1
|
Campidelli C, Bruxelle JF, Collignon A, Péchiné S. Immunization Strategies Against Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:117-150. [PMID: 38175474 DOI: 10.1007/978-3-031-42108-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is an important healthcare but also a community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients, and to prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to elicit immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile, and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product, and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins, and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens and either toxins or colonization factors.
Collapse
Affiliation(s)
- Camille Campidelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-François Bruxelle
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Anne Collignon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Severine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023; 14:2150452. [PMID: 36419222 DOI: 10.1080/21505594.2022.2150452] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.
Collapse
Affiliation(s)
- Jessica E Buddle
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Fettucciari K, Marconi P, Marchegiani A, Fruganti A, Spaterna A, Bassotti G. Invisible steps for a global endemy: molecular strategies adopted by Clostridioides difficile. Therap Adv Gastroenterol 2021; 14:17562848211032797. [PMID: 34413901 PMCID: PMC8369858 DOI: 10.1177/17562848211032797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection (CDI) is on the rise worldwide and is associated with an increase in deaths and socio-health burden. C. difficile has become ubiquitous in anthropized environments because of the extreme resistance of its spores. Based on the epidemiological data and knowledge of molecular pathogenesis of C. difficile, it is possible to predict its progressive colonization of the human population for the following reasons: first, its global spread is unstoppable; second, the toxins (Tcds) produced by C. difficile, TcdA and TcdB, mainly cause cell death by apoptosis, but the surviving cells acquire a senescence state that favours persistence of C. difficile in the intestine; third, proinflammatory cytokines, tumour necrosis factor-α and interferon-γ, induced during CDI, enhance the cytotoxicity of Tcds and can increase the survival of senescent cells; fourth, Tcds block mobility and induce apoptosis in immune cells recruited at the infection site; and finally, after remission from primary infection or relapse, C. difficile causes functional abnormalities in the enteric glial cell (EGC) network that can result in irritable bowel syndrome, characterized by a latent inflammatory response that contributes to C. difficile survival and enhances the cytotoxic activity of low doses of TcdB, thus favouring further relapses. Since a 'global endemy' of C. difficile seems inevitable, it is necessary to develop an effective vaccine against Tcds for at-risk individuals, and to perform a prophylaxis/selective therapy with bacteriophages highly specific for C. difficile. We must be aware that CDI will become a global health problem in the forthcoming years, and we must be prepared to face this menace.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, Medical School -Piazza Lucio Severi 1, Edificio B - IV piano; Sant’Andrea delle Fratte, Perugia, 06132, Italy
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Gastroenterology & Hepatology Unit, Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
4
|
Sroga P, Safronetz D, Stein DR. Nanobodies: a new approach for the diagnosis and treatment of viral infectious diseases. Future Virol 2020. [DOI: 10.2217/fvl-2019-0167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the rise of viral infections and antibiotic resistance, there is a constant need for the development of more sensitive and effective treatment and diagnostic tools. Since their discovery in the early 1990s, Camelidae antibodies have been investigated as potential tools due to their unique structure and favorable characteristics. Members of this family produce conventional IgG antibodies as well as heavy-chain only IgG antibodies that do not possess light chains. The variable domain (VHH), or nanobody, demonstrates unique antigen-binding capabilities, enhanced stability, and its small size allows for delivery into the body using a nebulizer, thereby eliminating the unfavorable use of injections. In addition, the cost-effective and easy in vitro production of these antibodies are an attractive quality in terms of mass production. This review covers the past and current nanobody treatment and diagnostic developments aimed at viral infectious diseases, including a brief overview of protozoal, bacterial, and veterinary viral approaches.
Collapse
Affiliation(s)
- Patrycja Sroga
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - David Safronetz
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
- Zoonotic Diseases & Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | |
Collapse
|
5
|
Davidovics ZH, Michail S, Nicholson MR, Kociolek LK, Pai N, Hansen R, Schwerd T, Maspons A, Shamir R, Szajewska H, Thapar N, de Meij T, Mosca A, Vandenplas Y, Kahn SA, Kellermayer R. Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection and Other Conditions in Children: A Joint Position Paper From the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2019; 68:130-143. [PMID: 30540704 PMCID: PMC6475090 DOI: 10.1097/mpg.0000000000002205] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fecal microbiota transplantation (FMT) is becoming part of the treatment algorithms against recurrent Clostridium difficile infection (rCDI) both in adult and pediatric gastroenterology practice. With our increasing recognition of the critical role the microbiome plays in human health and disease, FMT is also being considered as a potential therapy for other disorders, including inflammatory bowel disease (Crohn disease, ulcerative colitis), graft versus host disease, neuropsychiatric diseases, and metabolic syndrome. Controlled trials with FMT for rCDI have not been performed in children, and numerous clinical and regulatory considerations have to be considered when using this untraditional therapy. This report is intended to provide guidance for FMT in the treatment of rCDI in pediatric patients.
Collapse
Affiliation(s)
- Zev H. Davidovics
- Department of Pediatric Gastroenterology, Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, University of Connecticut School of Medicine, Farmington, CT
| | - Sonia Michail
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Maribeth R. Nicholson
- D. Brent Polk Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN
| | - Larry K. Kociolek
- Ann and Robert H. Lurie Children’s Hospital of Chicago, North-western University Feinberg School of Medicine, Chicago, IL
| | - Nikhil Pai
- Division of Pediatric Gastroenterology and Nutrition, McMaster Children’s Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Richard Hansen
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, Scotland
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | | | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Disease, Schneider Children’s Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Nikhil Thapar
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Tim de Meij
- Department of Paediatric Gastroenterology, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexis Mosca
- Division of Pediatric Gastroenterology and Nutrition, Robert Debré Hospital (APHP)
- French Group of Fecal Transplantation, St Antoine Hospital (APHP), Paris, France
| | - Yvan Vandenplas
- KidZ Health Castle, Universitair Ziekenuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stacy A. Kahn
- Division of Gastroetenterology and Nutrition, Inflammatory Bowel Disease Center, Boston Children’s Hospital, Harvard Medical School, 17 Boston, MA
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology and Nutrition, Texas Children’s Hospital, Baylor College of Medicine, Children’s Nutrition and Research Center, Houston, TX
| | - FMT Special Interest Group of the North American Society of Pediatric Gastroenterology Hepatology, Nutrition, the European Society for Pediatric Gastroenterology Hepatology, Nutrition
- Department of Pediatric Gastroenterology, Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, University of Connecticut School of Medicine, Farmington, CT
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
- D. Brent Polk Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN
- Ann and Robert H. Lurie Children’s Hospital of Chicago, North-western University Feinberg School of Medicine, Chicago, IL
- Division of Pediatric Gastroenterology and Nutrition, McMaster Children’s Hospital, McMaster University, Hamilton, Ontario, Canada
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, Scotland
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
- VeMiDoc, LLC, El Paso, TX
- Institute for Gastroenterology, Nutrition and Liver Disease, Schneider Children’s Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Department of Paediatric Gastroenterology, VU University Medical Center, Amsterdam, The Netherlands
- Division of Pediatric Gastroenterology and Nutrition, Robert Debré Hospital (APHP)
- French Group of Fecal Transplantation, St Antoine Hospital (APHP), Paris, France
- KidZ Health Castle, Universitair Ziekenuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Division of Gastroetenterology and Nutrition, Inflammatory Bowel Disease Center, Boston Children’s Hospital, Harvard Medical School, 17 Boston, MA
- Section of Pediatric Gastroenterology and Nutrition, Texas Children’s Hospital, Baylor College of Medicine, Children’s Nutrition and Research Center, Houston, TX
| |
Collapse
|
6
|
Management of adult Clostridium difficile digestive contaminations: a literature review. Eur J Clin Microbiol Infect Dis 2018; 38:209-231. [PMID: 30498879 DOI: 10.1007/s10096-018-3419-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 02/08/2023]
Abstract
Clostridium difficile infections (CDI) dramatically increased during the last decade and cause a major public health problem. Current treatments are limited by the high disease recurrence rate, severity of clinical forms, disruption of the gut microbiota, and colonization by vancomycin-resistant enterococci (VRE). In this review, we resumed current treatment options from official recommendation to promising alternatives available in the management of adult CDI, with regard to severity and recurring or non-recurring character of the infection. Vancomycin remains the first-line antibiotic in the management of mild to severe CDI. The use of metronidazole is discussed following the latest US recommendations that replaced it by fidaxomicin as first-line treatment of an initial episode of non-severe CDI. Fidaxomicin, the most recent antibiotic approved for CDI in adults, has several advantages compared to vancomycin and metronidazole, but its efficacy seems limited in cases of multiple recurrences. Innovative therapies such as fecal microbiota transplantation (FMT) and antitoxin antibodies were developed to limit the occurrence of recurrence of CDI. Research is therefore very active, and new antibiotics are being studied as surotomycin, cadazolid, and rinidazole.
Collapse
|
7
|
Antibacterial activity of rhodomyrtone on Clostridium difficile vegetative cells and spores in vitro. Int J Antimicrob Agents 2018; 52:724-729. [PMID: 30145248 DOI: 10.1016/j.ijantimicag.2018.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 08/04/2018] [Accepted: 08/18/2018] [Indexed: 11/20/2022]
Abstract
The increasing incidence and severity of diarrhoea and colitis caused by Clostridium difficile, together with a high rate of relapse following treatment with currently recommended antimicrobials, calls for novel interventions for C. difficile infection (CDI). Rhodomyrtone, a bioactive compound derived from the leaves of the rose myrtle (Rhodomyrtus tomentosa) has demonstrated antibacterial activity against several Gram-positive bacteria. This study compared the in vitro antimicrobial activity of rhodomyrtone on C. difficile with that of vancomycin, a recommended agent for the treatment of CDI. Determination of the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of rhodomyrtone and vancomycin for ten C. difficile isolates showed that the MICs of rhodomyrtone for C. difficile vegetative cells (0.625-2.5 mg/L) were comparable with that of vancomycin (1.25 mg/L), but the MBCs of rhodomyrtone (1.25-5 mg/L) were significantly lower than those for vancomycin (5 mg/L to ˃40 mg/L; P < 0.001). Time-kill assays showed rapid bactericidal activity for rhodomyrtone, with ≥99% killing within 4 h. Rhodomyrtone was also four-fold more potent than vancomycin in inhibiting C. difficile spore outgrowth. Transmission electron microscopy of rhodomyrtone-treated C. difficile revealed cell lysis and evidence of defective cell division and spore formation. These studies indicate that rhodomyrtone should be further investigated as a potential treatment for CDI.
Collapse
|
8
|
Colombo C, Pitirollo O, Lay L. Recent Advances in the Synthesis of Glycoconjugates for Vaccine Development. Molecules 2018; 23:molecules23071712. [PMID: 30011851 PMCID: PMC6099631 DOI: 10.3390/molecules23071712] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
During the last decade there has been a growing interest in glycoimmunology, a relatively new research field dealing with the specific interactions of carbohydrates with the immune system. Pathogens’ cell surfaces are covered by a thick layer of oligo- and polysaccharides that are crucial virulence factors, as they mediate receptors binding on host cells for initial adhesion and organism invasion. Since in most cases these saccharide structures are uniquely exposed on the pathogen surface, they represent attractive targets for vaccine design. Polysaccharides isolated from cell walls of microorganisms and chemically conjugated to immunogenic proteins have been used as antigens for vaccine development for a range of infectious diseases. However, several challenges are associated with carbohydrate antigens purified from natural sources, such as their difficult characterization and heterogeneous composition. Consequently, glycoconjugates with chemically well-defined structures, that are able to confer highly reproducible biological properties and a better safety profile, are at the forefront of vaccine development. Following on from our previous review on the subject, in the present account we specifically focus on the most recent advances in the synthesis and preliminary immunological evaluation of next generation glycoconjugate vaccines designed to target bacterial and fungal infections that have been reported in the literature since 2011.
Collapse
Affiliation(s)
- Cinzia Colombo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Olimpia Pitirollo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Luigi Lay
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
9
|
Péchiné S, Bruxelle JF, Janoir C, Collignon A. Targeting Clostridium difficile Surface Components to Develop Immunotherapeutic Strategies Against Clostridium difficile Infection. Front Microbiol 2018; 9:1009. [PMID: 29875742 PMCID: PMC5974105 DOI: 10.3389/fmicb.2018.01009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022] Open
Abstract
New therapies are needed to prevent and treat Clostridium difficile infection and to limit the rise in antibiotic resistance. Besides toxins, several surface components have been characterized as colonization factors and have been shown as immunogenic. This review will focus on passive and active immunization strategies targeting C. difficile surface components to combat C. difficile. Concerning passive immunization, the first strategies used antisera raised against the entire bacterium to prevent infection in the hamster model. Then, surface components such as the flagellin and the S-layer proteins were used for immunization and the passive transfer of antibodies was protective in animal models. Passive immunotherapy with polyvalent immunoglobulins was used in humans and bovine immunoglobulin concentrates were evaluated in clinical trials. Concerning active immunization, vaccine assays targeting surface components were tested mainly in animal models, mouse models of colonization and hamster models of infection. Bacterial extracts, spore proteins and surface components of vegetative cells such as cell wall proteins, flagellar proteins, and polysaccharides were used as vaccine targets. Vaccine assays were performed by parenteral and mucosal routes of immunization. Both gave promising results and pave the way to development of new vaccines.
Collapse
Affiliation(s)
- Séverine Péchiné
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean F Bruxelle
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Claire Janoir
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Anne Collignon
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
10
|
Ooijevaar R, van Beurden Y, Terveer E, Goorhuis A, Bauer M, Keller J, Mulder C, Kuijper E. Update of treatment algorithms for Clostridium difficile infection. Clin Microbiol Infect 2018; 24:452-462. [DOI: 10.1016/j.cmi.2017.12.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
|
11
|
Posteraro B, Pea F, Masucci L, Posteraro P, Sanguinetti M. Actoxumab + bezlotoxumab combination: what promise for Clostridium difficile treatment? Expert Opin Biol Ther 2018. [PMID: 29534621 DOI: 10.1080/14712598.2018.1452908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Clostridium difficile infection (CDI) is the most common healthcare-associated infection worldwide. As standard CDI antibiotic therapies can result in unacceptably high recurrence rates, novel therapeutic strategies for CDI are necessary. A recently emerged immunological therapy is a monoclonal antibody against C. difficile toxin B. Areas covered: In this review, the authors summarize the available pharmacological, preclinical, and clinical data for the CDI treatment based on anti-toxin A (actoxumab) and anti-toxin B (bezlotoxumab) human monoclonal antibodies (HuMabs), and discuss about the potentiality of a therapy that includes HuMab combined administration for CDI. Expert opinion: Although only bezlotoxumab is indicated to reduce recurrence of CDI, experimental studies using a combination of HuMabs actoxumab and bezlotoxumab have shown that bolstering the host immune response against both the C. difficile toxins may be effective in primary and secondary CDI prevention. Besides neutralizing both the key virulence factors, combination of two HuMabs could potentially offer an advantage for a yet to emerge C. difficile strain, which is a steady threat for patients at high risk of CDI. However, as actoxumab development was halted, passive immunotherapy with actoxumab/bezlotoxumab is actually impracticable. Future research will be needed to assess HuMab combination as a therapeutic strategy in clinical and microbiological cure of CDI.
Collapse
Affiliation(s)
- Brunella Posteraro
- a Institute of Public Health (Section of Hygiene) , Università Cattolica del Sacro Cuore, IRCCS Fondazione Policlinico "Agostino Gemelli" , Rome , Italy
| | - Federico Pea
- b Department of Medicine , University of Udine, and Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine , Udine , Italy
| | - Luca Masucci
- c Institute of Microbiology , Università Cattolica del Sacro Cuore, IRCCS Fondazione Policlinico "Agostino Gemelli" , Rome , Italy
| | - Patrizia Posteraro
- d Laboratory of Clinical Pathology and Microbiology , Ospedale San Carlo , Rome , Italy
| | - Maurizio Sanguinetti
- c Institute of Microbiology , Università Cattolica del Sacro Cuore, IRCCS Fondazione Policlinico "Agostino Gemelli" , Rome , Italy
| |
Collapse
|
12
|
Abstract
Clostridium difficile is the main causative agent of antibiotic-associated and health care-associated infective diarrhea. Recently, there has been growing interest in alternative sources of C. difficile other than patients with Clostridium difficile infection (CDI) and the hospital environment. Notably, the role of C. difficile-colonized patients as a possible source of transmission has received attention. In this review, we present a comprehensive overview of the current understanding of C. difficile colonization. Findings from gut microbiota studies yield more insights into determinants that are important for acquiring or resisting colonization and progression to CDI. In discussions on the prevalence of C. difficile colonization among populations and its associated risk factors, colonized patients at hospital admission merit more attention, as findings from the literature have pointed to their role in both health care-associated transmission of C. difficile and a higher risk of progression to CDI once admitted. C. difficile colonization among patients at admission may have clinical implications, although further research is needed to identify if interventions are beneficial for preventing transmission or overcoming progression to CDI.
Collapse
|
13
|
Spaulding CN, Klein RD, Schreiber HL, Janetka JW, Hultgren SJ. Precision antimicrobial therapeutics: the path of least resistance? NPJ Biofilms Microbiomes 2018; 4:4. [PMID: 29507749 PMCID: PMC5829159 DOI: 10.1038/s41522-018-0048-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 01/15/2023] Open
Abstract
The emergence of drug-resistant pathogens has led to a decline in the efficacy of traditional antimicrobial therapy. The rise in resistance has been driven by widespread use, and in some cases misuse, of antibacterial agents in treating a variety of infections. A growing body of research has begun to elucidate the harmful effects of broad-spectrum antibiotic therapy on the beneficial host microbiota. To combat these threats, increasing effort is being directed toward the development of precision antimicrobial therapeutics that target key virulence determinants of specific pathogens while leaving the remainder of the host microbiota undisturbed. This includes the recent development of small molecules termed “mannosides” that specifically target uropathogenic E. coli (UPEC). Mannosides are glycomimetics of the natural mannosylated host receptor for type 1 pili, extracellular appendages that promotes UPEC colonization in the intestine. Type 1 pili are also critical for colonization and infection in the bladder. In both cases, mannosides act as molecular decoys which potently prevent bacteria from binding to host tissues. In mice, oral treatment with mannosides simultaneously clears active bladder infection and removes intestinal UPEC while leaving the gut microbiota structure relatively unchanged. Similar treatment strategies successfully target other pathogens, like adherent-invasive E. coli (AIEC), an organism associated with Crohn’s disease (CD), in mouse models. While not without its challenges, antibiotic-sparing therapeutic approaches hold great promise in a variety of disease systems, including UTI, CD, otitis media (OM), and others. In this perspective we highlight the benefits, progress, and roadblocks to the development of precision antimicrobial therapeutics.
Collapse
Affiliation(s)
- Caitlin N Spaulding
- 1Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Roger D Klein
- 2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Henry L Schreiber
- 2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| | - James W Janetka
- 3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA.,4Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Scott J Hultgren
- 2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
14
|
Immunization Strategies Against Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:197-225. [PMID: 29383671 DOI: 10.1007/978-3-319-72799-8_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C. difficile infection (CDI) is an important healthcare- but also community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients and prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to restore immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens, either toxins or colonization factors.
Collapse
|