM 4-O-galloylalbiflorin in pooled human liver microsomes. The inhibition model and corresponding parameters were assessed b fitting with Lineweaver-Burk plots. The time-dependent study was performed with the incubation time of 0, 5, 10, 15, and 30 min.4-O-galloylalbiflorin significantly inhibited the activity of CYP3A, 2C9, and 2 D in a concentration-dependent manner with the IC50 values of 8.2, 13, and 11 μM, respectively. The inhibition of CYP3A was found to be non-competitive and time-dependent with the Ki value of 4.0 μM and the KI/Kinact value of 2.2/0.030 (μM·min). The inhibition of CYP2C9 and 2 D was not affected by the incubation time but was found to be competitive with the Ki values of 6.7 and 6.6 μM, respectively.The inhibitory effect of 4-O-galloylalbiflorin on the activity of CYP3A, 2C9, and 2 D implying the potential drug-drug interaction between 4-O-galloylalbiflorin and the drugs metabolized by these CYP450s.
Collapse
Affiliation(s)
- Yu Sun
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Mengya He
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Yanling Sun
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Jianhong Wei
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| |
Collapse
|
8
|
Sharma S, Habib S, Sahu D, Gupta J. Chemical Properties and Therapeutic Potential of Citral, a Monoterpene Isolated from Lemongrass. Med Chem 2021; 17:2-12. [PMID: 31880247 DOI: 10.2174/1573406416666191227111106] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 11/27/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Citral is one of the main components of lemongrass oil present at a concentration of 65-85% approximately and is generally separated by steam refining. It is an important component in the manufacturing of scents, citrus chemicals, cosmetics, food and pharmaceutical products. OBJECTIVES This article aims at reviewing the published literature to highlight the metabolism, extraction strategies and therapeutic significance of citral for improving the scope of its application in the food and pharma industry. DISCUSSIONS Apart from steam refining, there are other techniques like solvent extraction, supercritical fluid extraction and ultrasonication by which citral can be extracted and the method of extraction defines its quality. It is an unstable molecule and undergoes rapid deterioration on exposure to air. Citral is biosynthesized by the plants through the 5 carbon precursor isopentenyl diphosphate (IPP) units utilizing two diverse biochemical pathways, acetate- mevalonate (acetate- MVA) pathway or 2C-methylerythritol-4-phosphate (MEP). Orally Citral was absolutely digested in the gastrointestinal tract and its metabolism leads to the discharge of metabolites which include a number of acids and a biliary glucuronide. There is no scientific evidence about the long term bioavailability of citral in the body and it has no adverse effect on tissue related to its accumulation and delayed excretion. Citral exhibits various important therapeutic properties like antimicrobial, antioxidant, anticancer, anti-diabetic and anti-inflammatory. CONCLUSION Citral is a potent biomolecule with various important biological activities and therapeutic implications. Strategies are required to increase the stability of citral which could increase its applications.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Medical Laboratory Sciences, Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Shagufta Habib
- Department of Medical Laboratory Sciences, Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Debasis Sahu
- Centre for Cellular and Molecular Biotechnology, Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
9
|
Atia MM, Mahmoud FAR. Soya milk alleviates toxicity caused by citric acid in male mice: Histopathological and hematological studies. J Food Biochem 2021; 45:e13773. [PMID: 34018211 DOI: 10.1111/jfbc.13773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
This study evaluated the toxicity of citric acid and the benefits of soya milk (SM) for preventing damage in mice. Thirty-five mice were divided into groups: control, mice administered citric acid (CA group) for 30 days, mice administered SM before the administration of citric acid for 30 days (SM + CA group), mice administered citric acid for 15 days and left for recovery (R group), and mice in recovery receiving SM for 15 days (R + SM). Mice in CA and R groups displayed downregulated p53, increased cleavage of caspase 3, and upregulation of Nrf2, CYP1A1, ALT, and AST activity in the liver. In contrast, SM + CA and R + SM treated mice were protected against CA toxicity and showed reversal of p53 downregulation, reduced cleavage of caspase 3, downregulation of Nrf2, and an increase in liver function enzymes. SM administration also restored blood cell and hemoglobin content and general histology of hepatocytes. PRACTICAL APPLICATIONS: CA causes liver damage, increases inflammation, decreases blood cell numbers, and induces apoptosis. Some natural products, such as SM, have been used to scavenge free radicals that can cause liver damage and hemolysis. This study focuses on the effectiveness of SM in ameliorating CA toxicity and may be helpful in the food industry for managing oxidative stress that may be induced by common dietary constituents. SM may help suppress liver damage and inflammation.
Collapse
Affiliation(s)
- Mona M Atia
- Laboratory of Molecular Cell Biology and Laboratory Comparative Anatomy, Zoology Department, Faculty of Science, Assiut University, Asyut, Egypt
| | - Fatma Abdel-Regal Mahmoud
- Laboratory of Molecular Cell Biology and Laboratory Comparative Anatomy, Zoology Department, Faculty of Science, Assiut University, Asyut, Egypt
| |
Collapse
|
10
|
Habib S, Gupta P, Bhat SS, Gupta J. In silico, in-vitro and in vivo screening of biological activities of citral. INT J VITAM NUTR RES 2020; 91:251-260. [PMID: 31971085 DOI: 10.1024/0300-9831/a000625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Citral, one of the main components of lemongrass oil (65-85%), is known to possess various medicinal properties like enhancing skin health and vision-improvement. It also acts as flavoring agent, used in perfumes and skin care products. The objective of this work was to elucidate the biological properties of citral at molecular level using an integrated in silico, in vitro and in vivo approaches. To elucidate this in silico molecular docking studies were performed with in vitro validation by DPPH scavenging activity, MTT assays, enzymatic assays and Chorio Allantoic Membrane (CAM) assay. The in silico analysis demonstrated the potential binding of citral with PPARγ ligand binding domain and vascular endothelial growth factor receptors (VEGFR-1 and VEGFR-2). Citral is already a proven anti-oxidant which is further confirmed by increased DPPH inhibition with increased citral concentration (IC50: 6.9 ± 1.68 μg/ml, p < 0.05). The results demonstrated that citral protect yeast cells from cytotoxic effects of hydrogen peroxide and also increase the activities of antioxidant enzymes like GST, SOD and LPO. It was also demonstrated to be cytotoxic to cancerous HeLa cells (IC50: 3.9 ± 0.38 μM, p < 0.01) and was found anti-angiogenic by CAM assay. This study highlights many important pharmaceutical properties of citral which can be explored further to increase its industrial applications.
Collapse
Affiliation(s)
| | - Pawan Gupta
- School of Pharmaceutical Sciences.,Department of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | | | | |
Collapse
|
11
|
Targets and pathways involved in the antitumor activity of citral and its stereo-isomers. Eur J Pharmacol 2020; 871:172945. [PMID: 31981590 DOI: 10.1016/j.ejphar.2020.172945] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
This review provides a comprehensive analysis of the anticancer potential of the natural product citral (CIT) found in many plants and essential oils, and extensively used in the food and cosmetic industry. CIT is composed of two stereoisomers, the trans-isomer geranial being a more potent anticancer compound than the cis-isomer neral. CIT inhibits cancer cell proliferation and induces cancer cell apoptosis. Its pluri-factorial mechanism of anticancer activity is essentially based on three pillars: (i) a drug-induced accumulation of reactive oxygen species in cancer cells leading to an oxidative burst and DNA damages, (ii) a colchicine-like inhibition of tubulin polymerization and promotion of microtubule depolymerization, associated with an inhibition of the microtubule affinity-regulating kinase MARK4, and (iii) a potent inhibition of the aldehyde dehydrogenase isoform ALDH1A3 which is associated with cancer stem cell proliferation and chemoresistance. This unique combination of targets and pathways confers a significant anticancer potential. However, the intrinsic potency of CIT is limited, mainly because the drug is not very stable and has a low bioavailability and it does not present a high selectivity for cancer cells versus non-tumor cells. Stable formulations of CIT, using cyclodextrins, biodegradable polymers, or various nano-structured particles have been designed to enhance the bioavailability, to increase the effective doses window and to promote the anticancer activity. The lack of tumor cell selectivity is more problematic and limits the use of the drug in cancer therapy. Nevertheless, CIT offers interesting perspectives to design more potent analogues and drug combinations with a reinforced antitumor potential.
Collapse
|