1
|
Eggert A, Laasanen S, Nurmio M, Wahlgren A, Jahnukainen K, Eerola K, Nieminen M, Olotu O, Kotaja N, Mäkelä JA, Toppari J. Imatinib decreases germ cell survival and germline stem cell proliferation in rodent testis ex vivo and in vitro. Andrology 2024. [PMID: 39422608 DOI: 10.1111/andr.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/23/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Imatinib and dasatinib are tyrosine kinase inhibitors (TKIs) increasingly used to treat several diseases in both children and adults at fertile age. We have previously shown that imatinib has adverse effects on developing testis, and imatinib-treated male patients have been reported to have reduced sperm counts. However, the cellular level effects of imatinib and dasatinib on adult male germ cells and germline stem cells (mGSCs) have not been thoroughly investigated. OBJECTIVES To analyze whether imatinib or dasatinib exposure ex vivo and in vitro is harmful to adult male rodent germ cells and mGSCs. MATERIALS AND METHODS Seminiferous tubule segments of adult male mouse or rat were cultured in the presence or the absence of imatinib or dasatinib. Stage-specific effects were monitored by 3H-thymidine incorporation assay (DNA synthesis), immunohistochemistry (cleaved Caspase-3; apoptosis), immunofluorescence (KI67, GFRα1, STRA8, c-KIT, LIN28A; proliferation and spermatogonial differentiation) and flow cytometry (Hoechst). Mouse mGSCs were exposed to imatinib and dasatinib to study proliferation, apoptosis, and differentiation. RESULTS Imatinib decreased stage-specific DNA synthesis, and induced apoptosis in cultured rat seminiferous tubule segments. Imatinib also had an adverse effect on mGSC proliferation both in vitro and ex vivo, but did not induce cell death in cultured mGSCs. Imatinib did not impinge on induction of spermatogonial differentiation but suppressed c-KIT expression in nascent differentiating spermatogonia, providing a plausible mechanism for its pro-apoptotic function in spermatogenic cells. Clinically relevant doses of dasatinib did not induce apoptosis in seminiferous tubules but decreased mGSC colony growth in vitro. CONCLUSIONS Imatinib exposure ex vivo and in vitro impinges on male rodent germ cell proliferation and survival. The plausible mechanism in spermatogenic cells is the inhibition of SCF/c-KIT signaling, and reduced expression of c-KIT. Dasatinib did not show significant adverse effects with clinical doses ex vivo but inhibited mGSC colony growth in vitro.
Collapse
Affiliation(s)
- Anna Eggert
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Tyks Acute, Turku University Hospital, Turku, Finland
| | - Sini Laasanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mirja Nurmio
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Aida Wahlgren
- Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Solna, Sweden
| | - Kirsi Jahnukainen
- Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Solna, Sweden
- Division of Hematology-Oncology and Stem Cell Transplantation, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kim Eerola
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Genomics, Turku University Hospital Laboratories, Turku, Finland
| | - Miisael Nieminen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Opeyemi Olotu
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Noora Kotaja
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- InFLAMES Flagship Research Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
2
|
Bogomolets O, Rojczyk E, Hryshchenko R, Bogomolets C, Berezkin O. Covid-19, leukemia, and secondary malignancies of the skin - is there a connection: a case report and literature analysis. Front Oncol 2023; 13:1265479. [PMID: 37965467 PMCID: PMC10642172 DOI: 10.3389/fonc.2023.1265479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
We report the case of a patient who was diagnosed with two melanomas and one skin cancer within two years. Of particular interest was the fact, that at the time these tumors were diagnosed, the patient was already suffering from chronic myeloid leukemia, which developed three months after recovering from Covid-19. From the time of leukemia occurrence, the patient has been taking the tyrosine kinase inhibitor (TKI) - Gleevec. Thus, we took into the account the possibile effect of Gleevec administration on the risk of skin tumor appearance. It was also important to analyze the impact of the SARS-CoV-2 virus and chronic myeloid leukemia on the risk of secondary malignancies. According to so far published data, the direct relationship between Gleevec treatment and the occurrence of skin cancers cannot be proved. However, literature data indicate a direct and indirect relationship between SARS-CoV-2 infection and an increased incidence of carcinogenesis.
Collapse
Affiliation(s)
- Olga Bogomolets
- Faculty of Medicine, Academy of Silesia in Katowice, Zabrze, Poland
| | - Ewa Rojczyk
- Faculty of Medicine, Academy of Silesia in Katowice, Zabrze, Poland
| | | | | | | |
Collapse
|
3
|
Irani YD, Hughes A, Kok CH, Clarson J, Yeung DT, Ross DM, Branford S, Hughes TP, Yong ASM. Immune modulation in chronic myeloid leukaemia patients treated with nilotinib and interferon-alpha. Br J Haematol 2023; 202:1127-1136. [PMID: 37482935 DOI: 10.1111/bjh.18984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
The addition of interferon to tyrosine kinase inhibitors (TKIs), to improve deep molecular response (DMR) and potentially treatment-free remission (TFR) rates in chronic-phase chronic myeloid leukaemia (CP-CML) patients is under active investigation. However, the immunobiology of this combination is poorly understood. We performed a comprehensive longitudinal assessment of immunological changes in CML patients treated with nilotinib and interferon-alpha (IFN-α) within the ALLG CML11 trial (n = 12) or nilotinib alone (n = 17). We demonstrate that nilotinib+IFN transiently reduced absolute counts of natural killer (NK) cells, compared with nilotinib alone. Furthermore, CD16+ -cytolytic and CD57+ CD62L- -mature NK cells were transiently reduced during IFN therapy, without affecting NK-cell function. IFN transiently increased cytotoxic T-lymphocyte (CTL) responses to leukaemia-associated antigens (LAAs) proteinase-3, BMI-1 and PRAME; and had no effect on regulatory T cells, or myeloid-derived suppressor cells. Patients on nilotinib+IFN who achieved MR4.5 by 12 months had a significantly higher proportion of NK cells expressing NKp46, NKp30 and NKG2D compared with patients not achieving this milestone. This difference was not observed in the nilotinib-alone group. The addition of IFN to nilotinib drives an increase in NK-activating receptors, CTLs responding to LAAs and results in transient immune modulation, which may influence earlier DMR, and its effect on long-term outcomes warrants further investigation.
Collapse
Affiliation(s)
- Yazad D Irani
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
| | - Amy Hughes
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Chung H Kok
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
| | - Jade Clarson
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - David T Yeung
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- The Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia
| | - David M Ross
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- The Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, South Australia, Australia
| | - Susan Branford
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Timothy P Hughes
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- The Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia
| | - Agnes S M Yong
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
- The Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia
- Department of Haematology, Royal Perth Hospital, Perth, Western Australia, Australia
- The University of Western Australia Medical School, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Kassar O, Kahla AB, Koubaa A, Kallel F, Amor IB, Elloumi M. Non-Hodgkin's lymphoma developed during imatinib mesylate treatment of chronic myeloid leukemia. J Oncol Pharm Pract 2022:10781552221137700. [DOI: 10.1177/10781552221137700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction Non-Hodgkin lymphoma induced by imatinib, as a tyrosine kinase inhibitor, is a rare complication. Case report A 54-year-old female with a history of chronic myeloid leukemia (CML) was treated with imatinib as first-line therapy. The patient achieved a profound molecular response with treatment-free remission after five years but lost major molecular responses. A second deep molecular remission was again achieved. Nine years after imatinib therapy, the patient developed odynophagia and rhinorrhea. Physical examination revealed enlarged tonsils with a tumor-like appearance without palpable lymph nodes. Immunohistochemical examination of the tonsils revealed a large B-cell lymphoma. According to Naranjo's algorithm, the causality relationship with the drug is possible with a score of 3. Management and outcome Imatinib was discontinued. The lymphoma was treated with rituximab and chemotherapy. Discussion Non-Hodgkin's lymphoma is a rare side effect of tyrosine kinase inhibitors and highlights the importance of follow-up CML patients.
Collapse
Affiliation(s)
- Olfa Kassar
- Department of Hematology University Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Aicha Ben Kahla
- Department of Hematology University Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Asma Koubaa
- Department of Hematology University Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Faten Kallel
- Department of Hematology University Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Imen Ben Amor
- Department of Hematology University Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Moez Elloumi
- Department of Hematology University Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Saifullah HH, Lucas CM. Treatment-Free Remission in Chronic Myeloid Leukemia: Can We Identify Prognostic Factors? Cancers (Basel) 2021; 13:cancers13164175. [PMID: 34439327 PMCID: PMC8392063 DOI: 10.3390/cancers13164175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a blood cancer. Unlike other cancers CML treatment is lifelong and many patients experience side effects. For those patients who respond well to treatment and achieve deep molecular remission, quality of life is impacted because of continuous treatment. In this review, we look at emerging clinical trials which aim to investigate which patients can safely stop treatment. Treatment-free remission is the ultimate goal for CML patients, but there is still a gap in our knowledge as to why some patients can achieve treatment-free remission, while others relapse when treatment is stopped. Here we discuss if there are any prognostic factors that can predict the best candidates who qualify for treatment discontinuation, with a view to keeping them in remission. Abstract Following the development of tyrosine kinase inhibitors (TKI), the survival of patients with chronic myeloid leukaemia (CML) drastically improved. With the introduction of these agents, CML is now considered a chronic disease for some patients. Taking into consideration the side effects, toxicity, and high cost, discontinuing TKI became a goal for patients with chronic phase CML. Patients who achieved deep molecular response (DMR) and discontinued TKI, remained in treatment-free remission (TFR). Currently, the data from the published literature demonstrate that 40–60% of patients achieve TFR, with relapses occurring within the first six months. In addition, almost all patients who relapsed regained a molecular response upon retreatment, indicating TKI discontinuation is safe. However, there is still a gap in understanding the mechanisms behind TFR, and whether there are prognostic factors that can predict the best candidates who qualify for TKI discontinuation with a view to keeping them in TFR. Furthermore, the information about a second TFR attempt and the role of gradual de-escalation of TKI before complete cessation is limited. This review highlights the factors predicting success or failure of TFR. In addition, it examines the feasibility of a second TFR attempt after the failure of the first one, and the current guidelines concerning TFR in clinical practice.
Collapse
Affiliation(s)
- Hilbeen Hisham Saifullah
- Chester Medical School, University of Chester, Bache Hall, Chester CH2 1BR, UK
- Correspondence: (H.H.S.); (C.M.L.)
| | - Claire Marie Lucas
- Chester Medical School, University of Chester, Bache Hall, Chester CH2 1BR, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
- Correspondence: (H.H.S.); (C.M.L.)
| |
Collapse
|
6
|
Kwaśnik P, Giannopoulos K. Treatment-Free Remission-A New Aim in the Treatment of Chronic Myeloid Leukemia. J Pers Med 2021; 11:697. [PMID: 34442340 PMCID: PMC8399881 DOI: 10.3390/jpm11080697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
Tyrosine kinases inhibitors (TKIs) revolutionized chronic myeloid leukemia (CML) treatment for many years, prolonging patients' life expectancy to be comparable to age-matched healthy individuals. According to the latest the European LeukemiaNet (ELN) recommendations, CML treatment aims to achieve long-term remission without treatment (TFR), which is feasible in more than 40% of patients. Nearly all molecular relapses occur during the first 6 months after TKI withdrawal and do not progress to clinical relapse. The mechanisms that are responsible for CML relapses remain unexplained. It is suggested that maintaining TFR is not directly related to the total disposing of the gene transcript BCR-ABL1, but it might be a result of the restoration of the immune surveillance in CML. The importance of the involvement of immunocompetent cells in the period of TKI withdrawal is also emphasized by the presence of specific symptoms in some patients with "withdrawal syndrome". The goal of this review is to analyze data from studies regarding TFRs in order to characterize the elements of the immune system of patients that might prevent CML molecular relapse. The role of modern droplet digital polymerase chain reaction (ddPCR) and next-generation sequencing (NGS) in better identification of low levels of BCR-ABL1 transcripts was also taken into consideration for refining the eligibility criteria to stop TKI therapy.
Collapse
Affiliation(s)
- Paulina Kwaśnik
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Hematology, St John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
7
|
Wang LY, Chu SC, Lo Y, Yang YY, Chan KA. Association of Bcr-Abl Tyrosine Kinase Inhibitors With Hepatitis B Virus Reactivation Requiring Antiviral Treatment in Taiwan. JAMA Netw Open 2021; 4:e214132. [PMID: 33822067 PMCID: PMC8025118 DOI: 10.1001/jamanetworkopen.2021.4132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IMPORTANCE The US Food and Drug Administration (FDA) highlighted the potential risk of hepatitis B reactivation that was associated with Bcr-Abl tyrosine kinase inhibitor (TKI) treatment and has required updated product labels. OBJECTIVE To examine the association between hepatitis B flare and exposure to Bcr-Abl TKIs compared with non-Bcr-Abl TKIs. DESIGN, SETTING, AND PARTICIPANTS This nested case-control study included patients who entered a hepatitis B carrier cohort in Taiwan after January 1, 2005. Patients who received their first antiviral agents for hepatitis B flare for more than 28 days after the cohort entry date were included as case patients. For each case, a corresponding risk set was formed that included all eligible patients in the study cohort who had the same age (within 1 year), same sex, and were at risk of developing hepatitis B flare at the case date. As many as 10 control patients were randomly selected from the risk set for each case patient. TKIs were evaluated before the hepatitis B flare for case patients and before the corresponding index date for control patients. Data were collected from the Taiwan National Health Insurance research database from January 2000 to 2015. Data analysis was conducted from January to June 2019. EXPOSURE Use of Bcr-AbL TKIs. MAIN OUTCOMES AND MEASURES Conditional logistic regression was used to estimate the rate ratio for the association between hepatitis B flare and exposure to Bcr-Abl TKIs compared with non-Bcr-Abl TKIs. RESULTS Among 698 342 patients who carried incident hepatitis B virus, 66 702 patients with hepatitis B flare that required antiviral treatment (47 492 [71.2%] men; mean [SD] age at index date, 50.2 [13.8] years) were included as case patients, and 666 989 age and sex-matched patients (474 903 [71.2%] men; mean [SD] age, 50.2 [13.8] years) were included as control patients. Analysis revealed that Bcr-Abl TKI use during the previous 90 days was independently associated with a 56% higher risk of hepatitis B flare (adjusted rate ratio [aRR], 1.56; 95% CI, 1.11-2.20), and the aRR increased to 1.66 (95% CI, 1.20-2.28) for Bcr-Abl TKI use during the previous 365 days. Use of Bcr-AbL TKIs during the previous 60 days was associated with a significantly increased risk of flare among women (aRR, 3.20; 95% CI, 1.70-6.03) but not among men (aRR, 1.14; 95% CI, 0.72-1.81). CONCLUSIONS AND RELEVANCE These findings suggest that sex-specific strategies may be needed to monitor for hepatitis B reactivation among patients receiving Bcr-Abl TKIs.
Collapse
Affiliation(s)
- Ling-Yi Wang
- Epidemiology and Biostatistics Consulting Center, Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Yin Lo
- Department of Pharmacy, National Taiwan University Hospital
| | - Yen-Yun Yang
- Health Data Research Center, National Taiwan University
| | - K. Arnold Chan
- Health Data Research Center, National Taiwan University
- Department of Medical Research, National Taiwan University Hospital
| |
Collapse
|
8
|
Lira-Valero FJ, Godínez-Aldrete L, Pulido-Díaz N, Quintal-Ramírez MJ. Multiple Eruptive Dermatofibromas Secondary to Imatinib Mesylate in a Patient with Chronic Myeloid Leukemia. Indian J Dermatol 2021; 66:114-116. [PMID: 33911312 PMCID: PMC8061488 DOI: 10.4103/ijd.ijd_738_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Francisco J Lira-Valero
- Department of Dermatology, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, México City, México E-mail:
| | - Liliana Godínez-Aldrete
- Department of Dermatology, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, México City, México E-mail:
| | - Nancy Pulido-Díaz
- Department of Dermatology, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, México City, México E-mail:
| | - Marissa J Quintal-Ramírez
- Department of Dermatology, Pathology, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, México City, México
| |
Collapse
|
9
|
Zhang W, Yang B, Weng L, Li J, Bai J, Wang T, Wang J, Ye J, Jing H, Jiao Y, Chen X, Liu H, Zeng YX. Single cell sequencing reveals cell populations that predict primary resistance to imatinib in chronic myeloid leukemia. Aging (Albany NY) 2020; 12:25337-25355. [PMID: 33226961 PMCID: PMC7803567 DOI: 10.18632/aging.104136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/20/2020] [Indexed: 01/12/2023]
Abstract
The treatment of chronic myeloid leukemia (CML), a disease caused by t(9;22)(q34;q11) reciprocal translocation, has advanced largely through the use of targeted tyrosine kinase inhibitors (TKIs). To identify molecular differences that might distinguish TKI responders from non-responders, we performed single cell RNA sequencing on cells (n = 41,723 cells) obtained from the peripheral blood of four CML patients at different stages of treatment to generate single cell expression profiles. Analysis of our single cell expression profiles in conjunction with those previously obtained from the bone marrow of additional CML patients and healthy donors (total = 69,263 cells) demonstrated that imatinib treatment significantly altered leukocyte population compositions in both responders and non-responders, and affected the expression profiles of multiple cell populations, including non-neoplastic cell types. Notably, in imatinib poor-responders, patient-specific pre-treatment unique stem/progenitor cells became enriched in peripheral blood compared to the responders. These results indicate that resistance to TKIs might be intrinsic in some CML patients rather than acquired, and that non-neoplastic immune cell types may also play vital roles in dispersing the responsiveness of patients to TKIs. Furthermore, these results demonstrated the potential utility of peripheral blood as a diagnostic tool in the TKI sensitivity of CML patients.
Collapse
Affiliation(s)
- Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Beibei Yang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Linqian Weng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jiangtao Li
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jiefei Bai
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ting Wang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jingwen Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jin Ye
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xixi Chen
- Genetron Health (Beijing) Co. Ltd., Beijing 102206, China
- Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yi-Xin Zeng
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Chu CL, Lee YP, Pang CY, Lin HR, Chen CS, You RI. Tyrosine kinase inhibitors modulate dendritic cell activity via confining c-Kit signaling and tryptophan metabolism. Int Immunopharmacol 2020; 82:106357. [PMID: 32151959 DOI: 10.1016/j.intimp.2020.106357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC)-based vaccine has been established in tumor immunotherapy. Importantly, the efficiency of anti-tumor T-cells in draining lymph nodes is dependent on the status of DCs surrounding in tumors. It has been shown that Indoleamine 2,3-dioxygenase (IDO) plays a key role to induce tolerogenic DCs in tumor microenvironment, and tyrosine kinase inhibitors (TKIs) can suppress the function of IDO in DCs. However, the stimulatory effect of TKI-modified DCs on T cells remains unclear. In this report, we found that one type of TKI-dasatinib can modify DCs to increasing the activation of allogenic T cells. These TKI-modified DCs delayed the onset of B16 melanoma progression in mice. In mechanistic studies, TKIs did not increase the maturation but reduce the expression and phosphorylation levels of IDO and IDO mediated tryptophan metabolism in DCs. In addition, the suppressive effect of TKIs on tryptophan metabolism may be caused by blocking c-Kit pathway in DCs. Furthermore, the increased phosphorylation of general control nonderepressible (GCN2) and decreased expression of aryl hydrocarbon receptor (AhR)/aryl hydrocarbon receptor nuclear translocator (ARNT) were observed in the T cells activated by TKI-modified DCs, suggesting the enhancement of effector function of T cells. These results indicate that TKI could be used to modulate DC immunogenic activity and may potentially be applied in DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Pang Lee
- Department of Health Administration, Tzu Chi University of Science and Technology, Hualien, Taiwan; Division of Oral Pathology, Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Huei-Ru Lin
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chang-Shan Chen
- Institutes of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
11
|
Zhou L, Shi H, Shi W, Yang L, Zhang Y, Xu M, Chen X, Zhu Y, Mu H, Wan X, Yang Z, Zeng Y, Liu H. Durable Molecular Remission in a Lymphoid BP-CML Patient Harboring T315I Mutation Treated with Anti-CD19 CAR-T Therapy. Onco Targets Ther 2019; 12:10989-10995. [PMID: 31997880 PMCID: PMC6917542 DOI: 10.2147/ott.s232102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023] Open
Abstract
Despite the prominent effects of BCR-ABL tyrosine kinase inhibitors (TKI) therapy in patients with chronic phase-chronic myeloid leukemia (CP-CML) and thus low incidence of blastic transformation, blast phase (BP)-CML remains a major therapeutic challenge in the TKI era. The "gatekeeper" mutation T315I in BCR-ABL1 kinase, which often coupled with a poor prognosis, is quite common and resistant to all TKIs except for ponatinib. The occurrence of T315I mutation in BP-CML makes the situation more complex. Anti-CD19 chimeric antigen receptor T cell (CAR-T) technology is a new immunotherapy which has significantly improved the efficacy of B cell hematologic malignances. Here we report a lymphoid BP-CML patient harboring T315I mutation who achieved complete molecular remission and returned to chronic phase by anti-CD19 CAR-T therapy. Our study provides a new therapeutic strategy for patients in BP-CML.
Collapse
Affiliation(s)
- Lu Zhou
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Wenyu Shi
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Li Yang
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yaping Zhang
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Mengqi Xu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiufang Chen
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yanv Zhu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Hui Mu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiaochun Wan
- Shenzhen Bin De Bio Tech Co. Lid, Shenzhen, People's Republic of China
| | - Zhonghua Yang
- Shenzhen Bin De Bio Tech Co. Lid, Shenzhen, People's Republic of China
| | - Ying Zeng
- Shenzhen Bin De Bio Tech Co. Lid, Shenzhen, People's Republic of China
| | - Hong Liu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
12
|
Konuma T, Kohara C, Watanabe E, Mizukami M, Nagai E, Kato S, Takahashi S, Tojo A. Circulating unconventional T-cell subsets during treatment with BCR-ABL1 tyrosine kinase inhibitors for Philadelphia chromosome-positive leukemia. Eur J Haematol 2019; 103:623-625. [PMID: 31512295 DOI: 10.1111/ejh.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chisato Kohara
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eri Watanabe
- Department of IMSUT Clinical Flow Cytometry Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motoko Mizukami
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Etsuko Nagai
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
3D-QSAR, molecular docking, and new compound design of pyrimidine derivatives as Src small molecule inhibitors. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Incidence and outcome of second malignancies in patients with chronic myeloid leukemia during treatment with tyrosine kinase inhibitors. Med Oncol 2018; 35:99. [PMID: 29846829 DOI: 10.1007/s12032-018-1159-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/27/2018] [Indexed: 10/16/2022]
Abstract
We performed a retrospective study to evaluate the incidence of second malignancies (SMs) in chronic myeloid leukemia (CML) patients treated with tyrosine kinase inhibitors (TKIs). We analyzed data from 339 patients with CML who were extracted from the CML Cooperative Study Group database. The standardized incidence ratio (SIR) was calculated to assess the risk of SMs using data from the Cancer Registries in Japan. The median follow-up was 65 months. SMs developed in 14 patients (4.1%, 10 men, 4 women) after the start of TKIs. The median age was 69 years at the time of the CML diagnosis and 72.5 years at the time of the SM diagnosis. Ten patients were treated with imatinib, three with dasatinib, and one with nilotinib as the initial treatment. The SIR for all malignancies was 1.05 (95% CI 0.50-1.93) for men and 1.08 (95% CI 0.29-2.76) for women. The difference in the overall survival (OS) of patients with or without SMs was not statistically significant (5-year OS: 82.5% vs. 92.9%; p = 0.343). A subgroup analysis of 166 patients treated with second-generation TKIs (92 dasatinib, 74 nilotinib) showed that the SIRs for all malignancies were 1.33 (95% CI 0.36-3.41) for men and 0 for women. In conclusion, the incidence of SMs in CML patients during TKI treatment was the same as that in the general Japanese population. There was no evidence of an increase in the incidence of SMs during second-generation TKI treatment. Furthermore, the occurrence of SMs during TKI treatment did not affect the survival or mortality in our cohort.
Collapse
|
15
|
Zheng P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev 2018; 38:325-376. [PMID: 28862319 PMCID: PMC5763363 DOI: 10.1002/med.21463] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022]
Abstract
To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune-based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life-threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer-related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research-practice gaps, addressing real-world challenges and pinpointing real-time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio-oncology and crosses the interface between oncology and onco-pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research-practice gaps may advance research initiatives on the development of mechanism-based diagnoses and treatments for the effective clinical management of cardiotoxicity.
Collapse
Affiliation(s)
- Ping‐Pin Zheng
- Cardio‐Oncology Research GroupErasmus Medical CenterRotterdamthe Netherlands
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Jin Li
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Johan M Kros
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
16
|
Marinelli Busilacchi E, Costantini A, Viola N, Costantini B, Olivieri J, Butini L, Mancini G, Scortechini I, Chiarucci M, Poiani M, Poloni A, Leoni P, Olivieri A. Immunomodulatory Effects of Tyrosine Kinase Inhibitor In Vitro and In Vivo Study. Biol Blood Marrow Transplant 2017; 24:267-275. [PMID: 29128554 DOI: 10.1016/j.bbmt.2017.10.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/31/2017] [Indexed: 12/25/2022]
Abstract
Pathogenesis of chronic graft-versus-host disease (cGVHD) is incompletely defined, involving donor-derived CD4 and CD8-positive T lymphocytes as well as B cells. Standard treatment is lacking for steroid-dependent/refractory cases; therefore, the potential usefulness of tyrosine kinase inhibitors (TKIs) has been suggested, based on their potent antifibrotic effect. However, TKIs seem to have pleiotropic activity. We sought to evaluate the in vitro and in vivo impact of different TKIs on lymphocyte phenotype and function. Peripheral blood mononuclear cells (PBMCs) from healthy donors were cultured in the presence of increasing concentrations of nilotinib, imatinib, dasatinib, and ponatinib; in parallel, 44 PBMC samples from 15 patients with steroid-dependent/refractory cGVHD treated with nilotinib in the setting of a phase I/II trial were analyzed at baseline, after 90, and after 180 days of therapy. Flow cytometry was performed after labeling lymphocytes with a panel of monoclonal antibodies (CD3, CD4, CD16, CD56, CD25, CD19, CD45RA, FoxP3, CD127, and 7-amino actinomycin D). Cytokine production was assessed in supernatants of purified CD3+ T cells and in plasma samples from nilotinib-treated patients. Main T lymphocyte subpopulations were not significantly affected by therapeutic concentrations of TKIs in vitro, whereas proinflammatory cytokine (in particular, IL-2, IFN-γ, tumor necrosis factor-α, and IL-10) and IL-17 production showed a sharp decline. Frequency of T regulatory, B, and natural killer (NK) cells decreased progressively in presence of therapeutic concentrations of all TKIs tested in vitro, except for nilotinib, which showed little effect on these subsets. Of note, naive T regulatory cell (Treg) subset accumulated after exposure to TKIs. Results obtained in vivo on nilotinib-treated patients were largely comparable, both on lymphocyte subset kinetics and on cytokine production by CD3-positive cells. This study underlines the anti-inflammatory and immunomodulatory effects of TKIs and supports their potential usefulness as treatment for patients with steroid-dependent/refractory cGVHD. In addition, both in vitro and in vivo data point out that compared with other TKIs, nilotinib could better preserve the integrity of some important regulatory subsets, such as Treg and NK cells.
Collapse
Affiliation(s)
- Elena Marinelli Busilacchi
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy; Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Andrea Costantini
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy; Servizio di Immunologia Clinica, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Nadia Viola
- Servizio di Immunologia Clinica, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Benedetta Costantini
- Haematological Medicine Department, King's College London, London, United Kingdom
| | - Jacopo Olivieri
- UOC Medicina interna ed Ematologia, ASUR AV3, Civitanova Marche, Italy
| | - Luca Butini
- Servizio di Immunologia Clinica, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Giorgia Mancini
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Ilaria Scortechini
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Martina Chiarucci
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Monica Poiani
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy; Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Antonella Poloni
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy; Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Pietro Leoni
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy; Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Attilio Olivieri
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy; Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy.
| |
Collapse
|
17
|
Matsushita M, Ozawa K, Suzuki T, Nakamura M, Nakano N, Kanchi S, Ichikawa D, Matsuki E, Sakurai M, Karigane D, Kasahara H, Tsukamoto N, Shimizu T, Mori T, Nakajima H, Okamoto S, Kawakami Y, Hattori Y. CXorf48 is a potential therapeutic target for achieving treatment-free remission in CML patients. Blood Cancer J 2017; 7:e601. [PMID: 28862699 PMCID: PMC5709753 DOI: 10.1038/bcj.2017.84] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
Abstract
Although the introduction of tyrosine kinase inhibitors (TKIs) has improved overall survival of patients with chronic myeloid leukemia (CML), about half of the patients eventually relapse after cessation of TKIs. In contrast, the remainder of the patients maintain molecular remission without TKIs, indicating that the patients' immune system could control proliferation of TKI-resistant leukemic stem cells (LSCs). However, the precise mechanism of immunity against CML-LSCs is not fully understood. We have identified a novel immune target, CXorf48, expressed in LSCs of CML patients. Cytotoxic T cells (CTLs) induced by the epitope peptide derived from CXorf48 recognized CD34+CD38- cells obtained from the bone marrow of CML patients. We detected CXorf48-specific CTLs in the peripheral blood mononuclear cells from CML patients who have discontinued imatinib after maintaining complete molecular remission for more than 2 years. Significantly, the relapse rate of CXorf48-specific CTL-negative patients was 63.6%, compared to 0% in CXorf48-specific CTL-positive patients. These results indicate that CXorf48 could be a promising therapeutic target of LSCs for immunotherapy to obtain durable treatment-free remission in CML patients.
Collapse
Affiliation(s)
- M Matsushita
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Shiabakoen, Minato-ku, Tokyo, Japan
| | - K Ozawa
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Shiabakoen, Minato-ku, Tokyo, Japan
| | - T Suzuki
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Shiabakoen, Minato-ku, Tokyo, Japan
| | - M Nakamura
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Shiabakoen, Minato-ku, Tokyo, Japan
| | - N Nakano
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Shiabakoen, Minato-ku, Tokyo, Japan
| | - S Kanchi
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Shiabakoen, Minato-ku, Tokyo, Japan
| | - D Ichikawa
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Shiabakoen, Minato-ku, Tokyo, Japan
| | - E Matsuki
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - M Sakurai
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - D Karigane
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - H Kasahara
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - N Tsukamoto
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - T Shimizu
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - T Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - H Nakajima
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - S Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Y Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Y Hattori
- Division of Clinical Physiology and Therapeutics, Keio University, Faculty of Pharmacy, Shiabakoen, Minato-ku, Tokyo, Japan
| |
Collapse
|
18
|
Esin E. Clinical Applications of Immunotherapy Combination Methods and New Opportunities for the Future. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1623679. [PMID: 28848761 PMCID: PMC5564060 DOI: 10.1155/2017/1623679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022]
Abstract
In the last decade, we have gained a deeper understanding of innate immune system. The mechanism of the continuous guarding of progressive mutations happening in a single cell was discovered and the production and the recognition of tumor associated antigens by the T-cells and elimination of numerous tumors by immune-editing were further understood. The new discoveries on immune mechanisms and its relation with carcinogenesis have led to development of a new class of drugs called immunotherapeutics. T lymphocyte-associated antigen 4, programmed cell death protein 1, and programmed cell death protein ligand 1 are the classes drugs based on immunologic manipulation and are collectively known as the "checkpoint inhibitors." Checkpoint inhibitors have shown remarkable antitumor efficacy in a broad spectrum of malignancies; however, the strongest and most durable immune responses do not last long and the more durable responses only occur in a small subset of patients. One of the solutions which have been put forth to overcome these challenges is combination strategies. Among the dual use of methods, a backbone with either PD-1 or PD-L1 antagonist drugs alongside with certain cytotoxic chemotherapies, radiation, targeted drugs, and novel checkpoint stimulators is the most promising approach and will be on stage in forthcoming years.
Collapse
Affiliation(s)
- Ece Esin
- Dr. A. Y. Ankara Oncology Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
19
|
Hughes A, Yong ASM. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission. Front Immunol 2017; 8:469. [PMID: 28484463 PMCID: PMC5402174 DOI: 10.3389/fimmu.2017.00469] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/05/2017] [Indexed: 01/22/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating TFR success. However, a major goal remains in CML to identify the most effective pathways to target to maximize an advantageous immune response and promote TFR success.
Collapse
Affiliation(s)
- Amy Hughes
- Department of Haematology, SA Pathology, Adelaide, SA, Australia.,Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Agnes S M Yong
- Department of Haematology, SA Pathology, Adelaide, SA, Australia.,Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
20
|
Orlandi EM, Elena C, Bono E. Risk of hepatitis B reactivation under treatment with tyrosine-kinase inhibitors for chronic myeloid leukemia. Leuk Lymphoma 2016; 58:1764-1766. [DOI: 10.1080/10428194.2016.1260127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ester Maria Orlandi
- Department of Oncology-Hematology, Hematology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Elena
- Department of Oncology-Hematology, Hematology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Elisa Bono
- Department of Oncology-Hematology, School of Hematology, University of Pavia, Hematology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
21
|
CML as Part of Dual Malignancies-A Retrospective Analysis: Possible Mechanisms and Review of Literature. Indian J Hematol Blood Transfus 2016; 32:392-396. [PMID: 27812246 DOI: 10.1007/s12288-015-0621-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022] Open
Abstract
Introduction of imatinib has changed the outlook of chronic myeloid leukaemia (CML) patients with overall survival approaching general population. Long term survival in CML patients has provided an opportunity to better study natural history and long term complications of disease as well as the treatment modalities. To study the occurrence and association of other malignancies with their outcomes in patients with CML. This is a single centre retrospective study. All CML patients case records registered with haematology clinic of a tertiary care centre in North India from 2001 to 2014 were perused and evaluated for dual malignancies. Those patients with dual malignancies were personally examined and interviewed if alive. Out of 1677 patients, 15 cases had co-existent malignancies. Four of fifteen cases of dual malignancies had CML as secondary cancer. Three had synchronous and rest 12 patients had metachronous malignancies. Only one patient was in accelerated phase, rest all were in chronic phase. Median age of the dual malignancy cases was 50 years (25-66 years), much younger than reported in west. The initial dose of imatinib was 400 mg OD in all except one. We did not find any causal association between CML or imatinib therapy with development of secondary tumours. Interestingly in this series, incidence of CML as secondary or synchronous malignancy was higher than earlier published studies.
Collapse
|
22
|
Eroukhmanoff J, Castinetti F, Penel N, Salas S. Auto-immune thyroid dysfunction induced by tyrosine kinase inhibitors in a patient with recurrent chordoma. BMC Cancer 2016; 16:679. [PMID: 27558389 PMCID: PMC4997685 DOI: 10.1186/s12885-016-2705-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/10/2016] [Indexed: 11/28/2022] Open
Abstract
Background While hypothyroidism has frequently been reported with the use of TKIs, the thyroid-stimulating hormone (TSH) suppressing effect of TKIs is rare, except for thyroiditis. We describe a case with progressive recurrent chordoma who initially became hyperthyroid in a context of autoimmunity under sorafenib treatment and later under imatinib treatment. Case presentation A 57-year-old man with lumbar chordoma began daily treatment of 800 mg sorafenib. He did not have any other medication or recent iodinated-contrast exposure and his family history was negative for thyroid and autoimmune disease. There was no history of neck pain, irradiation or trauma, recent fever or viral illness. Pre-treatment TSH was normal. After 18 weeks of treatment, the patient presented hyperthyroidism with positive anti-TSH receptor antibodies. More surprisingly, Graves’ disease recurred during treatment with imatinib. Conclusion The fact that Graves’ disease occurred after two different TKIs suggests that it could be a rare but important class effect. Anti-TSH receptor antibodies should be systematically measured when TSH decreases in order to avoid the erroneous diagnosis of transient hyperthyroidism due to thyroiditis.
Collapse
Affiliation(s)
- Juliette Eroukhmanoff
- Department of Medicine, Division of endocrinology, APHM, Conception Hospital, Marseille, France.
| | - Frederic Castinetti
- Department of Medicine, Division of endocrinology, APHM, Conception Hospital, Marseille, France
| | - Nicolas Penel
- Department of Medicine, Division of adult oncology, Oscar Lambret Institute, Lille, France
| | - Sebastien Salas
- Aix Marseille Univ, INSERM, U911, Marseille, France.,Department of Medicine, Division of adult oncology, APHM, Timone Hospital, Marseille, France
| |
Collapse
|
23
|
Steegmann JL, Baccarani M, Breccia M, Casado LF, García-Gutiérrez V, Hochhaus A, Kim DW, Kim TD, Khoury HJ, Le Coutre P, Mayer J, Milojkovic D, Porkka K, Rea D, Rosti G, Saussele S, Hehlmann R, Clark RE. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia 2016; 30:1648-71. [PMID: 27121688 PMCID: PMC4991363 DOI: 10.1038/leu.2016.104] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Most reports on chronic myeloid leukaemia (CML) treatment with tyrosine kinase inhibitors (TKIs) focus on efficacy, particularly on molecular response and outcome. In contrast, adverse events (AEs) are often reported as infrequent, minor, tolerable and manageable, but they are increasingly important as therapy is potentially lifelong and multiple TKIs are available. For this reason, the European LeukemiaNet panel for CML management recommendations presents an exhaustive and critical summary of AEs emerging during CML treatment, to assist their understanding, management and prevention. There are five major conclusions. First, the main purpose of CML treatment is the antileukemic effect. Suboptimal management of AEs must not compromise this first objective. Second, most patients will have AEs, usually early, mostly mild to moderate, and which will resolve spontaneously or are easily controlled by simple means. Third, reduction or interruption of treatment must only be done if optimal management of the AE cannot be accomplished in other ways, and frequent monitoring is needed to detect resolution of the AE as early as possible. Fourth, attention must be given to comorbidities and drug interactions, and to new events unrelated to TKIs that are inevitable during such a prolonged treatment. Fifth, some TKI-related AEs have emerged which were not predicted or detected in earlier studies, maybe because of suboptimal attention to or absence from the preclinical data. Overall, imatinib has demonstrated a good long-term safety profile, though recent findings suggest underestimation of symptom severity by physicians. Second and third generation TKIs have shown higher response rates, but have been associated with unexpected problems, some of which could be irreversible. We hope these recommendations will help to minimise adverse events, and we believe that an optimal management of them will be rewarded by better TKI compliance and thus better CML outcomes, together with better quality of life.
Collapse
Affiliation(s)
- J L Steegmann
- Servicio de Hematologia y Grupo 44
IIS-IP, Hospital Universitario de la Princesa, Madrid,
Spain
| | - M Baccarani
- Department of Hematology and Oncology
‘L. and A. Seràgnoli', St Orsola University Hospital,
Bologna, Italy
| | - M Breccia
- Department of Cellular Biotechnologies
and Hematology, Sapienza University, Rome, Italy
| | - L F Casado
- Servicio de Hematologia, Hospital Virgen
de la Salud, Toledo, Spain
| | - V García-Gutiérrez
- Servicio Hematología y
Hemoterapia, Hospital Universitario Ramón y Cajal,
Madrid, Spain
| | - A Hochhaus
- Hematology/Oncology,
Universitätsklinikum Jena, Jena, Germany
| | - D-W Kim
- Seoul St Mary's Hospital, Leukemia
Research Institute, The Catholic University of Korea, Seoul,
South Korea
| | - T D Kim
- Medizinische Klinik mit Schwerpunkt
Onkologie und Hämatologie, Campus Charité Mitte,
Charité—Universitätsmedizin Berlin, Berlin,
Germany
| | - H J Khoury
- Department of Hematology and Medical
Oncology, Winship Cancer Institute of Emory University,
Atlanta, GA, USA
| | - P Le Coutre
- Medizinische Klinik mit Schwerpunkt
Onkologie und Hämatologie, Campus Charité Mitte,
Charité—Universitätsmedizin Berlin, Berlin,
Germany
| | - J Mayer
- Department of Internal Medicine,
Hematology and Oncology, Masaryk University Hospital Brno,
Brno, Czech Republic
| | - D Milojkovic
- Department of Haematology Imperial
College, Hammersmith Hospital, London, UK
| | - K Porkka
- Department of Hematology, Helsinki
University Hospital Comprehensive Cancer Center, Helsinki,
Finland
- Hematology Research Unit, University of
Helsinki, Helsinki, Finland
| | - D Rea
- Service d'Hématologie
Adulte, Hôpital Saint-Louis, APHP, Paris,
France
| | - G Rosti
- Department of Hematology and Oncology
‘L. and A. Seràgnoli', St Orsola University Hospital,
Bologna, Italy
| | - S Saussele
- III. Med. Klinik Medizinische
Fakultät Mannheim der Universität Heidelberg,
Mannheim, Germany
| | - R Hehlmann
- Medizinische Fakultät Mannheim der
Universität Heidelberg, Mannheim, Germany
| | - R E Clark
- Department of Molecular and Clinical
Cancer Medicine, University of Liverpool, Liverpool,
UK
| |
Collapse
|
24
|
Noskovičová N, Petřek M, Eickelberg O, Heinzelmann K. Platelet-Derived Growth Factor Signaling in the Lung. From Lung Development and Disease to Clinical Studies. Am J Respir Cell Mol Biol 2015; 52:263-84. [DOI: 10.1165/rcmb.2014-0294tr] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Occurrence of secondary malignancies in chronic myeloid leukemia during therapy with imatinib mesylate-single institution experience. Mediterr J Hematol Infect Dis 2015; 7:e2015003. [PMID: 25574362 PMCID: PMC4283924 DOI: 10.4084/mjhid.2015.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023] Open
Abstract
Introduction Imatinib mesylate (IM) remains the treatment of choice for chronic myeloid leukemia (CML) showing a remarkable efficacy and offers a perspective for long disease-free survival. Due to prolonged administration of IM, the questions about the possible impact on the development of secondary malignancies (SM) are raised. Objective To investigate the incidence and clinical outcome of secondary malignancies during IM therapy for CML. Material and Methods The records of 221 CML patients treated with IM between 2003–2013 in a single institution were reviewed. The Poisson regression model was used to estimate the relative risks for SM and death in CML patients. Results Secondary malignancies developed in eight out of the 221 patients (3.6%) receiving IM for a median of 61 months (range, 10–137 months). Female/male ratio was 5/3. Two patients were diagnosed with their CML at accelerated phase whereas 6 had chronic phase. The median age at IM initiation was 58 years (range, 31–72 years). Five of these 8 SM patients received IM after other treatments failure: interferon α (n=5), hydroxyurea (n=4) and cytarabine (n=1). Three patients received IM as a frontline therapy. All patients were on IM at 400mg daily at SM occurrence. The therapy for SM included surgery (n=3), chemotherapy only (n=3), and chemotherapy followed by radiotherapy (n=1). One patient did not receive treatment due to disseminated disease. All CML patients were in hematologic and complete cytogenetic response (CCR) at the time of SM development. All of them also met the criteria for major molecular response (BCR-ABLIS ≤0.1%). They continued their IM while receiving treatment for SM. Among eight patients with SM, five patients are alive and remain in CCR on IM whereas three patients died due to SM. The risks for SM development as well as death due to SM in CML patients were not statistically increased if compared to age-adjusted population. Conclusions The association between IM therapy for CML and SM development has not been found.
Collapse
|
26
|
Kreutzman A, Ilander M, Porkka K, Vakkila J, Mustjoki S. Dasatinib promotes Th1-type responses in granzyme B expressing T-cells. Oncoimmunology 2014; 3:e28925. [PMID: 25083322 PMCID: PMC4106168 DOI: 10.4161/onci.28925] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 02/08/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have dramatically improved the outcome of chronic myeloid leukemia (CML). Besides inhibiting target kinases in leukemic cells, 2nd generation TKI dasatinib also inhibits off-targets in immune effector cells resulting in atypical immune responses in some patients. Dasatinib has been described to increase the proportion of late effector memory T-cells, however, to date no follow-up studies have been performed in first-line patients. In this study, we explored the functional properties of T-cells using primary samples from CML patients (n = 28) on TKI therapy. Granzyme B (GrB) was used as a marker for late phase antigen experienced CD4+ and CD8+ T-cells. Dasatinib treatment increased the numbers of both GrB expressing memory CD4+ and CD8+ T-cells when compared with healthy controls. Functionally, the GrB+CD4+ T-cells were highly active and differentiated into Th1-type T-cells capable of producing IFN-γ, which is important for tumor control. Similar kind of increase was not observed during imatinib or nilotinib therapy. These data support the dual mode of action of dasatinib: potent BCR-ABL1 inhibition in leukemic cells is accompanied by the enhancement of cellular immunity, which may have implications in the long-term control of leukemia.
Collapse
Affiliation(s)
- Anna Kreutzman
- Hematology Research Unit Helsinki; University of Helsinki; Helsinki, Finland ; Department of Hematology; Helsinki University Central Hospital Cancer Center; Helsinki, Finland
| | - Mette Ilander
- Hematology Research Unit Helsinki; University of Helsinki; Helsinki, Finland ; Department of Hematology; Helsinki University Central Hospital Cancer Center; Helsinki, Finland
| | - Kimmo Porkka
- Hematology Research Unit Helsinki; University of Helsinki; Helsinki, Finland ; Department of Hematology; Helsinki University Central Hospital Cancer Center; Helsinki, Finland
| | - Jukka Vakkila
- Hematology Research Unit Helsinki; University of Helsinki; Helsinki, Finland ; Department of Hematology; Helsinki University Central Hospital Cancer Center; Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki; University of Helsinki; Helsinki, Finland ; Department of Hematology; Helsinki University Central Hospital Cancer Center; Helsinki, Finland
| |
Collapse
|
27
|
Wölfl M, Schwinn S, Yoo YE, Reß ML, Braun M, Chopra M, Schreiber SC, Ayala VI, Ohlen C, Eyrich M, Beilhack A, Schlegel PG. Src-kinase inhibitors sensitize human cells of myeloid origin to Toll-like-receptor-induced interleukin 12 synthesis. Blood 2013; 122:1203-13. [PMID: 23836556 PMCID: PMC3744989 DOI: 10.1182/blood-2013-03-488072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/25/2013] [Indexed: 12/17/2022] Open
Abstract
Src-kinase inhibitors hold great potential as targeted therapy against malignant cells. However, such inhibitors may also affect nonmalignant cells and cause pronounced off-target effects. We investigated the role of the dual kinase inhibitor dasatinib on human myeloid cells. Dasatinib is clinically used for the treatment of bcr/abl⁺ leukemias because it blocks the mutated tyrosine kinase abl. To understand its effect on the development of antigen-specific T-cell responses, we assessed antigen-specific priming of human, naïve T cells. In surprising contrast to the direct inhibition of T-cell activation by dasatinib, pretreatment of maturing dendritic cells (DCs) with dasatinib strongly enhanced their stimulatory activity. This effect strictly depended on the activating DC stimulus and led to enhanced interleukin 12 (IL-12) production and T-cell responses of higher functional avidity. Src-kinase inhibitors, and not conventional tyrosine kinase inhibitors, increased IL-12 production in several cell types of myeloid origin, such as monocytes and classical or nonclassical DCs. Interestingly, only human cells, but not mouse or macaques DCs, were affected. These data highlight the potential immunostimulatory capacity of a group of novel drugs, src-kinase inhibitors, thereby opening new opportunities for chemoimmunotherapy. These data also provide evidence for a regulatory role of src kinases in the activation of myeloid cells.
Collapse
Affiliation(s)
- Matthias Wölfl
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang FH, Ling YW, Zhai X, Zhang Y, Huang F, Fan ZP, Zhou HS, Jiang QL, Sun J, Liu QF. The effect of imatinib therapy on the outcome of allogeneic stem cell transplantation in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2013; 18:151-7. [PMID: 23394269 DOI: 10.1179/1607845412y.0000000052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To evaluate the efficacy of imatinib administration before and/or after allogeneic hematopoietic stem cell transplantation (allo-HSCT) for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). METHOD Patients with imatinib therapy time exceeding 30 days pre-/post-transplant were screened in our data. Imatinib was used in induced or consolidated chemotherapy pre-transplant, or maintenance therapy after 60 days post-transplant (therapy time was less than 180 days) regardless of the molecular status of the disease. RESULTS Sixty-nine patients with Ph+ ALL were enrolled in the retrospective analysis. Forty-four patients received imatinib therapy, including 24 pre-transplant, 9 post-transplant, and 11 both pre- and post-transplant. With a median follow-up time of 395 days (range, 55-2762 days) post-transplant, 3-year estimated overall survival was 62.3 ± 16.6, 40.0 ± 21.9, 41.7 ± 22.2, and 25.9 ± 11.4%, respectively (P = 0.221), and disease-free survival (DFS) was 53.6 ± 17.9, 20.0 ± 17.9, 33.3 ± 25.5% and 23.6 ± 11.4%, respectively (P = 0.421), in patients with imatinib therapy pre-transplant, post-transplant, both pre- and post-transplant, neither pre- nor post-transplant. The incidence of relapse at 3 year for patients with imatinib therapy post-transplant (n = 20) was 63.6%, comparing with 24.2% (P = 0.018) in patients without imatinib therapy post-transplant (n = 49). The ratio of CD4+CD25+Foxp3+ cells in blood was significantly higher at 30 and 60 days after imatinib therapy than that at the time of pre-imatinib in 20 patients (P = 0.019 and 0.001, respectively). CONCLUSIONS Application of imatinib pre-transplant might have benefited for patients with Ph+ ALL. Whether administration of imatinib, regardless of the molecular status of the disease post-transplant increases relapse, is a worthy goal for further study.
Collapse
Affiliation(s)
- Fu-Hua Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Olivieri J, Coluzzi S, Attolico I, Olivieri A. Tirosin kinase inhibitors in chronic graft versus host disease: from bench to bedside. ScientificWorldJournal 2011; 11:1908-31. [PMID: 22125447 PMCID: PMC3217614 DOI: 10.1100/2011/924954] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/05/2011] [Indexed: 02/07/2023] Open
Abstract
Chronic Graft Versus Host Disease (cGVHD) is a major complication of allogeneic stem-cell transplantation (SCT). In many inflammatory fibrotic diseases, such as Systemic Scleroderma (SSc) and cGVHD with fibrotic features, an abnormal activation of transforming growth factor (TGFβ) and platelet-derived growth factor receptor (PDGF-R) pathways have been observed. Tyrosin Kinase Inhibitors (TKIs), which are currently used for treatment of patients with Chronic Myeloid Leukemia (CML), share potent antifibrotic and antiinflammatory properties, being powerful dual inhibitors of both PDGF-R and TGFβ pathways. Moreover accumulating in vitro data confirm that TKIs, interacting with the TCR and other signalling molecules, carry potent immunomodulatory effects, being involved in both T-cell and B-cell response. Translation to the clinical setting revealed that treatment with Imatinib can achieve encouraging responses in patients with autoimmune diseases and steroid-refractory cGVHD, showing a favourable toxicity profile. While the exact mechanisms leading to such efficacy are still under investigation, use of TKIs in the context of clinical trials should be promoted, aiming to evaluate the biological changes induced in vivo by TKIs and to assess the long term outcome of these patients. Second-generation TKIs, with more favourable toxicity profile are under evaluation in the same setting.
Collapse
Affiliation(s)
- Jacopo Olivieri
- Department of Internal Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy.
| | | | | | | |
Collapse
|
30
|
Malignancies occurring during therapy with tyrosine kinase inhibitors (TKIs) for chronic myeloid leukemia (CML) and other hematologic malignancies. Blood 2011; 118:4353-8. [PMID: 21846902 DOI: 10.1182/blood-2011-06-362889] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Success of tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) has given patients hope for a long disease-free-survival. A longer survival raises the question of late effects, including development of another malignancy. Records of 1445 patients with CML/myeloproliferative neoplasm or other hematologic malignancies treated with TKIs were reviewed to investigate frequency and characteristics of second malignancies (other than acute myeloid leukemia, acute lymphocytic leukemia, or myelodysplastic syndrome). The number of second cancers was compared with the number expected from the Surveillance, Epidemiology, and End Results database. After a median follow-up of 107 months (range, 13-362 months) after CML/myeloproliferative neoplasm diagnosis, 66 patients (4.6%) developed 80 second cancers, including skin (31%), prostate (15%), melanoma (13%), digestive system (10%), kidney (4%), thyroid (4%), breast (3%), chronic lymphocytic leukemia (3%), hepatobiliary (3%), and other cancers (14%). Excluding nonmelanoma skin cancers, 55 second cancers were seen in 51 (3.5%) of all patients treated. The risk of second cancer was lower than expected (observed-to-expected ratio, 0.6; 95% confidence interval, 0.44-0.81). Second cancers occur in a small percentage of patients receiving therapy with TKIs for hematologic malignancies, mostly CML. No evidence at the moment suggests that exposure to TKIs increases the risk of developing second cancers.
Collapse
|
31
|
Perros F, Montani D, Dorfmüller P, Huertas A, Chaumais MC, Cohen-Kaminsky S, Humbert M. [Novel immunopathological approaches to pulmonary arterial hypertension]. Presse Med 2011; 40 Suppl 1:1S3-13. [PMID: 21536178 DOI: 10.1016/s0755-4982(11)70002-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Inflammation is important for the initiation and the maintenance of vascular remodeling in the most commun animal models of pulmonary hypertension (PH), and its therapeutical targeting blocks PH development in these models. In human, pulmonary vascular lesions of PH are also the source of an intense chemokine production, linked to inflammatory cell recruitment. However, arteritis is uncommon in PH patients. Of note, current PH treatments have immunomodulatory properties. In addition, some studies have shown a correlation between levels of circulating inflammatory mediators and patients' survival. The study of autoimmunity in the pathophysiology of pulmonary arterial hypertension is becoming an area of intense investigation. New immunopathological approaches to PH should allow the development of innovative treatments for this very severe condition.
Collapse
Affiliation(s)
- Frédéric Perros
- Université Paris-Sud, Faculté de médecine, Le Kremlin-Bicêtre, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Maggio R, Peragine N, De Propris MS, Vitale A, Elia L, Calabrese E, Della Starza I, Intoppa S, Milani ML, Guarini A, Foà R. Immunocompetent cell functions in Ph+ acute lymphoblastic leukemia patients on prolonged Imatinib maintenance treatment. Cancer Immunol Immunother 2011; 60:599-607. [PMID: 21240485 PMCID: PMC11029509 DOI: 10.1007/s00262-010-0966-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
Imatinib mesylate (Imatinib) is a potent inhibitor of defined tyrosine kinases and is effectively used for the treatment of malignancies characterized by the constitutive activation of these tyrosine kinases, such as Philadelphia chromosome-positive (Ph(+)) leukemias and gastrointestinal stromal tumors. Suppressive as well as stimulating effects of this drug on T lymphocytes or dendritic cells (DC), which play a major role in immune tumor surveillance, have been reported. For this reason, we questioned whether Imatinib could also affect the phenotypic and functional properties of these subpopulations in Ph(+) acute lymphoblastic leukemia (ALL) patients on prolonged Imatinib maintenance treatment. Circulating T lymphocytes and NK cells from Imatinib-treated Ph(+) ALL patients showed a subset distribution comparable to that of healthy donors. In addition, T-cell immunomodulant cytokine production (IFN-γ, TNF-α) and proliferative responses were not impaired. A normal monocyte-derived DC differentiation and apoptotic body loading capacity was also observed in the majority of Imatinib-treated patients. In contrast, an impairment in the DC intracellular production of IL-12 was recorded, although this was not observed when normal DC were exposed in vitro to Imatinib. Finally, in vivo Imatinib treatment did not affect the T-lymphocyte proliferation and IFN-γ production induced by leukemic apoptotic body-loaded DC, underling the potential capability of these cells to generate a specific immune response against tumoral antigens. Taken together, these findings provide evidence that immunotherapeutic approaches aimed at controlling residual disease in Ph(+) ALL patients in hematologic remission are not jeopardized by the long-term administration of Imatinib.
Collapse
Affiliation(s)
- Roberta Maggio
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Via Benevento 6, 00161 Rome, Italy
| | - Nadia Peragine
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Via Benevento 6, 00161 Rome, Italy
| | - Maria Stefania De Propris
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Via Benevento 6, 00161 Rome, Italy
| | - Antonella Vitale
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Via Benevento 6, 00161 Rome, Italy
| | - Loredana Elia
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Via Benevento 6, 00161 Rome, Italy
| | - Elisabetta Calabrese
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Via Benevento 6, 00161 Rome, Italy
| | - Irene Della Starza
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Via Benevento 6, 00161 Rome, Italy
| | - Stefania Intoppa
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Via Benevento 6, 00161 Rome, Italy
| | - Maria Laura Milani
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Via Benevento 6, 00161 Rome, Italy
| | - Anna Guarini
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Via Benevento 6, 00161 Rome, Italy
| | - Robin Foà
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Via Benevento 6, 00161 Rome, Italy
| |
Collapse
|
33
|
Abstract
IFNα has been used to treat malignant and viral disorders for more than 25 years. Its efficacy is likely the consequence of its broad range of biologic activities, including direct effects on malignant cells, enhancement of anti-tumor immune responses, induction of proapoptotic genes, inhibition of angiogenesis, and promotion of the cycling of dormant malignant stem cells. Because of the recent development of "targeted" therapies, the use of IFN has been dramatically reduced over the last decade. The increasing awareness of the multistep pathogenesis of many malignancies has suggested, however, that such an approach using target-specific agents is not universally effective. These observations have resulted in a number of recent clinical trials utilizing IFNα in patients with chronic myeloid leukemia (CML), systemic mast cell disease, hypereosinophilic syndrome and the Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) with promising outcomes. These reports provide evidence that IFNα, alone or in combination with other agents, can induce surprisingly robust molecular response rates and possibly improve survival. Although IFNα at present remains an experimental form of therapy for patients with myeloid malignancies, these promising results suggest that it may become again an important component of the therapeutic arsenal for this group of hematologic malignancies.
Collapse
|
34
|
Vonka V. Immunotherapy of chronic myeloid leukemia: present state and future prospects. Immunotherapy 2010; 2:227-41. [PMID: 20635930 DOI: 10.2217/imt.10.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In spite of the considerable successes that have been achieved in the treatment of chronic myeloid leukemia (CML), cure for the disease can only be obtained by the present means in a rather small minority of patients. During the past decade, considerable progress has been made in the understanding of the immunology of CML, which has raised hopes that this disease may be curable by supplementing the current targeted chemotherapy with immunotherapeutic approaches. More than ten small-scale clinical trials have been carried out with experimental vaccines predominantly based on the p210bcr-abl fusion protein. Their results suggested beneficial effects in some patients. Recent data obtained in human patients as well as in animal models indicate that the p210bcr-abl protein does not carry the immunodominant epitope(s). These observations, combined with the recognition of an ever increasing number of other immunogenic proteins in CML cells, strongly support the concept that gene-modified, cell-based vaccines containing the full spectrum of tumor antigens might be the most effective immunotherapeutic approach. Recently created mathematical models have provided important leads for the timing of the combination of targeted drug therapy with vaccine administration. A strategy of how targeted drug therapy might be combined with vaccination is outlined.
Collapse
Affiliation(s)
- Vladimír Vonka
- Department of Experimental Virology, Institutute of Hematology & Blood Transfusion, Prague, Czech Republic.
| |
Collapse
|
35
|
Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood 2010; 116:772-82. [DOI: 10.1182/blood-2009-12-256800] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In a proportion of patients with chronic myeloid leukemia (CML) being treated with dasatinib, we recently observed large granular lymphocyte (LGL) expansions carrying clonal T-cell receptor (TCR) γ/δ gene rearrangements. To assess the prevalence and role of clonal lymphocytes in CML, we collected samples from patients (n = 34) at the time of diagnosis and during imatinib and dasatinib therapies and analyzed lymphocyte clonality with a sensitive polymerase chain reaction–based method of TCR γ and δ genes. Surprisingly, at CML diagnosis, 15 of 18 patients (83%) had a sizeable clonal, BCR-ABL1 negative lymphocyte population, which was uncommon in healthy persons (1 of 12; 8%). The same clone persisted at low levels in most imatinib-treated patients. In contrast, in a distinct population of dasatinib-treated patients, the diagnostic phase clone markedly expanded, resulting in absolute lymphocytosis in blood. Most patients with LGL expansions (90%) had TCR δ rearrangements, which were uncommon in patients without an LGL expansion (10%). The TCR δ clones were confined to γδ+ T- or natural killer–cell compartments and the TCR γ clones to CD4+/CD8+ αβ+ fractions. The functional importance of clonal lymphocytes as a part of leukemia immune surveillance and the putative anergy-reversing role of dasatinib require further evaluation.
Collapse
|
36
|
Kanodia S, Wieder E, Lu S, Talpaz M, Alatrash G, Clise-Dwyer K, Molldrem JJ. PR1-specific T cells are associated with unmaintained cytogenetic remission of chronic myelogenous leukemia after interferon withdrawal. PLoS One 2010; 5:e11770. [PMID: 20668669 PMCID: PMC2909896 DOI: 10.1371/journal.pone.0011770] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/01/2010] [Indexed: 12/13/2022] Open
Abstract
Background Interferon-α (IFN) induces complete cytogenetic remission (CCR) in 20–25% CML patients and in a small minority of patients; CCR persists after IFN is stopped. IFN induces CCR in part by increasing cytotoxic T lymphocytes (CTL) specific for PR1, the HLA-A2-restricted 9-mer peptide from proteinase 3 and neutrophil elastase, but it is unknown how CCR persists after IFN is stopped. Principal Findings We reasoned that PR1-CTL persist and mediate CML-specific immunity in patients that maintain CCR after IFN withdrawal. We found that PR1-CTL were increased in peripheral blood of 7/7 HLA-A2+ patients during unmaintained CCR from 3 to 88 months after IFN withdrawal, as compared to no detectable PR1-CTL in 2/2 IFN-treated CML patients not in CCR. Unprimed PR1-CTL secreted IFNγ and were predominantly CD45RA±CD28+CCR7+CD57-, consistent with functional naïve and central memory (CM) T cells. Similarly, following stimulation, proliferation occurred predominantly in CM PR1-CTL, consistent with long-term immunity sustained by self-renewing CM T cells. PR1-CTL were functionally anergic in one patient 6 months prior to cytogenetic relapse at 26 months after IFN withdrawal, and in three relapsed patients PR1-CTL were undetectable but re-emerged 3–6 months after starting imatinib. Conclusion These data support the hypothesis that IFN elicits CML-specific CM CTL that may contribute to continuous CCR after IFN withdrawal and suggest a role for T cell immune therapy with or without tyrosine kinase inhibitors as a strategy to prolong CR in CML.
Collapse
MESH Headings
- Adult
- Cytogenetic Analysis
- Female
- Flow Cytometry
- HLA-A2 Antigen/metabolism
- Humans
- Interferon-alpha/administration & dosage
- Interferon-alpha/urine
- Interferon-gamma/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Male
- Middle Aged
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/immunology
- Remission Induction
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Shreya Kanodia
- Section of Transplant Immunology, Department of Blood and Marrow Transplantation, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Eric Wieder
- Section of Transplant Immunology, Department of Blood and Marrow Transplantation, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Sijie Lu
- Section of Transplant Immunology, Department of Blood and Marrow Transplantation, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Moshe Talpaz
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Gheath Alatrash
- Section of Transplant Immunology, Department of Blood and Marrow Transplantation, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Karen Clise-Dwyer
- Section of Transplant Immunology, Department of Blood and Marrow Transplantation, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jeffrey J. Molldrem
- Section of Transplant Immunology, Department of Blood and Marrow Transplantation, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Rappa G, Anzanello F, Lorico A. Imatinib mesylate enhances the malignant behavior of human breast carcinoma cells. Cancer Chemother Pharmacol 2010; 67:919-26. [PMID: 20596710 DOI: 10.1007/s00280-010-1394-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/20/2010] [Indexed: 01/05/2023]
Abstract
PURPOSE Imatinib mesylate (Imatinib), clinically employed for chronic myeloid leukemia and gastrointestinal stromal tumors, is a selective inhibitor of the tyrosine kinases, c-abl, c-kit and PDGFRs. Due to the frequent expression of these genes in breast cancer cells, the clinical efficacy of Imatinib has recently been investigated in patients with advanced and metastatic breast cancer. Here, we have studied the effects of Imatinib on human MA-11 breast carcinoma cells, expressing both c-abl and PDGFRbeta, in vitro and in mouse xenografts. METHODS The effects of Imatinib mesylate on the human MA-11 breast carcinoma cell line were studied in vitro and in xenografts. RESULTS Daily intraperitoneal treatment with 60 mg/kg Imatinib for 9 days of athymic nude mice pre-implanted subcutaneously with MA-11 cells did not result in an anti-tumor effect, but rather increased the take rate of 3 × 10(4) cells from 30.8 to 84.6% and caused the appearance of large abdominal masses in 30% of mice. To investigate the mechanism(s) of the observed effects of Imatinib on MA-11 tumors, we exposed the cells in vitro to Imatinib for 9 days. The surviving population, expanded in culture, showed increased motility and over-expressed a set of genes associated with aggressive behavior. Also, several genes belonging to the Wnt and the MAPK pathway were differentially expressed. In promoter activation assays, Imatinib increased the promoter activity driven by both Wnt and MAPK/ERK-1/2. CONCLUSIONS Our data suggest caution in the clinical use of Imatinib in breast cancer patients; the comparison of Imatinib-surviving breast cancer cells with parental cells may help define the regulatory pathways involved in the increased malignancy of residual tumor cells that survive therapy, ultimately providing important therapeutic targets.
Collapse
Affiliation(s)
- Germana Rappa
- Department of Drug Development, Nevada Cancer Institute, One Breakthrough Way, Las Vegas, NV 89135, USA
| | | | | |
Collapse
|
38
|
Seliger B, Massa C, Rini B, Ko J, Finke J. Antitumour and immune-adjuvant activities of protein-tyrosine kinase inhibitors. Trends Mol Med 2010; 16:184-92. [DOI: 10.1016/j.molmed.2010.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 01/29/2023]
|
39
|
Imatinib mesylate ameliorates the dystrophic phenotype in exercised mdx mice. J Neuroimmunol 2009; 212:93-101. [PMID: 19508953 DOI: 10.1016/j.jneuroim.2009.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 01/14/2023]
Abstract
Myofiber degeneration, inflammation, and fibrosis are remarkable features of Duchenne muscular dystrophy. We hypothesized that the administration of imatinib mesylate, an inhibitor of tyrosine kinase and TGF-beta pro-fibrogenic activity, could improve the muscular conditions in mdx mice. Four-week old mdx mice were treated and exercised for 6 weeks. Gastrocnemius and diaphragm histopathology, strength, creatine kinase, and cytokine levels were evaluated. The treated group presented increased muscular strength and decreased CK levels, injured myofibers, and inflammatory infiltrates. Pro-inflammatory cytokines and TGF-beta were also reduced, while IL-10 was increased, suggesting an immunomodulatory effect of imatinib, which can ameliorate the dystrophic phenotype in mdx mice.
Collapse
|