1
|
Fujita K, Desmond P, Blondelle J, Soták M, Rajan MR, Clark M, Estève É, Chan Y, Gu Y, Actis Dato V, Marrocco V, Dalton ND, Ghassemian M, Do A, Klos M, Peterson KL, Sheikh F, Cho Y, Börgeson E, Lange S. Combined Loss of Obsc and Obsl1 in Murine Hearts Results in Diastolic Dysfunction, Altered Metabolism, and Deregulated Mitophagy. Circ Heart Fail 2025; 18:e011867. [PMID: 40066567 PMCID: PMC11995854 DOI: 10.1161/circheartfailure.124.011867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/09/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Muscle proteins of the obscurin protein family play important roles in sarcomere organization and sarcoplasmic reticulum and T-tubule architecture and function. However, their precise molecular functions and redundancies between protein family members as well as their involvement in cardiac diseases remain to be fully understood. METHODS To investigate the functional roles of Obsc (obscurin) and its close homolog Obsl1 (obscurin-like 1) in the heart, we generated and analyzed knockout mice for Obsc, Obsl1, as well as Obsc/Obsl1 double knockouts. RESULTS We show that double-knockout mice are viable but show postnatal deficits in cardiac muscle sarcoplasmic reticulum and mitochondrial architecture and function at the microscopic, biochemical, and cellular levels. Altered sarcoplasmic reticulum structure resulted in perturbed calcium cycling, whereas mitochondrial ultrastructure deficits were linked to decreased levels of Chchd3 (coiled-coil-helix-coiled-coil-helix domain containing 3), a Micos (mitochondrial contact site and cristae organizing system) complex protein. Hearts of double-knockout mice also show altered levels of Atg4 proteins, novel Obsl1 interactors, resulting in abnormal mitophagy, and increased unfolded protein response. At the physiological level, loss of obscurin and Obsl1 resulted in a profound delay of cardiac relaxation, associated with metabolic signs of heart failure. CONCLUSIONS Taken together, our data suggest that Obsc and Obsl1 play crucial roles in cardiac sarcoplasmic reticulum structure, calcium cycling, mitochondrial function, turnover, and metabolism.
Collapse
Affiliation(s)
- Kyohei Fujita
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Japan (K.F.)
| | - Patrick Desmond
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Jordan Blondelle
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Matúš Soták
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
| | - Meenu Rohini Rajan
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
| | - Madison Clark
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| | - Éric Estève
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- PhyMedExp, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Regionale Universitaire (CHRU) Montpellier, France (E.E.)
| | - Yunghang Chan
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Yusu Gu
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Virginia Actis Dato
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Valeria Marrocco
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Nancy D. Dalton
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry (M.G.), University of California San Diego, La Jolla
| | - Aryanne Do
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Matthew Klos
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Kirk L. Peterson
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Farah Sheikh
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Yoshitake Cho
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Emma Börgeson
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| | - Stephan Lange
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| |
Collapse
|
2
|
Oghabian A, Jonson PH, Gayathri SN, Johari M, Nippala E, Andres DG, Munell F, Soriano JC, Duran MAS, Sinisalo J, Tolppanen H, Tolva J, Hackman P, Savarese M, Udd B. OBSCN undergoes extensive alternative splicing during human cardiac and skeletal muscle development. Skelet Muscle 2025; 15:5. [PMID: 40025502 PMCID: PMC11871629 DOI: 10.1186/s13395-025-00374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/27/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Highly expressed in skeletal muscles, the gene Obscurin (i.e. OBSCN) has 121 non-overlapping exons and codes for some of the largest known mRNAs in the human genome. Furthermore, it plays an essential role in muscle development and function. Mutations in OBSCN are associated with several hypertrophic cardiomyopathies and muscular disorders. OBSCN undergoes extensive and complex alternative splicing, which is the main reason that its splicing regulation associated with skeletal and cardiac muscle development has not previously been thoroughly studied. METHODS We analyzed RNA-Seq data from skeletal and cardiac muscles extracted from 44 postnatal individuals and six fetuses. We applied the intron/exon level splicing analysis software IntEREst to study the splicing of OBSCN in the studied samples. The differential splicing analysis was adjusted for batch effects. Our comparisons revealed the splicing variations in OBSCN between the human skeletal and cardiac muscle, as well as between post-natal muscle (skeletal and cardiac) and the pre-natal equivalent muscle. RESULTS We detected several splicing regulations located in the 5'end, 3' end, and the middle of OBSCN that are associated with human cardiac or skeletal muscle development. Many of these alternative splicing events have not previously been reported. Our results also suggest that many of these muscle-development associated splicing events may be regulated by BUB3. CONCLUSIONS We conclude that the splicing of OBSCN is extensively regulated during the human skeletal/cardiac muscle development. We developed an interactive visualization tool that can be used by clinicians and researchers to study the inclusion of specific OBSCN exons in pre- and postnatal cardiac and skeletal muscles and access the statistics for the differential inclusion of the exons across the studied sample groups. The OBSCN exon inclusion map related to the human cardiac and skeletal muscle development is available at http://psivis.it.helsinki.fi:3838/OBSCN_PSIVIS/ . These findings are essential for an accurate pre- and postnatal clinical interpretation of the OBSCN exonic variants.
Collapse
Affiliation(s)
- Ali Oghabian
- Folkhälsan Research Center, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Swethaa Natraj Gayathri
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | | | - David Gomez Andres
- Pediatric Neuromuscular Unit. Child Neurology Department. Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) ES, Barcelona, Spain
| | - Francina Munell
- Pediatric Neuromuscular Unit. Child Neurology Department. Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) ES, Barcelona, Spain
| | | | | | - Juha Sinisalo
- Department of Obstetrics, Maternal Fetal Medicine Unit, Universitat Autònoma de Barcelona, Hospital Vall D'hebron, Barcelona, Spain
| | | | - Johanna Tolva
- Department of Pathology, Transplantation Laboratory, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Pediatric Neuromuscular Unit. Child Neurology Department. Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) ES, Barcelona, Spain
- Department of Neurology, Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Serano M, Perni S, Pierantozzi E, Laurino A, Sorrentino V, Rossi D. Intracellular Membrane Contact Sites in Skeletal Muscle Cells. MEMBRANES 2025; 15:29. [PMID: 39852269 PMCID: PMC11767089 DOI: 10.3390/membranes15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca2+ storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle. These contact sites primarily involve the plasma membrane; among these, specialized membrane contact sites between the transverse tubules and the terminal cisternae of the sarcoplasmic reticulum form triads. Triads are skeletal muscle-specific contact sites where Ca2+ channels and regulatory proteins assemble to form the so-called calcium release complex. Additionally, the sarcoplasmic reticulum contacts mitochondria to enable a more precise regulation of Ca2+ homeostasis and energy metabolism. The sarcoplasmic reticulum and the plasma membrane also undergo dynamic remodeling to allow Ca2+ entry from the extracellular space and replenish the stores. This process involves the formation of dynamic membrane contact sites called Ca2+ Entry Units. This review explores the key processes in biogenesis and assembly of intracellular membrane contact sites as well as the membrane remodeling that occurs in response to muscle fatigue.
Collapse
Affiliation(s)
- Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Stefano Perni
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Annunziatina Laurino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
4
|
Gritsyna YV, Zhalimov VK, Uryupina TA, Ulanova AD, Bobylev AG, Vikhlyantsev IM. Identification of Giant Isoforms of Obscurin in Rat Striated Muscles Using Polyclonal Antibodies. Bull Exp Biol Med 2024; 177:731-735. [PMID: 39441441 DOI: 10.1007/s10517-024-06259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 10/25/2024]
Abstract
Using produced polyclonal antibodies specific to the N-terminal sequence (residues 61-298) of rat obscurin, we investigated the isoform composition of this protein in 4 striated muscles: myocardium of the left ventricle, diaphragm, skeletal m. gastrocnemius (containing mainly fast fibers), and m. soleus (containing mainly slow fibers). The m. gastrocnemius, m. soleus, and diaphragm were found to have 2 giant isoforms of obscurin: a smaller A-isoform and a larger B-isoform. Their molecular weights were ~870 and ~1150 kDa in the diaphragm and m. gastrocnemius and ~880 and ~1130 kDa in m. soleus, respectively. The B-isoform to A-isoform ratio was 1:3 in the diaphragm and m. soleus and 1:4 in the m. gastrocnemius. In the left-ventricular myocardium, A-isoform of obscurin with a molecular weight of ~880 kDa was found. No other obscurin isoforms or their fragments within the molecular weight range of 10 up to ~800 kDa were revealed in the investigated rat striated muscles. The antibodies produced are recommended for research into qualitative and quantitative changes of giant obscurin isoforms in rat striated muscles in the norm and during the development of pathological processes.
Collapse
Affiliation(s)
- Y V Gritsyna
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - V K Zhalimov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - T A Uryupina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - A D Ulanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - A G Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - I M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan University, Kazan, Republic of Tatarstan, Russia.
| |
Collapse
|
5
|
Kahsay A, Dennhag N, Liu JX, Nord H, Rönnbäck H, Thorell AE, von Hofsten J, Pedrosa Domellöf F. Obscurin Maintains Myofiber Identity in Extraocular Muscles. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 38334702 PMCID: PMC10860686 DOI: 10.1167/iovs.65.2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Purpose The cytoskeleton of the extraocular muscles (EOMs) is significantly different from that of other muscles. We aimed to investigate the role of obscurin, a fundamental cytoskeletal protein, in the EOMs. Methods The distribution of obscurin in human and zebrafish EOMs was compared using immunohistochemistry. The two obscurin genes in zebrafish, obscna and obscnb, were knocked out using CRISPR/Cas9, and the EOMs were investigated using immunohistochemistry, qPCR, and in situ hybridization. The optokinetic reflex (OKR) in five-day-old larvae and adult obscna-/-;obscnb-/- and sibling control zebrafish was analyzed. Swimming distance was recorded at the same age. Results The obscurin distribution pattern was similar in human and zebrafish EOMs. The proportion of slow and fast myofibers was reduced in obscna-/-;obscnb-/- zebrafish EOMs but not in trunk muscle, whereas the number of myofibers containing cardiac myosin myh7 was significantly increased in EOMs of obscurin double mutants. Loss of obscurin resulted in less OKRs in zebrafish larvae but not in adult zebrafish. Conclusions Obscurin expression is conserved in normal human and zebrafish EOMs. Loss of obscurin induces a myofiber type shift in the EOMs, with upregulation of cardiac myosin heavy chain, myh7, showing an adaptation strategy in EOMs. Our model will facilitate further studies in conditions related to obscurin.
Collapse
Affiliation(s)
- Abraha Kahsay
- Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Nils Dennhag
- Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | - Hanna Nord
- Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | - Hugo Rönnbäck
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | | | - Jonas von Hofsten
- Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | - Fatima Pedrosa Domellöf
- Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Mauriello GE, Moncure GE, Nowzari RA, Miller CJ, Wright NT. The N-terminus of obscurin is flexible in solution. Proteins 2023; 91:485-496. [PMID: 36306263 DOI: 10.1002/prot.26442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The N-terminal half of the giant cytoskeletal protein obscurin is comprised of more than 50 Ig-like domains, arranged in tandem. Domains 18-51 are connected to each other through short 5-residue linkers, and this arrangement has been previously shown to form a semi-flexible rod in solution. Domains 1-18 generally have slightly longer ~7 residue interdomain linkers, and the multidomain structure and motion conferred by this kind of linker is understudied. Here, we use NMR, SAXS, and MD to show that these longer linkers are associated with significantly more domain/domain flexibility, with the resulting multidomain structure being moderately compact. Further examination of the relationship between interdomain flexibility and linker length shows there is a 5 residue "sweet spot" linker length that results in dual-domain systems being extended, and conversely that both longer or shorter linkers result in a less extended structure. This detailed knowledge of the obscurin N terminus structure and flexibility allowed for mathematical modeling of domains 1-18, which suggests that this region likely forms tangles if left alone in solution. Given how infrequently protein tangles occur in nature, and given the pathological outcomes that occur when tangles do arise, our data suggest that obscurin is likely either significantly scaffolded or else externally extended in the cell.
Collapse
Affiliation(s)
- Gianna E Mauriello
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Grace E Moncure
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Roujon A Nowzari
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Callie J Miller
- Department of Engineering, James Madison University, Harrisonburg, Virginia, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| |
Collapse
|
7
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
10
|
Pierantozzi E, Szentesi P, Paolini C, Dienes B, Fodor J, Oláh T, Colombini B, Rassier DE, Rubino EM, Lange S, Rossi D, Csernoch L, Bagni MA, Reggiani C, Sorrentino V. Impaired Intracellular Ca 2+ Dynamics, M-Band and Sarcomere Fragility in Skeletal Muscles of Obscurin KO Mice. Int J Mol Sci 2022; 23:1319. [PMID: 35163243 PMCID: PMC8835721 DOI: 10.3390/ijms23031319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Obscurin is a giant sarcomeric protein expressed in striated muscles known to establish several interactions with other proteins of the sarcomere, but also with proteins of the sarcoplasmic reticulum and costameres. Here, we report experiments aiming to better understand the contribution of obscurin to skeletal muscle fibers, starting with a detailed characterization of the diaphragm muscle function, which we previously reported to be the most affected muscle in obscurin (Obscn) KO mice. Twitch and tetanus tension were not significantly different in the diaphragm of WT and Obscn KO mice, while the time to peak (TTP) and half relaxation time (HRT) were prolonged. Differences in force-frequency and force-velocity relationships and an enhanced fatigability are observed in an Obscn KO diaphragm with respect to WT controls. Voltage clamp experiments show that a sarcoplasmic reticulum's Ca2+ release and SERCA reuptake rates were decreased in muscle fibers from Obscn KO mice, suggesting that an impairment in intracellular Ca2+ dynamics could explain the observed differences in the TTP and HRT in the diaphragm. In partial contrast with previous observations, Obscn KO mice show a normal exercise tolerance, but fiber damage, the altered sarcomere ultrastructure and M-band disarray are still observed after intense exercise.
Collapse
Affiliation(s)
- Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Cecilia Paolini
- Department of Neuroscience, Imaging and Clinical Sciences, University Gabriele d’ Annunzio of Chieti, 66100 Chieti, Italy;
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.C.); (M.A.B.)
| | - Dilson E. Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada;
| | - Egidio Maria Rubino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - Stephan Lange
- Biomedical Research Facility 2, School of Medicine, University of California, La Jolla, CA 92093, USA;
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.C.); (M.A.B.)
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, 35121 Padova, Italy;
- Science and Research Center Koper, Institute for Kinesiology Research, 6000 Koper, Slovenia
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| |
Collapse
|
11
|
Rodríguez-Fdez S, Bustelo XR. Rho GTPases in Skeletal Muscle Development and Homeostasis. Cells 2021; 10:cells10112984. [PMID: 34831205 PMCID: PMC8616218 DOI: 10.3390/cells10112984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rho guanosine triphosphate hydrolases (GTPases) are molecular switches that cycle between an inactive guanosine diphosphate (GDP)-bound and an active guanosine triphosphate (GTP)-bound state during signal transduction. As such, they regulate a wide range of both cellular and physiological processes. In this review, we will summarize recent work on the role of Rho GTPase-regulated pathways in skeletal muscle development, regeneration, tissue mass homeostatic balance, and metabolism. In addition, we will present current evidence that links the dysregulation of these GTPases with diseases caused by skeletal muscle dysfunction. Overall, this information underscores the critical role of a number of members of the Rho GTPase subfamily in muscle development and the overall metabolic balance of mammalian species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: or
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Qiu J, Wu L, Chang Y, Sun H, Sun J. Alternative splicing transitions associate with emerging atrophy phenotype during denervation-induced skeletal muscle atrophy. J Cell Physiol 2021; 236:4496-4514. [PMID: 33319931 DOI: 10.1002/jcp.30167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Alternative splicing (AS) presents a key posttranscriptional regulatory mechanism associated with numerous physiological processes. However, little is known about its role in skeletal muscle atrophy. In this study, we used a rat model of denervated skeletal muscle atrophy and performed RNA-sequencing to analyze transcriptome profiling of tibialis anterior muscle at multiple time points following denervation. We found that AS is a novel mechanism involving muscle atrophy, which is independent changes at the transcript level. Bioinformatics analysis further revealed that AS transitions are associated with the appearance of the atrophic phenotype. Moreover, we found that the inclusion of multiple highly conserved exons of Obscn markedly increased at 3 days after denervation. In addition, we confirmed that this newly transcript inhibited C2C12 cell proliferation and exacerbated myotube atrophy. Finally, our study revealed that a large number of RNA-binding proteins were upregulated when the atrophy phenotype appeared. Our data emphasize the importance of AS in this process.
Collapse
Affiliation(s)
- Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Yan Chang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
13
|
Determination of the pathways of potential muscle damage and regeneration in response to acute and long-term swimming exercise in mice. Life Sci 2021; 272:119265. [PMID: 33626393 DOI: 10.1016/j.lfs.2021.119265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/22/2023]
Abstract
The objective of the current study was examining early and late (3, 24 h) responses to acute, chronic swimming exercise as muscle damage and regeneration in gastrocnemius-soleus muscle complexes. We also aimed to reveal the signaling pathways involved. 8-12 weeks old mice were grouped as control, exercise. Exercising groups were firstly divided into two as acute and chronic, later every group was again divided in terms of time (3, 24 h) passed from the last exercise session until exsanguination. Acute exercise groups swam 30 min, while chronic swimming groups exercised 30 min/day, 5 days/week, 6 weeks. Histological investigations were performed to determine muscle damage and regeneration. Whole-genome expression analysis was applied to total RNA samples. Microarray data was confirmed by quantitative real-time PCR. Exercising mice muscle revealed enhanced damage, leukocyte infiltration. Increments in acute and chronic 3 h groups were statistically significant. Car3, Neb, Obscn, Ttn, Igfbp5, Igfbp7, Gsk3β, and Usp2 were down-regulated in muscles of swimming mice. The exercise-induced signaling pathways involved in muscle damage and regeneration were drawn. Our findings demonstrate that swimming induces muscle damage. Samples were obtained at 3 and 24 h following exercise, this time duration seems not sufficient for the development of myofibrillogenesis.
Collapse
|
14
|
Molecular determinants of homo- and heteromeric interactions of Junctophilin-1 at triads in adult skeletal muscle fibers. Proc Natl Acad Sci U S A 2019; 116:15716-15724. [PMID: 31315980 DOI: 10.1073/pnas.1820980116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In adult skeletal muscles, 2 junctophilin isoforms (JPH1 and JPH2) tether the sarcoplasmic reticulum (SR) to transverse tubule (T-tubule) membranes, generating stable membrane contact sites known as triads. JPHs are anchored to the membrane of the SR by a C-terminal transmembrane domain (TMD) and bind the T-tubule membrane through their cytosolic N-terminal region, which contains 8 lipid-binding (MORN) motifs. By combining expression of GFP-JPH1 deletion mutants in skeletal muscle fibers with in vitro biochemical experiments, we investigated the molecular determinants of JPH1 recruitment at triads in adult skeletal muscle fibers. We found that MORN motifs bind PI(4,5)P2 in the sarcolemma, but do not mediate the selective localization of JPH1 at the T-tubule compartment of triads. On the contrary, fusion proteins containing only the TMD of JPH1 were able to localize at the junctional SR compartment of the triad. Bimolecular fluorescence complementation experiments indicated that the TMD of JPH1 can form dimers, suggesting that the observed localization at triads may result from dimerization with the TMDs of resident JPH1. A second domain, capable of mediating homo- and heterodimeric interactions between JPH1 and JPH2 was identified in the cytosolic region. FRAP experiments revealed that removal of either one of these 2 domains in JPH1 decreases the association of the resulting mutant proteins with triads. Altogether, these results suggest that the ability to establish homo- and heterodimeric interactions with resident JPHs may support the recruitment and stability of newly synthesized JPHs at triads in adult skeletal muscle fibers.
Collapse
|
15
|
Pierantozzi E, Szentesi P, Al-Gaadi D, Oláh T, Dienes B, Sztretye M, Rossi D, Sorrentino V, Csernoch L. Calcium Homeostasis Is Modified in Skeletal Muscle Fibers of Small Ankyrin1 Knockout Mice. Int J Mol Sci 2019; 20:ijms20133361. [PMID: 31323924 PMCID: PMC6651408 DOI: 10.3390/ijms20133361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022] Open
Abstract
Small Ankyrins (sAnk1) are muscle-specific isoforms generated by the Ank1 gene that participate in the organization of the sarcoplasmic reticulum (SR) of striated muscles. Accordingly, the volume of SR tubules localized around the myofibrils is strongly reduced in skeletal muscle fibers of 4- and 10-month-old sAnk1 knockout (KO) mice, while additional structural alterations only develop with aging. To verify whether the lack of sAnk1 also alters intracellular Ca2+ handling, cytosolic Ca2+ levels were analyzed in stimulated skeletal muscle fibers from 4- and 10-month-old sAnk1 KO mice. The SR Ca2+ content was reduced in sAnk1 KO mice regardless of age. The amplitude of the Ca2+ transients induced by depolarizing pulses was decreased in myofibers of sAnk1 KO with respect to wild type (WT) fibers, while their voltage dependence was not affected. Furthermore, analysis of spontaneous Ca2+ release events (sparks) on saponin-permeabilized muscle fibers indicated that the frequency of sparks was significantly lower in fibers from 4-month-old KO mice compared to WT. Furthermore, both the amplitude and spatial spread of sparks were significantly smaller in muscle fibers from both 4- and 10-month-old KO mice compared to WT. These data suggest that the absence of sAnk1 results in an impairment of SR Ca2+ release, likely as a consequence of a decreased Ca2+ store due to the reduction of the SR volume in sAnk1 KO muscle fibers.
Collapse
Affiliation(s)
- Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - Péter Szentesi
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Dána Al-Gaadi
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, H-4002 Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Mónika Sztretye
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - László Csernoch
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary.
| |
Collapse
|
16
|
Grogan A, Kontrogianni-Konstantopoulos A. Unraveling obscurins in heart disease. Pflugers Arch 2018; 471:735-743. [PMID: 30099631 DOI: 10.1007/s00424-018-2191-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
Abstract
Obscurins, expressed from the single OBSCN gene, are a family of giant, modular, cytoskeletal proteins that play key structural and regulatory roles in striated muscles. They were first implicated in the development of heart disease in 2007 when two missense mutations were found in a patient diagnosed with hypertrophic cardiomyopathy (HCM). Since then, the discovery of over a dozen missense, frameshift, and splicing mutations that are linked to various forms of cardiomyopathy, including HCM, dilated cardiomyopathy (DCM), and left ventricular non-compaction (LVNC), has highlighted OBSCN as a potential disease-causing gene. At this time, the functional consequences of the identified mutations remain largely elusive, and much work has yet to be done to characterize the disease mechanisms of pathological OBSCN variants. Herein, we describe the OBSCN mutations known to date, discuss their potential impact on disease development, and provide future directions in order to better understand the involvement of obscurins in heart disease.
Collapse
Affiliation(s)
- Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD, 21201, USA
| | | |
Collapse
|
17
|
Rossi D, Palmio J, Evilä A, Galli L, Barone V, Caldwell TA, Policke RA, Aldkheil E, Berndsen CE, Wright NT, Malfatti E, Brochier G, Pierantozzi E, Jordanova A, Guergueltcheva V, Romero NB, Hackman P, Eymard B, Udd B, Sorrentino V. A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy. PLoS One 2017; 12:e0186642. [PMID: 29073160 PMCID: PMC5657976 DOI: 10.1371/journal.pone.0186642] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022] Open
Abstract
A novel FLNC c.5161delG (p.Gly1722ValfsTer61) mutation was identified in two members of a French family affected by distal myopathy and in one healthy relative. This FLNC c.5161delG mutation is one nucleotide away from a previously reported FLNC mutation (c.5160delC) that was identified in patients and in asymptomatic carriers of three Bulgarian families with distal muscular dystrophy, indicating a low penetrance of the FLNC frameshift mutations. Given these similarities, we believe that the two FLNC mutations alone can be causative of distal myopathy without full penetrance. Moreover, comparative analysis of the clinical manifestations indicates that patients of the French family show an earlier onset and a complete segregation of the disease. As a possible explanation of this, the two French patients also carry a OBSCN c.13330C>T (p.Arg4444Trp) mutation. The p.Arg4444Trp variant is localized within the OBSCN Ig59 domain that, together with Ig58, binds to the ZIg9/ZIg10 domains of titin at Z-disks. Structural and functional studies indicate that this OBSCN p.Arg4444Trp mutation decreases titin binding by ~15-fold. On this line, we suggest that the combination of the OBSCN p.Arg4444Trp variant and of the FLNC c.5161delG mutation, can cooperatively affect myofibril stability and increase the penetrance of muscular dystrophy in the French family.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
| | - Anni Evilä
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Lucia Galli
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Virginia Barone
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Tracy A. Caldwell
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Rachel A. Policke
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Esraa Aldkheil
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Christopher E. Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Edoardo Malfatti
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Guy Brochier
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Albena Jordanova
- Molecular Neurogenomics Group, University of Antwerp, Antwerp, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria
| | | | - Norma Beatriz Romero
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Peter Hackman
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bruno Eymard
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail:
| |
Collapse
|