1
|
Yang M, Deng B, Hao W, Jiang X, Chen Y, Wang M, Yuan Y, Chen M, Wu X, Du C, Armstrong DG, Guo L, Deng W, Wang H. Platelet concentrates in diabetic foot ulcers: A comparative review of PRP, PRF, and CGF with case insights. Regen Ther 2025; 28:625-632. [PMID: 40166040 PMCID: PMC11955794 DOI: 10.1016/j.reth.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetic foot ulcers (DFUs) are severe complications of diabetes, often leading to chronic wounds, amputations, and increased mortality risk. Platelet concentrates (PCs)-natural biomaterials utilized in regenerative medicine-have garnered attention for their capacity to enhance tissue repair and wound healing. This study reviews the preparation methods, biological mechanisms, and clinical efficacy of three generations of PCs: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factors (CGF). Comparative analysis reveals that PRP, the first generation, provides abundant growth factors but relies on anticoagulants, which may hinder fibrin formation and tissue adhesion. PRF, as the second generation, eliminates anticoagulants, forming a fibrin matrix that sustains growth factor release and enhances cell migration. CGF, the latest advancement, employs refined centrifugation to achieve higher growth factor concentrations and a denser fibrin matrix, accelerating tissue regeneration. Case series results demonstrated superior wound healing outcomes with CGF, including faster epithelialization and reduced healing time compared to PRP and PRF. These findings underscore CGF's potential as the most effective PC for managing DFUs, supporting its broader clinical adoption in advanced wound care.
Collapse
Affiliation(s)
- Mengling Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Bo Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Wei Hao
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Xiaoyan Jiang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Yan Chen
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Min Wang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Yi Yuan
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Meirong Chen
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Xiaohua Wu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Chenzhen Du
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Lian Guo
- Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
- Department of Population Health Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Hongyan Wang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| |
Collapse
|
2
|
Huang K, Mi B, Xiong Y, Fu Z, Zhou W, Liu W, Liu G, Dai G. Angiogenesis during diabetic wound repair: from mechanism to therapy opportunity. BURNS & TRAUMA 2025; 13:tkae052. [PMID: 39927093 PMCID: PMC11802347 DOI: 10.1093/burnst/tkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 02/11/2025]
Abstract
Diabetes mellitus, a pervasive chronic metabolic disorder, is often associated with complications such as impaired wound healing. Various factors, most notably vascular deficiency, govern the wound repair process in diabetic patients, significantly impeding diabetic wound healing; therefore, angiogenesis and its role in diabetic wound repair have emerged as important areas of research. This review aims to delve into the mechanisms of angiogenesis, the effects of diabetes on angiogenesis, and the association between angiogenesis and diabetic wound repair. This will ultimately offer valuable guidance regarding the ideal timing of diabetic wound treatment in a clinical setting.
Collapse
Affiliation(s)
- Kang Huang
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Bobin Mi
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Yuan Xiong
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Zicai Fu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Wenyun Zhou
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Wanjun Liu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Guohui Liu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Guandong Dai
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| |
Collapse
|
3
|
Ganesan O, Orgill DP. An Overview of Recent Clinical Trials for Diabetic Foot Ulcer Therapies. J Clin Med 2024; 13:7655. [PMID: 39768578 PMCID: PMC11676782 DOI: 10.3390/jcm13247655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic foot ulcers (DFUs) are a major complication of diabetes, leading to high mortality, reduced quality of life, neuropathy, ischemia, infection, and amputation risks. The prevalence of these ulcers is only on the rise as more people suffer from type 2 diabetes and obesity. The current wound management involves wound dressings, offloading, debridement, and infection control, but more must be done to keep up with the rising prevalence of DFUs and the strain they put on patients and the healthcare system. To find recent therapeutic advances in DFU treatment, we searched PubMed for novel therapeutics from the past 5 years. We found a diversity of promising interventions, including advanced wound dressings and topicals, physical energy-based therapies, regenerative scaffolds, and growth factor- and cell-based therapies. Recent therapies hold significant promise in healing more DFUs faster and more effectively. Providers should consider employing safe, novel therapeutics when standard dressings are not effective.
Collapse
Affiliation(s)
- Ovya Ganesan
- Department of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Geisel School of Medicine at Dartmouth, Hanover, NH 03775, USA
| | - Dennis P. Orgill
- Department of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Gorodilova AV, Kharisova CB, Osinnikova MN, Kitaeva KV, Filin IY, Mayasin YP, Solovyeva VV, Rizvanov AA. The Well-Forgotten Old: Platelet-Rich Plasma in Modern Anti-Aging Therapy. Cells 2024; 13:1755. [PMID: 39513862 PMCID: PMC11545519 DOI: 10.3390/cells13211755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Currently, approaches to personalized medicine are actively developing. For example, the use of platelet-rich plasma (PRP) is actively growing every year. As a result of activation, platelets release a wide range of growth factors, cytokines, chemokines, and angiogenic factors, after which these molecules regulate chemotaxis, inflammation, and vasomotor function and play a crucial role in restoring the integrity of damaged vascular walls, angiogenesis, and tissue regeneration. Due to these characteristics, PRP has a wide potential in regenerative medicine and gerontology. PRP products are actively used not only in esthetic medicine but also to stimulate tissue regeneration and relieve chronic inflammation. PRP therapy has a number of advantages, but the controversial results of clinical studies, a lack of standardization of the sample preparation of the material, and insufficient objective data on the evaluation of efficacy do not allow us to unambiguously look at the use of PRP for therapeutic purposes. In this review, we will examine the current clinical efficacy of PRP-based products and analyze the contribution of PRP in the therapy of diseases associated with aging.
Collapse
Affiliation(s)
- Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420008 Kazan, Russia
| |
Collapse
|
5
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Wang F, Zhang X, Zhang J, Xu Q, Yu X, Xu A, Yi C, Bian X, Shao S. Recent advances in the adjunctive management of diabetic foot ulcer: Focus on noninvasive technologies. Med Res Rev 2024; 44:1501-1544. [PMID: 38279968 DOI: 10.1002/med.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Diabetic foot ulcer (DFU) is one of the most costly and serious complications of diabetes. Treatment of DFU is usually challenging and new approaches are required to improve the therapeutic efficiencies. This review aims to update new and upcoming adjunctive therapies with noninvasive characterization for DFU, focusing on bioactive dressings, bioengineered tissues, mesenchymal stem cell (MSC) based therapy, platelet and cytokine-based therapy, topical oxygen therapy, and some repurposed drugs such as hypoglycemic agents, blood pressure medications, phenytoin, vitamins, and magnesium. Although the mentioned therapies may contribute to the improvement of DFU to a certain extent, most of the evidence come from clinical trials with small sample size and inconsistent selections of DFU patients. Further studies with high design quality and adequate sample sizes are necessitated. In addition, no single approach would completely correct the complex pathogenesis of DFU. Reasonable selection and combination of these techniques should be considered.
Collapse
Affiliation(s)
- Fen Wang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xiaoling Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Jing Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Qinqin Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Anhui Xu
- Division of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Division of Trauma Surgery, Tongji Hospital, Tongji Medical College, Wuhan, China
| | - Xuna Bian
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Shiying Shao
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| |
Collapse
|
7
|
Wang F, Zhang XL, Zhang J, Gong S, Tao J, Xiang H, Fu XQ, Bian XN, Yu XF, Xu AH, Yi CL, Shao SY. Therapeutic Effectiveness of Leukocyte- and Platelet-rich Fibrin for Diabetic Foot Ulcers: A Retrospective Study. Curr Med Sci 2024; 44:568-577. [PMID: 38789818 DOI: 10.1007/s11596-024-2874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE Diabetic foot ulcer (DFU) is one of the most serious complications of diabetes. Leukocyte- and platelet-rich fibrin (L-PRF) is a second-generation autologous platelet-rich plasma. This study aims to investigate the clinical effects of L-PRF in patients with diabetes in real clinical practice. METHODS Patients with DFU who received L-PRF treatment and standard of care (SOC) from 2018 to 2019 in Tongji Hospital were enrolled. The clinical information including patient characteristics, wound evaluation (area, severity, infection, blood supply), SOC of DFU, and images of ulcers was retrospectively extracted and analyzed. L-PRF treatment was performed every 7±2 days until the ulcer exhibited complete epithelialization or an overall percent volume reduction (PVR) greater than 80%. Therapeutic effectiveness, including overall PVR and the overall and weekly healing rates, was evaluated. RESULTS Totally, 26 patients with DFU were enrolled, and they had an ulcer duration of 47.0 (35.0, 72.3) days. The severity and infection of ulcers varied, as indicated by the Site, Ischemia, Neuropathy, Bacterial Infection, and Depth (SINBAD) scores of 2-6, Wagner grades of 1-4, and the Perfusion, Extent, Depth, Infection and Sensation (PEDIS) scores of 2-4. The initial ulcer volume before L-PRF treatment was 4.94 (1.50, 13.83) cm3, and the final ulcer volume was 0.35 (0.03, 1.76) cm3. The median number of L-PRF doses was 3 (2, 5). A total of 11 patients achieved complete epithelialization after the fifth week of treatment, and 19 patients achieved at least an 80% volume reduction after the seventh week. The overall wound-healing rate was 1.47 (0.63, 3.29) cm3/week, and the healing rate was faster in the first 2 weeks than in the remaining weeks. Concurrent treatment did not change the percentage of complete epithelialization or healing rate. CONCLUSION Adding L-PRF to SOC significantly improved wound healing in patients with DFU independent of the ankle brachial index, SINBAD score, or Wagner grade, indicating that this method is appropriate for DFU treatment under different clinical conditions.
Collapse
Affiliation(s)
- Fen Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China
| | - Xiao-Ling Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China
| | - Jing Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China
| | - Song Gong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China
| | - Jing Tao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China
| | - Hui Xiang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China
| | - Xiao-Qing Fu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China
| | - Xu-Na Bian
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China
| | - Xue-Feng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China
| | - An-Hui Xu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng-la Yi
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Ying Shao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China.
| |
Collapse
|
8
|
Donnelly HR, Clarke ED, Collins CE, Tehan PE. 'Nutrition has everything to do with wound healing'-health professionals' perceptions of assessment and management of nutrition in individuals with diabetes-related foot ulceration. Int Wound J 2024; 21:e14898. [PMID: 38745257 PMCID: PMC11093920 DOI: 10.1111/iwj.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Determine how healthcare professionals perceive their role in nutrition assessment and management, and explore barriers and enablers to assessment and management of nutrition in individuals with DFU. Mixed methods including a cross-sectional online survey derived from current international guidelines and theoretical domains framework, and semi-structured interviews with conventional content analysis was performed. One hundred and ninety-one participants completed the survey, with 19 participating in interviews. Many health professionals are not confident in their ability in this area of practice, are uncertain their nutrition advice or management will be effective in assisting wound healing outcomes and are uncertain their intervention would result in adequate behaviour change by the individual with DFU. Major barriers to implementation of nutrition assessment and management were: inadequate time, lack of knowledge and lack of clinical guidance and enablers were as follows: professional development, a standardised clinical pathway and screening tool and a resource addressing wound healing and diabetes management. Nutrition assessment and management in individuals with DFU is not consistently applied. Whilst health professionals believed nutrition was important for wound healing, they lacked confidence in implementing into their practice. Further dissemination of existing guidance and implementation of education programs and resources would help overcome cited barriers.
Collapse
Affiliation(s)
- Hailey R. Donnelly
- School of Health Sciences, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Food and Nutrition Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Erin D. Clarke
- School of Health Sciences, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Food and Nutrition Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Clare E. Collins
- School of Health Sciences, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Food and Nutrition Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Peta E. Tehan
- Food and Nutrition Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Department of Surgery, School of Clinical SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, Piaggesi A, Steinberg J, Vas P, Viswanathan V, Wu S, Game F. Effectiveness of interventions to enhance healing of chronic foot ulcers in diabetes: A systematic review. Diabetes Metab Res Rev 2024; 40:e3786. [PMID: 38507616 DOI: 10.1002/dmrr.3786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND It is critical that interventions used to enhance the healing of chronic foot ulcers in diabetes are backed by high-quality evidence and cost-effectiveness. In previous years, the systematic review accompanying guidelines published by the International Working Group of the Diabetic Foot performed 4-yearly updates of previous searches, including trials of prospective, cross-sectional and case-control design. AIMS Due to a need to re-evaluate older studies against newer standards of reporting and assessment of risk of bias, we performed a whole new search from conception, but limiting studies to randomised control trials only. MATERIALS AND METHODS For this systematic review, we searched PubMed, Scopus and Web of Science databases for published studies on randomised control trials of interventions to enhance healing of diabetes-related foot ulcers. We only included trials comparing interventions to standard of care. Two independent reviewers selected articles for inclusion and assessed relevant outcomes as well as methodological quality. RESULTS The literature search identified 22,250 articles, of which 262 were selected for full text review across 10 categories of interventions. Overall, the certainty of evidence for a majority of wound healing interventions was low or very low, with moderate evidence existing for two interventions (sucrose-octasulfate and leucocyte, platelet and fibrin patch) and low quality evidence for a further four (hyperbaric oxygen, topical oxygen, placental derived products and negative pressure wound therapy). The majority of interventions had insufficient evidence. CONCLUSION Overall, the evidence to support any other intervention to enhance wound healing is lacking and further high-quality randomised control trials are encouraged.
Collapse
Affiliation(s)
- Pam Chen
- Joondalup Health Campus, Ramsay Healthcare Australia, Joondalup, Western Australia, Australia
- Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Nalini Campillo Vilorio
- Department of Diabetology, Diabetic Foot Unit, Plaza de la Salud General Hospital, Santo Domingo, Dominican Republic
| | - Ketan Dhatariya
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Ralf Lobmann
- Clinic for Endocrinology, Diabetology and Geriatrics, Klinikum Stuttgart, Stuttgart, Germany
| | | | - Alberto Piaggesi
- Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, Italy
| | - John Steinberg
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Prash Vas
- King's College Hospital NHS Foundation Trust, London, UK
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof M Viswanathan Diabetes Research Center, Chennai, India
| | - Stephanie Wu
- Dr. William M. Scholl College of Podiatric Medicine at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Fran Game
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| |
Collapse
|
10
|
Donnelly HR, Clarke ED, Collins CE, Collins RA, Armstrong DG, Mills JL, Tehan PE. Most individuals with diabetes-related foot ulceration do not meet dietary consensus guidelines for wound healing. Int Wound J 2024; 21:e14483. [PMID: 37950409 PMCID: PMC10898395 DOI: 10.1111/iwj.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
The inaugural expert consensus and guidance for Nutrition Interventions in Adults with Diabetic Foot Ulcers (DFU) have been welcomed by clinicians internationally. This short report aimed to determine how the macronutrient and micronutrient status of individuals living with DFU compared to the American Limb Preservation Society Nutrition Interventions in Adults with DFU expert consensus and guidance. Descriptive analysis was conducted as a secondary analysis of an existing dataset. Mean (SD) dietary intake, the proportion meeting the nutrition recommendations and the proportion exceeding the upper limit (UL) for specific vitamins and minerals were reported. Most individuals with DFU do not meet current consensus guidelines for optimal dietary intake for wound healing, with inadequacies evident for fibre, zinc, protein, vitamin E and vitamin A. Future iterations of the consensus guideline should consider using evidence-informed recommendations for clinical practice, with the inclusion of all nutrients that are essential for wound healing in DFU.
Collapse
Affiliation(s)
- Hailey R. Donnelly
- School of Health Sciences, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Food and Nutrition Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Erin D. Clarke
- School of Health Sciences, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Food and Nutrition Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Clare E. Collins
- School of Health Sciences, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Food and Nutrition Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Rebecca A. Collins
- School of Health Sciences, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Food and Nutrition Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - David G. Armstrong
- Southwestern Academic Limb Salvage Alliance (SALSA), Department of SurgeryKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Joseph L. Mills
- Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Peta E. Tehan
- School of Health Sciences, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Surgery, School of Clinical SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
11
|
Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, Piaggesi A, Steinberg J, Vas P, Viswanathan V, Wu S, Game F. Guidelines on interventions to enhance healing of foot ulcers in people with diabetes (IWGDF 2023 update). Diabetes Metab Res Rev 2024; 40:e3644. [PMID: 37232034 DOI: 10.1002/dmrr.3644] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
AIMS Principles of wound management, including debridement, wound bed preparation, and newer technologies involving alternation of wound physiology to facilitate healing, are of utmost importance when attempting to heal a chronic diabetes-related foot ulcer. However, the rising incidence and costs of diabetes-related foot ulcer management necessitate that interventions to enhance wound healing of chronic diabetes-related foot ulcers are supported by high-quality evidence of efficacy and cost effectiveness when used in conjunction with established aspects of gold-standard multidisciplinary care. This is the 2023 International Working Group on the Diabetic Foot (IWGDF) evidence-based guideline on wound healing interventions to promote healing of foot ulcers in persons with diabetes. It serves as an update of the 2019 IWGDF guideline. MATERIALS AND METHODS We followed the GRADE approach by devising clinical questions and important outcomes in the Patient-Intervention-Control-Outcome (PICO) format, undertaking a systematic review, developing summary of judgements tables, and writing recommendations and rationale for each question. Each recommendation is based on the evidence found in the systematic review and, using the GRADE summary of judgement items, including desirable and undesirable effects, certainty of evidence, patient values, resources required, cost effectiveness, equity, feasibility, and acceptability, we formulated recommendations that were agreed by the authors and reviewed by independent experts and stakeholders. RESULTS From the results of the systematic review and evidence-to-decision making process, we were able to make 29 separate recommendations. We made a number of conditional supportive recommendations for the use of interventions to improve healing of foot ulcers in people with diabetes. These include the use of sucrose octasulfate dressings, the use of negative pressure wound therapies for post-operative wounds, the use of placental-derived products, the use of the autologous leucocyte/platelet/fibrin patch, the use of topical oxygen therapy, and the use of hyperbaric oxygen. Although in all cases it was stressed that these should be used where best standard of care was not able to heal the wound alone and where resources were available for the interventions. CONCLUSIONS These wound healing recommendations should support improved outcomes for people with diabetes and ulcers of the foot, and we hope that widescale implementation will follow. However, although the certainty of much of the evidence on which to base the recommendations is improving, it remains poor overall. We encourage not more, but better quality trials including those with a health economic analysis, into this area.
Collapse
Affiliation(s)
- Pam Chen
- Joondalup Health Campus, Ramsay Healthcare Australia, Joondalup, Western Australia, Australia
- Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Nalini Campillo Vilorio
- Department of Diabetology, Diabetic Foot Unit, Plaza de la Salud General Hospital, Santo Domingo, Dominican Republic
| | - Ketan Dhatariya
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Ralf Lobmann
- Clinic for Endocrinology, Diabetology and Geriatrics, Klinikum Stuttgart, Stuttgart, Germany
| | - Caroline McIntosh
- Podiatric Medicine, School of Health Sciences, University of Galway, Galway, Ireland
| | - Alberto Piaggesi
- Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, Italy
| | - John Steinberg
- Georgetown University School of Medicine, Georgetown, Washington DC, USA
| | - Prash Vas
- King's College Hospital NHS Foundation Trust, London, UK
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof M Viswanathan Diabetes Research Center, Chennai, India
| | - Stephanie Wu
- Dr. William M. Scholl College of Podiatric Medicine at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Fran Game
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| |
Collapse
|
12
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
13
|
Karakousis ND, Pyrgioti EE, Georgakopoulos PN, Karagiannakis DS, Papanas N. Vitamin E and Diabetic Foot Ulcers. Curr Diabetes Rev 2024; 20:e140923221099. [PMID: 37711108 DOI: 10.2174/1573399820666230914155232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
This narrative mini-review discusses vitamin E levels in subjects with diabetic foot ulcers (DFUs). Vitamin E may be reduced in subjects with DFUs, but this finding is inconsistent. Its administration appears to benefit patients with DM, delaying the onset of complications, including DFUs. There is also evidence that it may promote DFUs healing. Nonetheless, further studies are required to confirm these promising results and estimate vitamin E administration's costeffectiveness.
Collapse
Affiliation(s)
- Nikolaos D Karakousis
- Second Department of Internal Medicine, Diabetes Centre-Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Dimitrios S Karagiannakis
- Academic Department of Gastroenterology, Laiko General Hospital, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Centre-Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
14
|
Zhuang Y, Feng WZ. Platelet-rich plasma for pilonidal disease: a systematic review. J Int Med Res 2023; 51:3000605231216590. [PMID: 38141657 DOI: 10.1177/03000605231216590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE To examine the use of platelet-rich plasma (PRP) for treatment of pilonidal disease (PD) and thus provide a reference for clinical application. METHODS A systematic review of PubMed and the Cochrane Library was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. We considered all studies that reported the use of PRP for treatment of PD. Extracted data included the first author's name, year of publication, study type, number of included patients, inclusion and exclusion criteria, interventions, anesthesia, application of PRP (source, preparation, dose, and operation), antibiotics, follow-up time, therapeutic outcomes, and adverse events. RESULTS In total, eight randomized controlled trials and one prospective cohort study involving 809 patients were included. PRP reduced pain, accelerated healing, and reduced adverse events. The application of combined minimally invasive surgery achieved better results. However, overfilling of the wound with PRP in minimally invasive surgeries was shown to potentially increase the risk of adverse events. CONCLUSION PRP can be used as an adjuvant treatment in PD surgery to improve the therapeutic effect and reduce adverse events. The optimal combination of PRP and various factors is an important direction of future research.INPLASY registration number: INPLASY2023100070.
Collapse
Affiliation(s)
- Yu Zhuang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Zhe Feng
- Department of Anorectal Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
15
|
Da Silva J, Leal EC, Carvalho E, Silva EA. Innovative Functional Biomaterials as Therapeutic Wound Dressings for Chronic Diabetic Foot Ulcers. Int J Mol Sci 2023; 24:9900. [PMID: 37373045 DOI: 10.3390/ijms24129900] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The imbalance of local and systemic factors in individuals with diabetes mellitus (DM) delays, or even interrupts, the highly complex and dynamic process of wound healing, leading to diabetic foot ulceration (DFU) in 15 to 25% of cases. DFU is the leading cause of non-traumatic amputations worldwide, posing a huge threat to the well-being of individuals with DM and the healthcare system. Moreover, despite all the latest efforts, the efficient management of DFUs still remains a clinical challenge, with limited success rates in treating severe infections. Biomaterial-based wound dressings have emerged as a therapeutic strategy with rising potential to handle the tricky macro and micro wound environments of individuals with DM. Indeed, biomaterials have long been related to unique versatility, biocompatibility, biodegradability, hydrophilicity, and wound healing properties, features that make them ideal candidates for therapeutic applications. Furthermore, biomaterials may be used as a local depot of biomolecules with anti-inflammatory, pro-angiogenic, and antimicrobial properties, further promoting adequate wound healing. Accordingly, this review aims to unravel the multiple functional properties of biomaterials as promising wound dressings for chronic wound healing, and to examine how these are currently being evaluated in research and clinical settings as cutting-edge wound dressings for DFU management.
Collapse
Affiliation(s)
- Jessica Da Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- PDBEB-Ph.D. Programme in Experimental Biology and Biomedicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facilities, UC Davis, 451 Health Sciences Dr., Davis, CA 95616, USA
| | - Ermelindo C Leal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Eduardo A Silva
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facilities, UC Davis, 451 Health Sciences Dr., Davis, CA 95616, USA
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Kristine Bonnevies vei 22, 4021 Stavanger, Norway
| |
Collapse
|
16
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
17
|
Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol (Lausanne) 2023; 14:1112363. [PMID: 36824356 PMCID: PMC9941188 DOI: 10.3389/fendo.2023.1112363] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia, with absolute insulin deficiency or insulin resistance as the main cause, and causes damage to various target organs including the heart, kidney and neurovascular. In terms of the pathological and physiological mechanisms of DM, oxidative stress is one of the main mechanisms leading to DM and is an important link between DM and its complications. Oxidative stress is a pathological phenomenon resulting from an imbalance between the production of free radicals and the scavenging of antioxidant systems. The main site of reactive oxygen species (ROS) production is the mitochondria, which are also the main organelles damaged. In a chronic high glucose environment, impaired electron transport chain within the mitochondria leads to the production of ROS, prompts increased proton leakage and altered mitochondrial membrane potential (MMP), which in turn releases cytochrome c (cyt-c), leading to apoptosis. This subsequently leads to a vicious cycle of impaired clearance by the body's antioxidant system, impaired transcription and protein synthesis of mitochondrial DNA (mtDNA), which is responsible for encoding mitochondrial proteins, and impaired DNA repair systems, contributing to mitochondrial dysfunction. This paper reviews the dysfunction of mitochondria in the environment of high glucose induced oxidative stress in the DM model, and looks forward to providing a new treatment plan for oxidative stress based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Fengmei Lian
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| |
Collapse
|
18
|
Kurian SJ, Baral T, Unnikrishnan MK, Benson R, Munisamy M, Saravu K, Rodrigues GS, Rao M, Kumar A, Miraj SS. The association between micronutrient levels and diabetic foot ulcer: A systematic review with meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1152854. [PMID: 37065742 PMCID: PMC10090454 DOI: 10.3389/fendo.2023.1152854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU) are a major complication of diabetes mellitus (DM). Nutrient deficiencies are among the major risk factors in DFU development and healing. In this context, we aimed to investigate the possible association between micronutrient status and risk of DFU. METHODS A systematic review (Prospero registration: CRD42021259817) of articles, published in PubMed, Web of Science, Scopus, CINAHL Complete, and Embase, that measured the status of micronutrients in DFU patients was performed. RESULTS Thirty-seven studies were considered, of which thirty were included for meta-analysis. These studies reported levels of 11 micronutrients: vitamins B9, B12, C, D, E, calcium, magnesium, iron, selenium, copper, and zinc. DFU, compared to healthy controls (HC) had significantly lower vitamin D (MD: -10.82 14 ng/ml, 95% CI: -20.47, -1.16), magnesium (MD: -0.45 mg/dL, 95% CI: -0.78, -0.12) and selenium (MD: -0.33 µmol/L, 95% CI: -0.34, -0.32) levels. DFU, compared to DM patients without DFU, had significantly lower vitamin D (MD: -5.41 ng/ml, 95% CI: -8.06, -2.76), and magnesium (MD: -0.20 mg/dL, 95% CI: -0.25, -0.15) levels. The overall analysis showed lower levels of vitamin D [15.55ng/ml (95% CI:13.44, 17.65)], vitamin C [4.99µmol/L (95% CI:3.16, 6.83)], magnesium [1.53mg/dL (95% CI:1.28, 1.78)] and selenium [0.54µmol/L (95% CI:0.45, 0.64)]. CONCLUSION This review provides evidence that micronutrient levels significantly differ in DFU patients, suggesting an association between micronutrient status and risk of DFU. Therefore, routine monitoring and supplementations are warranted in DFU patients. We suggest that personalized nutrition therapy may be considered in the DFU management guidelines. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=259817, identifier CRD42021259817.
Collapse
Affiliation(s)
- Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Tejaswini Baral
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Ruby Benson
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Murali Munisamy
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Kavitha Saravu
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Infectious Diseases, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Amit Kumar
- Department of Laboratory Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
- *Correspondence: Sonal Sekhar Miraj,
| |
Collapse
|
19
|
Prasad M K, Mohandas S, Kunka Mohanram R. Role of ferroptosis inhibitors in the management of diabetes. Biofactors 2022; 49:270-296. [PMID: 36468443 DOI: 10.1002/biof.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis, the iron-dependent, lipid peroxide-mediated cell death, has garnered attention due to its critical involvement in crucial physiological and pathological cellular processes. Indeed, several studies have attributed its role in developing a range of disorders, including diabetes. As accumulating evidence further the understanding of ferroptotic mechanisms, the impact this specialized mode of cell death has on diabetic pathogenesis is still unclear. Several in vivo and in vitro studies have highlighted the association of ferroptosis with beta-cell death and insulin resistance, supported by observations of marked alterations in ferroptotic markers in experimental diabetes models. The constant improvement in understanding ferroptosis in diabetes has demonstrated it as a potential therapeutic target in diabetic management. In this regard, ferroptosis inhibitors promise to rescue pancreatic beta-cell function and alleviate diabetes and its complications. This review article elucidates the key ferroptotic pathways that mediate beta-cell death in diabetes, and its complications. In particular, we share our insight into the cross talk between ferroptosis and other hallmark pathogenic mediators such as oxidative and endoplasmic reticulum stress regulators relevant to diabetes progression. Further, we extensively summarize the recent developments on the role of ferroptosis inhibitors and their therapeutic action in alleviating diabetes and its complications.
Collapse
Affiliation(s)
- Krishna Prasad M
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramkumar Kunka Mohanram
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
20
|
Da Porto A, Miranda C, Brosolo G, Zanette G, Michelli A, Ros RD. Nutritional supplementation on wound healing in diabetic foot: What is known and what is new? World J Diabetes 2022; 13:940-948. [PMID: 36437863 PMCID: PMC9693742 DOI: 10.4239/wjd.v13.i11.940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Non-healing diabetic foot ulcers (DFU) are the most notable and striking complications of diabetes mellitus. More than 25% of nonhealing DFU can ultimately lead to amputation of the lower extremity within 6-18 mo after the first manifestation of the wound. Although wound healing is complex, nutritional status is crucial in soft tissue repair. Malnutrition is highly prevalent and overlooked in patients with diabetes and chronic wounds. Moreover, to date, we do not have clear recommendations or evidence about the use of nutritional supplements for improving wound healing in patients with DFU. In this article the authors briefly analyzed the current evidence on the use of nutritional supplements of proteins or amino acids, fatty acids, probiotics, vitamins, and trace elements in the wound healing process in patients with DFU.
Collapse
Affiliation(s)
- Andrea Da Porto
- Department on Internal Medicine, University of Udine, Udine 33100, Italy
| | - Cesare Miranda
- Department of Internal Medicine, Clinic of Endocrinology and Metabolism Diseases Azienda Sanitaria Friuli Occidentale, Pordenone 33170, Italy
| | - Gabriele Brosolo
- Department on Internal Medicine, University of Udine, Udine 33100, Italy
| | - Giorgio Zanette
- Department of Internal Medicine, Clinic of Endocrinology and Metabolism Diseases Azienda Sanitaria Friuli Occidentale, Pordenone 33170, Italy
| | - Andrea Michelli
- Department of Internal Medicine , SC Diabete e Centro Trattamento Piede Diabetico, Monfalcone 34074, Gorizia, Italy
| | - Roberto Da Ros
- Department of Internal Medicine , SC Diabete e Centro Trattamento Piede Diabetico, Monfalcone 34074, Gorizia, Italy
| |
Collapse
|
21
|
Tong KP, Intine R, Wu S. Vitamin C and the management of diabetic foot ulcers: a literature review. J Wound Care 2022; 31:S33-S44. [PMID: 36113854 DOI: 10.12968/jowc.2022.31.sup9.s33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The lifetime risk of developing a diabetic foot ulcer (DFU) in people with diabetes is as high as 25%. A trio of factors constitute the diabetic foot syndrome that characterises DFUs, including neuropathy, vascular disease and infections. Vitamin C has important functions in the nervous, cardiovascular, and immune systems that are implicated in DFU development. Furthermore, vitamin C deficiency has been observed in individuals with DFUs, suggesting an important function of vitamin C in DFU management and treatment. Therefore, this literature review evaluates the role of vitamin C in the nervous, cardiovascular and immune systems in relation to wound healing and DFUs, as well as discussing vitamin C's lesser known role in depression, a condition that affects many individuals with a DFU. METHOD A literature search was done using PubMed, Cochrane Library, Embase, Ovid, Computer Retrieval of Information on Scientific Projects, and NIH Clinical Center. Search terms included 'diabetic foot ulcer,' 'diabetic foot,' 'vitamin C,' and 'ascorbic acid.' RESULTS Of the 71 studies initially identified, seven studies met the inclusion criteria, and only three were human clinical trials. Overall, the literature on this subject is limited, with mainly observational and animal studies, and few human clinical trials. CONCLUSION There is a need for additional human clinical trials on vitamin C supplementation in individuals with a DFU to fill the knowledge gap and guide clinical practice.
Collapse
Affiliation(s)
- Khanh Phuong Tong
- Dr William M Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, Illinois, US
| | - Robert Intine
- School of Graduate and Postdoctoral Studies, College of Health Professions, Rosalind Franklin University of Medicine and Science, Illinois, US
| | - Stephanie Wu
- Dr William M Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, Illinois, US
| |
Collapse
|
22
|
Chen Y, Ding X, Zhu Y, Jia Z, Qi Y, Chen M, Lu J, Kuang X, Zhou J, Su Y, Zhao Y, Lu W, Zhao J, Hua Q. Effect of tibial cortex transverse transport in patients with recalcitrant diabetic foot ulcers: A prospective multicenter cohort study. J Orthop Translat 2022; 36:194-204. [PMID: 36263383 PMCID: PMC9576490 DOI: 10.1016/j.jot.2022.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Management of recalcitrant diabetic foot ulcer (DFU) remains difficult. Distraction osteogenesis mediates new bone formation and angiogenesis in the bone itself and the surrounding tissues. Recently it was reported that tibial cortex transverse transport (TTT) was associated with neovascularization and increased perfusion at the foot in patients with recalcitrant DFUs and facilitated healing and limb salvage. However, the findings were from several single-center studies with relatively small populations, which need to be confirmed in multicenter cohort studies with relatively large populations. Furthermore, the effect of this technique on patient's health-related quality of life is still unclear. METHODS We treated patients with recalcitrant (University of Texas wound grading system 2-C to 3-D and not responding to prior routine conservative and surgical treatments for at least 8 weeks) DFUs from seven centers using TTT (a 5 cm × 1.5 cm corticotomy followed by 4 weeks of medial and lateral distraction) between July 2016 and June 2019. We analyzed ulcer healing, major amputation, recurrence, health-related quality of life (physical and mental component summary scores), and complications in the 2-year follow-up. Foot arterial and perfusion changes were evaluated using computed tomography angiography and perfusion imaging 12 weeks postoperatively. RESULTS A total of 1175 patients were enrolled. Patients who died (85, 7.2%) or lost to follow-up (18, 1.7%) were excluded, leaving 1072 patients for evaluation. Most of the patients were male (752, 70.1%) and with a mean age of 60.4 ± 9.1 years. The mean ulcer size was 41.0 ± 8.5 cm2 and 187 (16.6%) ulcers extended above the ankle. During the follow-up, 1019 (94.9%) patients healed in a mean time of 12.4 ± 5.6 weeks, 53 (4.9%) had major amputations, and 33 (3.1%) experienced recurrences. Compared to preoperatively, the patients had higher physical (26.2 ± 8.3 versus 41.3 ± 10.6, p = 0.008) and mental (33.6 ± 10.7 versus 45.4 ± 11.3, p = 0.031) component summary scores at the 2-year follow-up. Closed tibial fracture at the corticotomy site was found in 8 (0.7%) patients and was treated using external fixation and healed uneventfully. There were 23 (2.1%) patients who had pin site infections and were treated successfully with dressing changes. Compared to preoperatively, the patients had more small arteries and higher foot blood flow (8.1 ± 2.2 versus 28.3 ± 3.9 ml/100 g/min, p = 0.003) and volume (1.5 ± 0.3 versus 2.7 ± 0.4 ml/100 g, p = 0.037) 12 weeks postoperatively. CONCLUSION TTT promotes healing, limb salvage, and health-related quality of life in patients with recalcitrant DFUs as demonstrated in this multicenter cohort study. The surgical procedure was simple and straightforward and the complications were few and minor. The effect of this technique was associated with neovascularization and improved perfusion at the foot mediated by the cortex distraction. The findings are required to confirm in randomized controlled trials.The Translational Potential of this Article: TTT can be used as an effective treatment in patients with recalcitrant DFUs. The mechanism is associated with neovascularization and consequently increased perfusion in the foot after operation.
Collapse
Affiliation(s)
- Yan Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, China
| | - Xiaofang Ding
- Department of Orthopaedics, Beijing Fulong Hospital, China
| | - Yueliang Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University, China
| | - Zhongwei Jia
- Department of Orthopaedics, People's Hospital of Shanxi Province, China
| | - Yong Qi
- Department of Orthopaedics, The Second People's Hospital of Guangdong Province, China
| | - Mingyong Chen
- Department of Orthopaedics, Guizhou Aerospace Hospital, China
| | - Jili Lu
- Department of Orthopaedics, Baise People's Hospital, China
| | - Xiaocong Kuang
- Department of Physiopathology, Preclinical School of Guangxi Medical University, China
| | - Jia Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, China
| | - Yongfeng Su
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, China
| | - Yongxin Zhao
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, China
| | - William Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong
| | - Jinmin Zhao
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, China
| | - Qikai Hua
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, China
| |
Collapse
|
23
|
Bechara N, Flood VM, Gunton JE. A Systematic Review on the Role of Vitamin C in Tissue Healing. Antioxidants (Basel) 2022; 11:antiox11081605. [PMID: 36009324 PMCID: PMC9405326 DOI: 10.3390/antiox11081605] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Vitamin C is an essential nutrient for humans and animals which are unable to synthesise it themselves. Vitamin C is important for tissue regeneration due to the role it plays in collagen formation, and its antioxidant properties. We reviewed the literature to evaluate potential associations between vitamin C supplementation and healing of an acute or chronic condition. Embase, Medline, PubMed, and the Cochrane Library were searched for studies published prior to April 2022. Studies were eligible if they reported at least one association between vitamin C supplementation and healing outcomes. Eighteen studies met the inclusion criteria and were included in this review. Overall, vitamin C supplementation improved healing outcomes in certain pathologies, predominantly pressure ulcers. However, many of the studies had small sample sizes, combined nutritional treatments, and did not test baseline vitamin C. Future studies should be of larger scale, exclusively using vitamin C to determine its role in tissue healing in other wounds. We recommend consideration of vitamin C supplementation for people with pressure ulcers.
Collapse
Affiliation(s)
- Nada Bechara
- Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, Lands of the Dharug Nation, The University of Sydney, Sydney, NSW 2145, Australia
- Department of Diabetes and Endocrinology, Blacktown-Mt Druitt Hospital, Sydney, NSW 2148, Australia
- Westmead Hospital, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
| | - Victoria M. Flood
- University Centre for Rural Health, Faculty of Medicine and Health, University of Sydney, Lismore, NSW 2480, Australia
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Jenny E. Gunton
- Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, Lands of the Dharug Nation, The University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
- Correspondence: ; Tel.: +61-2-8890-8089
| |
Collapse
|
24
|
He J, Li Z, Xia P, Shi A, FuChen X, Zhang J, Yu P. Ferroptosis and ferritinophagy in diabetes complications. Mol Metab 2022; 60:101470. [PMID: 35304332 PMCID: PMC8980341 DOI: 10.1016/j.molmet.2022.101470] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND With long-term metabolic malfunction, diabetes can cause serious damage to whole-body tissue and organs, resulting in a variety of complications. Therefore, it is particularly important to further explore the pathogenesis of diabetes complications and develop drugs for prevention and treatment. In recent years, different from apoptosis and necrosis, ferroptosis has been recognized as a new regulatory mode of cell death and involves the regulation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy. Evidence shows that ferroptosis and ferritinophagy play a significant role in the occurrence and development of diabetes complications. SCOPE OF REVIEW we systematically review the current understanding of ferroptosis and ferritinophagy, focusing on their potential mechanisms, connection, and regulation, discuss their involvement in diabetes complications, and consider emerging therapeutic opportunities and the associated challenges with future prospects. MAJOR CONCLUSIONS In summary, ferroptosis and ferritinophagy are worthy targets for the treatment of diabetes complications, but their complete molecular mechanism and pathophysiological process still require further study.
Collapse
Affiliation(s)
- Jiahui He
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Panpan Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK; School of Medicine, University of Nicosia, Nicosia, Cyprus
| | - Xinxi FuChen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 30006, China.
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|
25
|
Zainal Z, Khaza'ai H, Kutty Radhakrishnan A, Chang SK. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res Int 2022; 156:111175. [DOI: 10.1016/j.foodres.2022.111175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
|
26
|
Coentro JQ, Di Nubila A, May U, Prince S, Zwaagstra J, Järvinen TAH, Zeugolis D. Dual drug delivery collagen vehicles for modulation of skin fibrosis in vitro. Biomed Mater 2022; 17. [PMID: 35176732 DOI: 10.1088/1748-605x/ac5673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Single molecule drug delivery systems have failed to yield functional therapeutic outcomes, triggering investigations into multi-molecular drug delivery vehicles. In the context of skin fibrosis, although multi-drug systems have been assessed, no system has assessed molecular combinations that directly and specifically reduce cell proliferation, collagen synthesis and transforming growth factor β1 (TGFβ1) expression. Herein, a core-shell collagen type I hydrogel system was developed for the dual delivery of a TGFβ trap, a soluble recombinant protein that inhibits TGFβ signalling, and Trichostatin A (TSA), a small molecule inhibitor of histone deacetylases. The antifibrotic potential of the dual delivery system was assessed in an in vitro skin fibrosis model induced by macromolecular crowding (MMC) and TGFβ1. SDS-PAGE and HPLC analyses revealed that ~ 50 % of the TGFβ trap and ~ 30 % of the TSA were released from the core and shell compartments, respectively, of the hydrogel system after 10 days (longest time point assessed) in culture. As a direct consequence of this slow release, the core (TGFβ trap) / shell (TSA) hydrogel system induced significantly (p < 0.05) lower than the control group (MMC and TGFβ1) collagen type I deposition (assessed via SDS-PAGE and immunocytochemistry), α smooth muscle actin (αSMA) expression (assessed via immunocytochemistry) and cellular proliferation (assessed via DNA quantification) and viability (assessed via calcein AM and ethidium homodimer-I staining) after 10 days in culture. On the other hand, direct TSA-TGFβ supplementation induced the lowest (p < 0.05) collagen type I deposition, αSMA expression and cellular proliferation and viability after 10 days in culture. Our results illustrate the potential of core-shell collagen hydrogel systems for sustained delivery of antifibrotic molecules.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biomedical Sciences Building, Galway, Galway, IRELAND
| | - Alessia Di Nubila
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biomedical Sciences Building, Galway, Galway, IRELAND
| | - Ulrike May
- Faculty of Medicine & Health Technology, Tampere University, Kalevantie 4, Tampere, 33014, FINLAND
| | - Stuart Prince
- Faculty of Medicine & Health Technology, Tampere University, Kalevantie 4, Tampere, 33014, FINLAND
| | - John Zwaagstra
- Human Health Therapeutics Research Centre, National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, K1A 0R6, CANADA
| | - Tero A H Järvinen
- Faculty of Medicine & Health Technology, Tampere University, Faculty of Medicine & Health Technology, Tampere, 33014, FINLAND
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, University College Dublin, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, Dublin, 4, IRELAND
| |
Collapse
|