1
|
Liu Z, Yang C, Liu X, Xu X, Zhao X, Fu R. Therapeutic strategies to enhance immune response induced by multiple myeloma cells. Front Immunol 2023; 14:1169541. [PMID: 37275861 PMCID: PMC10232766 DOI: 10.3389/fimmu.2023.1169541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple myeloma (MM)as a haematological malignancy is still incurable. In addition to the presence of somatic genetic mutations in myeloma patients, the presence of immunosuppressive microenvironment greatly affects the outcome of treatment. Although the discovery of immunotherapy makes it possible to break the risk of high toxicity and side effects of traditional chemotherapeutic drugs, there are still obstacles of ineffective treatment or disease recurrence. In this review, we discuss therapeutic strategies to further enhance the specific anti-tumor immune response by activating the immunogenicity of MM cells themselves. New ideas for future myeloma therapeutic approaches are provided.
Collapse
|
2
|
Su CT, Ye JC. Emerging therapies for relapsed/refractory multiple myeloma: CAR-T and beyond. J Hematol Oncol 2021; 14:115. [PMID: 34301270 PMCID: PMC8299593 DOI: 10.1186/s13045-021-01109-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
The pace of innovation of multiple myeloma therapy in recent years is remarkable with the advent of monoclonal antibodies and the approval of novel agents with new mechanisms of action. Emerging therapies are on the horizon for clinical approval with significant implications in extending patient survival and advancing closer to the goal of a cure, especially in areas of immunotherapy such as chimeric antigen receptor T cells, bispecific T cell engager antibodies, antibody drug conjugates, newer generations of monoclonal antibodies, and small molecule inhibitor and modulators. This review provides an update of current myeloma therapeutics in active preclinical and early clinical development and discusses the mechanism of action of several classes of novel therapeutics.
Collapse
Affiliation(s)
- Christopher T Su
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Christine Ye
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Marofi F, Tahmasebi S, Rahman HS, Kaigorodov D, Markov A, Yumashev AV, Shomali N, Chartrand MS, Pathak Y, Mohammed RN, Jarahian M, Motavalli R, Motavalli Khiavi F. Any closer to successful therapy of multiple myeloma? CAR-T cell is a good reason for optimism. Stem Cell Res Ther 2021; 12:217. [PMID: 33781320 PMCID: PMC8008571 DOI: 10.1186/s13287-021-02283-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Despite many recent advances on cancer novel therapies, researchers have yet a long way to cure cancer. They have to deal with tough challenges before they can reach success. Nonetheless, it seems that recently developed immunotherapy-based therapy approaches such as adoptive cell transfer (ACT) have emerged as a promising therapeutic strategy against various kinds of tumors even the cancers in the blood (liquid cancers). The hematological (liquid) cancers are hard to be targeted by usual cancer therapies, for they do not form localized solid tumors. Until recently, two types of ACTs have been developed and introduced; tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR)-T cells which the latter is the subject of our discussion. It is interesting about engineered CAR-T cells that they are genetically endowed with unique cancer-specific characteristics, so they can use the potency of the host immune system to fight against either solid or liquid cancers. Multiple myeloma (MM) or simply referred to as myeloma is a type of hematological malignancy that affects the plasma cells. The cancerous plasma cells produce immunoglobulins (antibodies) uncontrollably which consequently damage the tissues and organs and break the immune system function. Although the last few years have seen significant progressions in the treatment of MM, still a complete remission remains unconvincing. MM is a medically challenging and stubborn disease with a disappointingly low rate of survival rate. When comparing the three most occurring blood cancers (i.e., lymphoma, leukemia, and myeloma), myeloma has the lowest 5-year survival rate (around 40%). A low survival rate indicates a high mortality rate with difficulty in treatment. Therefore, novel CAR-T cell-based therapies or combination therapies along with CAT-T cells may bring new hope for multiple myeloma patients. CAR-T cell therapy has a high potential to improve the remission success rate in patients with MM. To date, many preclinical and clinical trial studies have been conducted to investigate the ability and capacity of CAR T cells in targeting the antigens on myeloma cells. Despite the problems and obstacles, CAR-T cell experiments in MM patients revealed a robust therapeutic potential. However, several factors might be considered during CAR-T cell therapy for better response and reduced side effects. Also, incorporating the CAT-T cell method into a combinational treatment schedule may be a promising approach. In this paper, with a greater emphasis on CAR-T cell application in the treatment of MM, we will discuss and introduce CAR-T cell's history and functions, their limitations, and the solutions to defeat the limitations and different types of modifications on CAR-T cells.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq
| | - Denis Kaigorodov
- Director of Research Institute "MitoKey", Moscow State Medical University, Moscow, Russian Federation
| | | | - Alexei Valerievich Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Trubetskaya St., 8-2, Moscow, Russian Federation, 119991
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
- Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120, Heidelberg, Germany
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
4
|
Khalaf WS, Garg M, Mohamed YS, Stover CM, Browning MJ. In vitro Generation of Cytotoxic T Cells With Potential for Adoptive Tumor Immunotherapy of Multiple Myeloma. Front Immunol 2019; 10:1792. [PMID: 31428094 PMCID: PMC6687956 DOI: 10.3389/fimmu.2019.01792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma is a life-threatening hematological malignancy, which is rarely curable by conventional therapies. Immunotherapy, using tumor antigen-specific, cytotoxic T-lymphocytes, may represent an alternative or additional treatment for multiple myeloma. In this study, we used hybrid cell lines, generated by fusion of an EBV B-lymphoblastoid cell line (B-LCL) and myeloma cells, to stimulate in vitro peripheral blood lymphocytes (PBLs) from patients with multiple myeloma. We investigated induction of antigen-specific, cytotoxic T-lymphocytes to the well-defined tumor associated antigens (TAAs) hTERT, MUC1, MAGE-C1 and CS1, which have been shown to be expressed in a high proportion of cases of multiple myeloma. HLA-A2-peptide pentamer staining, interferon-γ and perforin ELISpot assays, as well as cytotoxicity assays were used. Following several rounds of in vitro stimulation, the hybrid cell lines induced antigen-specific, cytotoxic T-lymphocytes to four candidate TAAs in PBLs from HLA-A2+ multiple myeloma patients, using known HLA-A2 restricted peptide epitopes of the TAAs. In contrast, the HLA-A2+ myeloma cell line U266 failed to induce antigen-specific, cytotoxic T-lymphocytes in vitro. Our data indicate that B-LCL/myeloma hybrid cell lines induce antigen-specific, cytotoxic T-lymphocytes in PBLs isolated from multiple myeloma patients in vitro and may represent a novel strategy for use in adoptive immunotherapy of multiple myeloma.
Collapse
Affiliation(s)
- Wafaa S Khalaf
- Department of Infection, Immunity and Inflammation, Leicester University, Leicester, United Kingdom.,Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mamta Garg
- Department of Haematology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Yehia S Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Department of Microbiology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Cordula M Stover
- Department of Infection, Immunity and Inflammation, Leicester University, Leicester, United Kingdom
| | - Michael J Browning
- Department of Infection, Immunity and Inflammation, Leicester University, Leicester, United Kingdom.,Department of Immunology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
5
|
Bae J, Samur M, Richardson P, Munshi NC, Anderson KC. Selective targeting of multiple myeloma by B cell maturation antigen (BCMA)-specific central memory CD8 + cytotoxic T lymphocytes: immunotherapeutic application in vaccination and adoptive immunotherapy. Leukemia 2019; 33:2208-2226. [PMID: 30872779 DOI: 10.1038/s41375-019-0414-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
To expand the breadth and extent of current multiple myeloma (MM)-specific immunotherapy, we have identified various antigens on CD138+ tumor cells from newly diagnosed MM patients (n = 616) and confirmed B-cell maturation antigen (BCMA) as a key myeloma-associated antigen. The aim of this study is to target the BCMA, which promotes MM cell growth and survival, by generating BCMA-specific memory CD8+ CTL that mediate effective and long-lasting immunity against MM. Here we report the identification of novel engineered peptides specific to BCMA, BCMA72-80 (YLMFLLRKI), and BCMA54-62 (YILWTCLGL), which display improved affinity/stability to HLA-A2 compared to their native peptides and induce highly functional BCMA-specific CTL with increased activation (CD38, CD69) and co-stimulatory (CD40L, OX40, GITR) molecule expression. Importantly, the heteroclitic BCMA72-80 specific CTL demonstrated poly-functional Th1-specific immune activities [IFN-γ/IL-2/TNF-α production, proliferation, cytotoxicity] against MM, which were correlated with expansion of Tetramer+ and memory CD8+ CTL. Additionally, heteroclitic BCMA72-80 specific CTL treated with anti-OX40 (immune agonist) or anti-LAG-3 (checkpoint inhibitor) display increased immune function, mainly by central memory CTL. These results provide the framework for clinical application of heteroclitic BCMA72-80 peptide, alone and in combination with anti-LAG3 and/or anti-OX40 therapy, in vaccination and/or adoptive immunotherapeutic strategies to generate long-lasting anti-tumor immunity in patients with MM or other BCMA expressing tumors.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Mehmet Samur
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Paul Richardson
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,VA Boston Healthcare System, Boston, MA, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Liegel J, Avigan D, Rosenblatt J. Cellular immunotherapy as a therapeutic approach in multiple myeloma. Expert Rev Hematol 2019; 11:525-536. [PMID: 29856648 DOI: 10.1080/17474086.2018.1483718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Immunotherapy seeks to restore and augment the unique ability of the immune system to recognize and kill malignant cells. This strategy has previously been incorporated into standard of care in myeloma with the use of immunomodulatory drugs and allogeneic transplant. The following review will discuss the rationale for immunotherapy to reverse critical aspects of the immunosuppressive milieu in myeloma and avenues where cellular therapies are now revolutionizing myeloma treatment. Areas covered: A particular focus is outcomes of clinical trials in myeloma published in PubMed database or abstract form using vaccines or adoptive cell transfer: marrow infiltrating lymphocytes, T-cell receptor and chimeric antigen receptor T cells. Expert commentary: Immunotherapy has extraordinary potential in myeloma. Combinations of cellular therapies with immunomodulatory molecules or checkpoint inhibitors are likely to be synergistic and now underway. Future directions include neoantigen or nanoparticle vaccines and further modifications of engineered T cells such as use of dual-antigens, suicide genes or allogeneic cells.
Collapse
Affiliation(s)
- Jessica Liegel
- a Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - David Avigan
- a Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Jacalyn Rosenblatt
- a Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
7
|
Franssen LE, Mutis T, Lokhorst HM, van de Donk NWCJ. Immunotherapy in myeloma: how far have we come? Ther Adv Hematol 2019; 10:2040620718822660. [PMID: 30719268 PMCID: PMC6348514 DOI: 10.1177/2040620718822660] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
The treatment of multiple myeloma (MM) has evolved substantially over the past decades, leading to a significantly improved outcome of MM patients. The introduction of high-dose therapy, especially, and autologous stem cell transplantation, as well as the development of new drugs, such as immunomodulatory drugs (IMiDs) and proteasome inhibitors have contributed to the improvement in survival. However, eventually most MM patients relapse, which indicates that there is a need for new agents and novel treatment strategies. Importantly, the long-term survival in a subset of MM patients after allogeneic stem cell transplantation illustrates the potential of immunotherapy in MM, but allogeneic stem cell transplantation is also associated with a high rate of treatment-related mortality. Recently, a better insight into several immune-evasion mechanisms, which contribute to tumor progression, has resulted in the development of active and well-tolerated novel forms of immunotherapy. These immunotherapeutic agents can be used as monotherapy, or, even more successfully, in combination with other established anti-MM agents to further improve depth and duration of response by preventing the outgrowth of resistant clones. This review will discuss the mechanisms used by MM cells to evade the immune system, and also provide an overview of currently approved immunotherapeutic drugs, such as IMiDs (e.g. lenalidomide and pomalidomide) and monoclonal antibodies that target cell surface antigens present on the MM cell (e.g. elotuzumab and daratumumab), as well as novel immunotherapies (e.g. chimeric antigen receptor T-cells, bispecific antibodies and checkpoint inhibitors) currently in clinical development in MM.
Collapse
Affiliation(s)
- Laurens E Franssen
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henk M Lokhorst
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Castella B, Melaccio A, Foglietta M, Riganti C, Massaia M. Vγ9Vδ2 T Cells as Strategic Weapons to Improve the Potency of Immune Checkpoint Blockade and Immune Interventions in Human Myeloma. Front Oncol 2018; 8:508. [PMID: 30460198 PMCID: PMC6232124 DOI: 10.3389/fonc.2018.00508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022] Open
Abstract
The advent of immune checkpoint (ICP) blockade has introduced an unprecedented paradigm shift in the treatment of cancer. Though very promising, there is still a substantial proportion of patients who do not respond or develop resistance to ICP blockade. In vitro and in vivo models are eagerly needed to identify mechanisms to maximize the immune potency of ICP blockade and overcome primary and acquired resistance to ICP blockade. Vγ9Vδ2 T cells isolated from the bone marrow (BM) from multiple myeloma (MM) are excellent tools to investigate the mechanisms of resistance to PD-1 blockade and to decipher the network of mutual interactions between PD-1 and the immune suppressive tumor microenvironment (TME). Vγ9Vδ2 T cells can easily be interrogated to dissect the progressive immune competence impairment generated in the TME by the long-lasting exposure to myeloma cellss. BM MM Vγ9Vδ2 T cells are PD-1+ and anergic to phosphoantigen (pAg) stimulation; notably, single agent PD-1 blockade is insufficient to fully recover their anti-tumor activity in vitro indicating that additional players are involved in the anergy of Vγ9Vδ2 T cells. In this mini-review we will discuss the value of Vγ9Vδ2 T cells as investigational tools to improve the potency of ICP blockade and immune interventions in MM.
Collapse
Affiliation(s)
- Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue, Centro Interdipartimentale di Ricerca in Biologia Molecolare, Università degli Studi di Torino, Turin, Italy
| | - Assunta Melaccio
- Dipartimento di Scienze Biomediche ed Oncologia Umana, Sezione di Medicina Interna ed Oncologia, Università degli studi di Bari "A. Moro", Bari, Italy
| | - Myriam Foglietta
- Laboratorio di Immunologia dei Tumori del Sangue, Centro Interdipartimentale di Ricerca in Biologia Molecolare, Università degli Studi di Torino, Turin, Italy.,SC Ematologia, AO S.Croce e Carle, Cuneo, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Turin, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue, Centro Interdipartimentale di Ricerca in Biologia Molecolare, Università degli Studi di Torino, Turin, Italy.,SC Ematologia, AO S.Croce e Carle, Cuneo, Italy
| |
Collapse
|
9
|
Zingoni A, Vulpis E, Cecere F, Amendola MG, Fuerst D, Saribekyan T, Achour A, Sandalova T, Nardone I, Peri A, Soriani A, Fionda C, Mariggiò E, Petrucci MT, Ricciardi MR, Mytilineos J, Cippitelli M, Cerboni C, Santoni A. MICA-129 Dimorphism and Soluble MICA Are Associated With the Progression of Multiple Myeloma. Front Immunol 2018; 9:926. [PMID: 29765374 PMCID: PMC5938351 DOI: 10.3389/fimmu.2018.00926] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are immune innate effectors playing a pivotal role in the immunosurveillance of multiple myeloma (MM) since they are able to directly recognize and kill MM cells. In this regard, among activating receptors expressed by NK cells, NKG2D represents an important receptor for the recognition of MM cells, being its ligands expressed by tumor cells, and being able to trigger NK cell cytotoxicity. The MHC class I-related molecule A (MICA) is one of the NKG2D ligands; it is encoded by highly polymorphic genes and exists as membrane-bound and soluble isoforms. Soluble MICA (sMICA) is overexpressed in the serum of MM patients, and its levels correlate with tumor progression. Interestingly, a methionine (Met) to valine (Val) substitution at position 129 of the α2 heavy chain domain classifies the MICA alleles into strong (MICA-129Met) and weak (MICA-129Val) binders to NKG2D receptor. We addressed whether the genetic polymorphisms in the MICA-129 alleles could affect MICA release during MM progression. The frequencies of Val/Val, Val/Met, and Met/Met MICA-129 genotypes in a cohort of 137 MM patients were 36, 43, and 22%, respectively. Interestingly, patients characterized by a Val/Val genotype exhibited the highest levels of sMICA in the sera. In addition, analysis of the frequencies of MICA-129 genotypes among different MM disease states revealed that Val/Val patients had a significant higher frequency of relapse. Interestingly, NKG2D was downmodulated in NK cells derived from MICA-129Met/Met MM patients. Results obtained by structural modeling analysis suggested that the Met to Val dimorphism could affect the capacity of MICA to form an optimal template for NKG2D recognition. In conclusion, our findings indicate that the MICA-129Val/Val variant is associated with significantly higher levels of sMICA and the progression of MM, strongly suggesting that the usage of soluble MICA as prognostic marker has to be definitely combined with the patient MICA genotype.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Elisabetta Vulpis
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Francesca Cecere
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Maria G Amendola
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Daniel Fuerst
- German Red Cross Blood Donor Services, Baden-Wuerttemberg-Hessia, Ulm, Germany
| | - Taron Saribekyan
- German Red Cross Blood Donor Services, Baden-Wuerttemberg-Hessia, Ulm, Germany
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Ilaria Nardone
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Agnese Peri
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Elena Mariggiò
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - Maria T Petrucci
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - Maria R Ricciardi
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Joannis Mytilineos
- German Red Cross Blood Donor Services, Baden-Wuerttemberg-Hessia, Ulm, Germany
| | - Marco Cippitelli
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| |
Collapse
|
10
|
Lin C, Zhang J. Reformation in chimeric antigen receptor based cancer immunotherapy: Redirecting natural killer cell. Biochim Biophys Acta Rev Cancer 2018; 1869:200-215. [DOI: 10.1016/j.bbcan.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/20/2018] [Indexed: 01/05/2023]
|