1
|
Cheng CH, Chen WC, Yang WC, Yang SC, Liu SM, Chen YS, Chen JC. Unidirectional Polyvinylidene/Copper-Impregnated Nanohydroxyapatite Composite Membrane Prepared by Electrospinning with Piezoelectricity and Biocompatibility for Potential Ligament Repair. Polymers (Basel) 2025; 17:185. [PMID: 39861257 PMCID: PMC11769023 DOI: 10.3390/polym17020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair. These membranes were created through electrospinning using piezoelectric polyvinylidene fluoride (PVDF) composites, which contained 1 wt.% and 3 wt.% of copper-impregnated nanohydroxyapatite (Cu-nHA). The proposed electrospun membrane would feature an aligned fiber structure achieved through high-speed roller stretching, which mimics the properties of biomimetic ligaments. Nanoparticles of Cu-nHA had been composited into PVDF to enhance the pirzoelectric β-phase of the PVDF crystallines. The study assessed the physicochemical properties, antibacterial activity, and biocompatibility of the membranes in vitro. A microstructure analysis revealed that the composite membrane exhibited a bionic structure with aligned fibers resembling human ligaments. The piezoelectric performance of the experimental group containing 3 wt.% Cu-nHA was significantly improved to 25.02 ± 0.68 V/g·m-2 compared with that of the pure PVDF group at 18.98 ± 1.18 V/g·m-2. Further enhancement in piezoelectric performance by 31.8% was achieved by manipulating the semicrystalline structures. Antibacterial and cytotoxicity tests showed that the composite membrane inherited the antibacterial properties of Cu-nHA nanoparticles without causing cytotoxic reactions. Tensile tests revealed that the membrane's flexibility of strain was adequate for use as artificial scaffolds for ligaments. In particular, the mechanical properties of the two experimental groups containing Cu-nHA were significantly enhanced compared with those of the pure PVDF group. The favorable piezoelectric and flexible properties are highly beneficial for ligament tissue regeneration. This study successfully developed PVDF/Cu-nHA piezoelectric fibers for a biocompatible, unidirectional piezoelectric membrane with potential applications as ligament repair scaffolds.
Collapse
Affiliation(s)
- Chih-Hsin Cheng
- Clinical Histopathology Division, Hualien Armed Forces General Hospital, Hualien 970, Taiwan;
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wen-Chieh Yang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
| | - Sen-Chi Yang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
| | - Ya-Shun Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
| | - Jian-Chih Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
- Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Zhang J, Liu C, Li J, Yu T, Ruan J, Yang F. Advanced Piezoelectric Materials, Devices, and Systems for Orthopedic Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410400. [PMID: 39665130 PMCID: PMC11744659 DOI: 10.1002/advs.202410400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Harnessing the robust electromechanical couplings, piezoelectric materials not only enable efficient bio-energy harvesting, physiological sensing and actuating but also open enormous opportunities for therapeutic treatments through surface polarization directly interacting with electroactive cells, tissues, and organs. Known for its highly oriented and hierarchical structure, collagen in natural bones produces local electrical signals to stimulate osteoblasts and promote bone formation, inspiring the application of piezoelectric materials in orthopedic medicine. Recent studies showed that piezoelectricity can impact microenvironments by regulating molecular sensors including ion channels, cytoskeletal elements, cell adhesion proteins, and other signaling pathways. This review thus focuses on discussing the pioneering applications of piezoelectricity in the diagnosis and treatment of orthopedic diseases, aiming to offer valuable insights for advancing next-generation medical technologies. Beginning with an introduction to the principles of piezoelectricity and various piezoelectric materials, this review paper delves into the mechanisms through which piezoelectric materials accelerated osteogenesis. A comprehensive overview of piezoelectric materials, devices, and systems enhancing bone tissue repair, alleviating inflammation at infection sites, and monitoring bone health is then provided, respectively. Finally, the major challenges faced by applications of piezoelectricity in orthopedic conditions are thoroughly discussed, along with a critical outlook on future development trends.
Collapse
Affiliation(s)
- Jingkai Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chang Liu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Jun Li
- Department of Materials Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Tao Yu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jing Ruan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Fan Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Frontier ScienceSouthwest Jiaotong UniversityChengduSichuan610031China
| |
Collapse
|
3
|
Rahaman SH, Bodhak S, Balla VK, Bhattacharya D. Role of in-situ electrical stimulation on early-stage mineralization and in-vitro osteogenesis of electroactive bioactive glass composites. BIOMATERIALS ADVANCES 2025; 166:214062. [PMID: 39406157 DOI: 10.1016/j.bioadv.2024.214062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 11/13/2024]
Abstract
Bioactive glass (BAG) has emerged as an effective bone graft substitute due to its diverse qualities of biocompatibility, bioactivity, osteoblast adhesion and enhanced revascularization. However, inferior osteogenic capacity of BAG compared to autologous bone grafts continues to limiting it's wide-spread clinical applications towards repairing of bone fractures and healing. In this study, we have fabricated BAG composites with 0.5 to 2 wt% bismuth ferrite (BF, a multiferroic material) with an aim to generate in-situ electrical charges pertinent to early-stage bone regeneration thus mimicking natural bone, which is a piezoelectric material. The fabricated BAG composites were characterised in terms of microstructures, phase analysis, remanent polarization, wettability and subsequently evaluated for in vitro cell proliferation and osteogenesis with and without magnetic field exposure (200 mT, 30 min./day). Pre-osteoblast cells from mice (MC3T3-E1) seeded on these composites exhibited excellent cell growth without any cytotoxicity, which is further supported by FITC/DAPI staining and a live/dead assay. The results of Alizarin Red S assay and increased levels of Alkaline Phosphatase (ALP) activity, at 21 days of culture, suggest that the BAG-BF composites promote in vitro osteogenic differentiation of pre-osteoblast cells. The enhanced osteogenesis of BAG-BF composites was also confirmed through qRT-PCR analysis, which showed rapid upregulation of osteoblastogenic specific genes namely RunX-2, Collagen-1, Bone Sialo Protein, and ALP after 21 days. Additionally, the osteogenic differentiation was assessed by the Western Blot technique, which revealed significantly higher band intensity of osteogenic markers in BAG-1.5 BF and BAG-2 BF composites than pure BAG. These findings clearly demonstrate that in-situ electrical stimulation and osteoconductive capacity of BF reinforced BAG composites have positive impact on osteoblast cell development, bone formation, and healing.
Collapse
Affiliation(s)
- Sk Hasanur Rahaman
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhadip Bodhak
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vamsi Krishna Balla
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dipten Bhattacharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
4
|
Zaszczyńska A, Gradys A, Kołbuk D, Zabielski K, Szewczyk PK, Stachewicz U, Sajkiewicz P. Poly(L-lactide)/nano-hydroxyapatite piezoelectric scaffolds for tissue engineering. Micron 2025; 188:103743. [PMID: 39532021 DOI: 10.1016/j.micron.2024.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The development of bone tissue engineering, a field with significant potential, requires a biomaterial with high bioactivity. The aim of this manuscript was to fabricate a nanofibrous poly(L-lactide) (PLLA) scaffold containing nano-hydroxyapatite (nHA) to investigate PLLA/nHA composites, particularly the effect of fiber arrangement and the addition of nHA on the piezoelectric phases and piezoelectricity of PLLA samples. In this study, we evaluated the effect of nHA particles on a PLLA-based electrospun scaffold with random and aligned fiber orientations. The addition of nHA increased the surface free energy of PLLA/nHA (42.9 mN/m) compared to PLLA (33.1 mN/m) in the case of aligned fibers. WAXS results indicated that at room temperature, all the fibers are in an amorphous state indicated by a lack of diffraction peaks and amorphous halo. DSC analysis showed that all samples located in the amorphous/disordered alpha' phase crystallize intensively at temperatures just above the Tg and recrystallize on further heating, achieving significantly higher crystallinity for pure PLLA than for doped nHA, 70 % vs 40 %, respectively. Additionally, PLLA/nHA fibers show a lower heat capacity for PLLA in the amorphous state, indicating that nHA reduces the molecular mobility of PLLA. Moreover, piezoelectric constant d33 was found to increase with the addition of nHA and for the aligned orientation of the fibers. In vitro tests confirmed that the addition of nHA and the aligned orientation of nanofibers increased osteoblast proliferation.
Collapse
Affiliation(s)
- Angelika Zaszczyńska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Konrad Zabielski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland.
| |
Collapse
|
5
|
Talib Al-Sudani B, Al-Musawi MH, Kamil MM, Turki SH, Nasiri-Harchegani S, Najafinezhad A, Noory P, Talebi S, Valizadeh H, Sharifianjazi F, Bazli L, Tavakoli M, Mehrjoo M, Firuzeh M, Mirhaj M. Vasculo-osteogenic keratin-based nanofibers containing merwinite nanoparticles and sildenafil for bone tissue regeneration. Int J Pharm 2024; 667:124875. [PMID: 39471889 DOI: 10.1016/j.ijpharm.2024.124875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Vascularization of bone tissue constructs plays a pivotal role in facilitating nutrient transport and metabolic waste removal during the processes of osteogenesis and bone regeneration in vivo. In this study, a sildenafil (Sil)-loaded nanofibrous scaffold of keratin/Soluplus/merwinite (KS.Me.Sil) was fabricated through electrospinning and the effectiveness of the scaffold was assessed for bone tissue engineering applications. The KS.Me.Sil nanofibrous scaffold exhibited notably enhanced ultimate tensile strength (3.38 vs 2.61 MPa) and elastic modulus (69.83 vs 46.27 MPa) compared to the KS scaffold. The in vitro release of Ca2+, Si4+ and Mg2+ ions and the release of Sil from the nanofibers as well as biodegradability and bioactivity were evaluated for 14 days. Protein adsorption capability and cytocompatibility of the scaffolds were tested. Alkaline phosphatase activity test, Alizarin red staining and qRT-PCR analysis demonstrated that the KS.Me.Sil nanofibers had the best osteogenic activity among other samples. Also, the results of the chorioallantoic membrane assay showed an almost threefold increase in blood vessel density in the group treated with the KS.Me.Sil nanofibers extract compared to the KS. In conclusion, our findings suggest that the electrospun KS.Me.Sil nanofibrous scaffold offers a robust structure with exceptional osteogenic and angiogenic characteristics, making it a promising candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Basma Talib Al-Sudani
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Marwa M Kamil
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Sumyah H Turki
- Department of Plant Biotechnology College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Sepideh Nasiri-Harchegani
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Aliakbar Najafinezhad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Parastoo Noory
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Talebi
- Department of Orthopaedics, Isfahan University of Medical Science, Isfahan, Iran
| | - Hamideh Valizadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia
| | - Leila Bazli
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mahboubeh Firuzeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
6
|
Kim JH, Seo BK. Clinical Effectiveness of Bee Venom Acupuncture for Bone Fractures and Potential Mechanisms: A Narrative Overview. Toxins (Basel) 2024; 16:465. [PMID: 39591220 PMCID: PMC11598081 DOI: 10.3390/toxins16110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Bee venom acupuncture, a type of herbal acupuncture, combines the pharmacological actions of bioactive compounds from bee venom with the mechanical stimulation of meridian points. Bee venom acupuncture is gaining popularity, particularly in the Republic of Korea, primarily for pain relief of various conditions. This study aimed to summarize and evaluate the available evidence on the use of bee venom acupuncture for recovery after bone fractures. Electronic literature searches for experimental studies and clinical trials were conducted using the PubMed, China Academic Journals (CAJ), and OASIS databases. The search revealed 31 studies, of which six met our criteria. These studies demonstrated that bee venom acupuncture can be effective in treating bone fractures, suggesting a promising area for future research. However, evidence supporting its efficacy in this context is limited. Rigorous trials with large sample sizes and robust designs are needed to clarify the role of bee venom acupuncture for these indications. In addition, future studies should explore the optimal dosage and concentration of bee venom acupuncture.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Department of Acupuncture and Moxibustion Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea;
| | - Byung-Kwan Seo
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul 05278, Republic of Korea
| |
Collapse
|
7
|
Nicolae CL, Pîrvulescu DC, Niculescu AG, Epistatu D, Mihaiescu DE, Antohi AM, Grumezescu AM, Croitoru GA. An Up-to-Date Review of Materials Science Advances in Bone Grafting for Oral and Maxillofacial Pathology. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4782. [PMID: 39410353 PMCID: PMC11478239 DOI: 10.3390/ma17194782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Bone grafting in oral and maxillofacial surgery has evolved significantly due to developments in materials science, offering innovative alternatives for the repair of bone defects. A few grafts are currently used in clinical settings, including autografts, xenografts, and allografts. However, despite their benefits, they have some challenges, such as limited availability, the possibility of disease transmission, and lack of personalization for the defect. Synthetic bone grafts have gained attention since they have the potential to overcome these limitations. Moreover, new technologies like nanotechnology, 3D printing, and 3D bioprinting have allowed the incorporation of molecules or substances within grafts to aid in bone repair. The addition of different moieties, such as growth factors, stem cells, and nanomaterials, has been reported to help mimic the natural bone healing process more closely, promoting faster and more complete regeneration. In this regard, this review explores the currently available bone grafts, the possibility of incorporating substances and molecules into their composition to accelerate and improve bone regeneration, and advanced graft manufacturing techniques. Furthermore, the presented current clinical applications and success stories for novel bone grafts emphasize the future potential of synthetic grafts and biomaterial innovations in improving patient outcomes in oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Dragoș Epistatu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Dan Eduard Mihaiescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
| | - Alexandru Mihai Antohi
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| |
Collapse
|
8
|
Yang K, Wu Z, Zhang K, Weir MD, Xu HHK, Cheng L, Huang X, Zhou W. Unlocking the potential of stimuli-responsive biomaterials for bone regeneration. Front Pharmacol 2024; 15:1437457. [PMID: 39144636 PMCID: PMC11322102 DOI: 10.3389/fphar.2024.1437457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Bone defects caused by tumors, osteoarthritis, and osteoporosis attract great attention. Because of outstanding biocompatibility, osteogenesis promotion, and less secondary infection incidence ratio, stimuli-responsive biomaterials are increasingly used to manage this issue. These biomaterials respond to certain stimuli, changing their mechanical properties, shape, or drug release rate accordingly. Thereafter, the activated materials exert instructive or triggering effects on cells and tissues, match the properties of the original bone tissues, establish tight connection with ambient hard tissue, and provide suitable mechanical strength. In this review, basic definitions of different categories of stimuli-responsive biomaterials are presented. Moreover, possible mechanisms, advanced studies, and pros and cons of each classification are discussed and analyzed. This review aims to provide an outlook on the future developments in stimuli-responsive biomaterials.
Collapse
Affiliation(s)
- Ke Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhuoshu Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Silva JC, Meneses J, Garrudo FFF, Fernandes SR, Alves N, Ferreira FC, Pascoal-Faria P. Direct coupled electrical stimulation towards improved osteogenic differentiation of human mesenchymal stem/stromal cells: a comparative study of different protocols. Sci Rep 2024; 14:5458. [PMID: 38443455 PMCID: PMC10915174 DOI: 10.1038/s41598-024-55234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Electrical stimulation (ES) has been described as a promising tool for bone tissue engineering, being known to promote vital cellular processes such as cell proliferation, migration, and differentiation. Despite the high variability of applied protocol parameters, direct coupled electric fields have been successfully applied to promote osteogenic and osteoinductive processes in vitro and in vivo. Our work aims to study the viability, proliferation, and osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells when subjected to five different ES protocols. The protocols were specifically selected to understand the biological effects of different parts of the generated waveform for typical direct-coupled stimuli. In vitro culture studies evidenced variations in cell responses with different electric field magnitudes (numerically predicted) and exposure protocols, mainly regarding tissue mineralization (calcium contents) and osteogenic marker gene expression while maintaining high cell viability and regular morphology. Overall, our results highlight the importance of numerical guided experiments to optimize ES parameters towards improved in vitro osteogenesis protocols.
Collapse
Affiliation(s)
- João C Silva
- Department of Bioengineering and iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, Marinha Grande, 2430-028, Leiria, Portugal.
| | - João Meneses
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, Marinha Grande, 2430-028, Leiria, Portugal.
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Fábio F F Garrudo
- Department of Bioengineering and iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Sofia R Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, Marinha Grande, 2430-028, Leiria, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313, Porto, Portugal
- Department of Mechanical Engineering, School of Technology and Management, Polytechnic of Leiria, Morro do Lena-Alto do Vieiro, Apartado 4163, 2411-901, Leiria, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Paula Pascoal-Faria
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, Marinha Grande, 2430-028, Leiria, Portugal.
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313, Porto, Portugal.
- Department of Mathematics, School of Technology and Management, Polytechnic of Leiria, Morro do Lena - Alto do Vieiro, Apartado 4163, 2411-901, Leiria, Portugal.
| |
Collapse
|
10
|
Strangis G, Labardi M, Gallone G, Milazzo M, Capaccioli S, Forli F, Cinelli P, Berrettini S, Seggiani M, Danti S, Parchi P. 3D Printed Piezoelectric BaTiO 3/Polyhydroxybutyrate Nanocomposite Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2024; 11:193. [PMID: 38391679 PMCID: PMC10886384 DOI: 10.3390/bioengineering11020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Bone defects are a significant health problem worldwide. Novel treatment approaches in the tissue engineering field rely on the use of biomaterial scaffolds to stimulate and guide the regeneration of damaged tissue that cannot repair or regrow spontaneously. This work aimed at developing and characterizing new piezoelectric scaffolds to provide electric bio-signals naturally present in bone and vascular tissues. Mixing and extrusion were used to obtain nanocomposites made of polyhydroxybutyrate (PHB) as a matrix and barium titanate (BaTiO3) nanoparticles as a filler, at BaTiO3/PHB compositions of 5/95, 10/90, 15/85 and 20/80 (w/w%). The morphological, thermal, mechanical and piezoelectric properties of the nanocomposites were studied. Scanning electron microscopy analysis showed good nanoparticle dispersion within the polymer matrix. Considerable increases in the Young's modulus, compressive strength and the piezoelectric coefficient d31 were observed with increasing BaTiO3 content, with d31 = 37 pm/V in 20/80 (w/w%) BaTiO3/PHB. 3D printing was used to produce porous cubic-shaped scaffolds using a 90° lay-down pattern, with pore size ranging in 0.60-0.77 mm and good mechanical stability. Biodegradation tests conducted for 8 weeks in saline solution at 37 °C showed low mass loss (∼4%) for 3D printed scaffolds. The results obtained in terms of piezoelectric, mechanical and chemical properties of the nanocomposite provide a new promising strategy for vascularized bone tissue engineering.
Collapse
Affiliation(s)
- Giovanna Strangis
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Massimiliano Labardi
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Giuseppe Gallone
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Simone Capaccioli
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
- Department of Physics "Enrico Fermi", University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
| | - Francesca Forli
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Stefano Berrettini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Paolo Parchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|