1
|
Tang S, Zhang Y, Wang P, Tang Q, Liu Y, Lu F, Han M, Zhou M, Hu Q, Feng M, Liang D. NKG2D-CAR-targeted iPSC-derived MSCs efficiently target solid tumors expressing NKG2D ligand. iScience 2025; 28:112343. [PMID: 40276759 PMCID: PMC12020857 DOI: 10.1016/j.isci.2025.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Mesenchymal stem cells (MSCs) hold potential in cancer therapy; however, insufficient tumor homing ability and heterogeneity limit their therapeutic benefits. Obviously, the homogeneous induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) with enhanced ability of tumor targeting could be the solution. In this study, a CAR containing the NKG2D extracellular domain was targeted at the B2M locus of iPSCs to generate NKG2D-CAR-iPSCs, which were subsequently differentiated into NKG2D-CAR-iMSCs. In vitro, NKG2D-CAR significantly enhanced migration and adhesion of iMSCs to a variety of solid tumor cells expressing NKG2D ligands. RNA sequencing (RNA-seq) revealed significant upregulation of genes related to cell adhesion, migration, and binding in NKG2D-CAR-iMSCs. In A549 xenograft model, NKG2D-CAR-iMSCs demonstrated a 57% improvement in tumor-homing ability compared with iMSCs. In conclusion, our findings demonstrate enhanced targeting specificity of NKG2D-CAR-iMSCs to tumor cells expressing NKG2D ligands in vitro and in vivo, facilitating future investigation of iMSCs as an off-the-shelf living carrier for targeted delivery of anti-tumor agents.
Collapse
Affiliation(s)
- Shuqing Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yusang Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Peiyun Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Qiyu Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yating Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Fan Lu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Mengting Han
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Qian Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Mai Feng
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410078, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
2
|
Jiang S, Zheng S, Yao C, Ning D, Zou S, Zhan J, Lan T, Yi T, Jin Z, Wu X. Heterogeneity of γδ T-cell subsets and their clinical correlation in patients with AML. Front Immunol 2025; 16:1552235. [PMID: 40236710 PMCID: PMC11996841 DOI: 10.3389/fimmu.2025.1552235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Background γδ T cells are integral elements of the immune system and have shown therapeutic potential in the treatment of acute myeloid leukemia (AML). Nevertheless, the influence of distinct functional subsets, including the activating marker NKG2D, the immune exhaustion marker TIGIT, and the regulatory marker Foxp3, on therapeutic outcomes in AML patients remains unknown. Methods First, we analyzed RNA-seq data from 167 patients in The Cancer Genome Atlas (TCGA) database, concentrating on the correlations between NKG2D, TIGIT, and Foxp3 gene expressions and their association with prognosis in AML. We employed flow cytometry to assess the expression of these molecular markers on γδ T cells and the Vδ1/Vδ2 subsets in the peripheral blood of 25 de novo AML (AML-DN) patients, 15 patients in complete remission (CR), and 27 healthy controls (HCs). We also analyzed the relationship between the expression frequencies of NKG2D, TIGIT, and Foxp3 on γδ T cells and their subsets, and their clinical outcomes. Results Based on data from TCGA database, we found that a high expression level of NKG2D in combination with a low expression level of TIGIT was significantly associated with longer overall survival (OS) in AML patients. Clinical data revealed that γδ T cells from AML-DN patients exhibited higher expression levels of TIGIT and Foxp3, whereas NKG2D expression was lower compared to that of HCs. Notably, the expression of the NKG2D+TIGIT- Vδ1 subset was significantly reduced in AML-DN patients compared to CR patients. Univariate logistic regression and Cox regression analyses further indicated that a high expression of the NKG2D+TIGIT- Vδ1 subset was associated with better clinical prognosis. Conclusion This study indicates that NKG2D+TIGIT- Vδ1 T cells are strongly correlated with improved prognosis in AML, and future research should investigate their potential in adoptive immunotherapy to advance more personalized and precise treatment strategies.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/genetics
- Female
- Male
- Middle Aged
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Adult
- Aged
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/genetics
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Prognosis
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Young Adult
- Intraepithelial Lymphocytes/immunology
Collapse
Affiliation(s)
- Siyuan Jiang
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Shiyu Zheng
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Chao Yao
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Dengchong Ning
- Youjiang Medical University for Nationalities, Baise, China
| | - Shaoyun Zou
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Jiannan Zhan
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Tianbi Lan
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of YouJiang Medical University for Nationalities/Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutions, Baise, China
| | - Zhenyi Jin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Jinan-Puhua Joint Laboratory, Guangzhou, China
| | - Xiuli Wu
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Jinan-Puhua Joint Laboratory, Guangzhou, China
| |
Collapse
|
3
|
Straube J, Janardhanan Y, Haldar R, Bywater MJ. Immune control in acute myeloid leukemia. Exp Hematol 2024; 138:104256. [PMID: 38876254 DOI: 10.1016/j.exphem.2024.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease, in that a multitude of oncogenic drivers and chromosomal abnormalities have been identified and associated with the leukemic transformation of myeloid blasts. However, little is known as to how individual mutations influence the interaction between the immune system and AML cells and the efficacy of the immune system in AML disease control. In this review, we will discuss how AML cells potentially activate the immune system and what evidence there is to support the role of the immune system in controlling this disease. We will specifically examine the importance of antigen presentation in fostering an effective anti-AML immune response, explore the disruption of immune responses during AML disease progression, and discuss the emerging role of the oncoprotein MYC in driving immune suppression in AML.
Collapse
Affiliation(s)
- Jasmin Straube
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia
| | | | - Rohit Haldar
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Megan J Bywater
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Serritella AV, Saenz-Lopez Larrocha P, Dhar P, Liu S, Medd MM, Jia S, Cao Q, Wu JD. The Human Soluble NKG2D Ligand Differentially Impacts Tumorigenicity and Progression in Temporal and Model-Dependent Modes. Biomedicines 2024; 12:196. [PMID: 38255301 PMCID: PMC10812945 DOI: 10.3390/biomedicines12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
NKG2D is an activating receptor expressed by all human NK cells and CD8 T cells. Harnessing the NKG2D/NKG2D ligand axis has emerged as a viable avenue for cancer immunotherapy. However, there is a long-standing controversy over whether soluble NKG2D ligands are immunosuppressive or immunostimulatory, originating from conflicting data generated from different scopes of pre-clinical investigations. Using multiple pre-clinical tumor models, we demonstrated that the impact of the most characterized human solid tumor-associated soluble NKG2D ligand, the soluble MHC I chain-related molecule (sMIC), on tumorigenesis depended on the tumor model being studied and whether the tumor cells possessed stemness-like properties. We demonstrated that the potential of tumor formation or establishment depended upon tumor cell stem-like properties irrespective of tumor cells secreting the soluble NKG2D ligand sMIC. Specifically, tumor formation was delayed or failed if sMIC-expressing tumor cells expressed low stem-cell markers; tumor formation was rapid if sMIC-expressing tumor cells expressed high stem-like cell markers. However, once tumors were formed, overexpression of sMIC unequivocally suppressed tumoral NK and CD8 T cell immunity and facilitated tumor growth. Our study distinguished the differential impacts of soluble NKG2D ligands in tumor formation and tumor progression, cleared the outstanding controversy over soluble NKG2D ligands in modulating tumor immunity, and re-enforced the viability of targeting soluble NKG2D ligands for cancer immunotherapy for established tumors.
Collapse
Affiliation(s)
- Anthony V. Serritella
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Pablo Saenz-Lopez Larrocha
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Sizhe Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Milan M. Medd
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Shengxian Jia
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Jennifer D. Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Yin JY, Zhou Y, Ding XM, Gong RZ, Zhou Y, Hu HY, Liu Y, Lv XB, Zhang B. UCA1 Inhibits NKG2D-mediated Cytotoxicity of NK Cells to Breast Cancer. Curr Cancer Drug Targets 2024; 24:204-219. [PMID: 37076962 DOI: 10.2174/1568009623666230418134253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Natural killer cells play important roles in tumor immune surveillance, and cancer cells must resist this surveillance in order to progress and metastasise. INTRODUCTION The study aimed to explore the mechanism of how breast cancer cells become resistant to the cytotoxicity of NK cells. METHODS We established NK-resistant breast cancer cells by exposing MDA-MB-231 cells and MCF-7 cells to NK92 cells. Profiles of lncRNA were compared between the NK-resistant and parental cell lines. Primary NK cells were isolated by MACS, and the NK attacking effect was tested by non-radioactive cytotoxicity. The change in lncRNAs was analyzed by Gene-chip. The interaction between lncRNA and miRNA was displayed by Luciferase assay. The regulation of the gene was verified by QRT-PCR and WB. The clinical indicators were detected by ISH, IH, and ELISA, respectively. RESULTS UCA1 was found to be significantly up-regulated in both NK-resistant cell lines, and we confirmed such up-regulation on its own to be sufficient to render parental cell lines resistant to NK92 cells. We found that UCA1 up-regulated ULBP2 via the transcription factor CREB1, while it up-regulated ADAM17 by "sponging" the miR-26b-5p. ADAM17 facilitated the shedding of soluble ULBP2 from the surface of breast cancer cells, rendering them resistant to killing by NK cells. UCA1, ADAM17, and ULBP2 were found to be expressed at higher levels in bone metastases of breast cancer than in primary tumors. CONCLUSION Our data strongly suggest that UCA1 up-regulates ULBP2 expression and shedding, rendering breast cancer cells resistant to killing by NK cells.
Collapse
Affiliation(s)
- Jun-Yi Yin
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, 445 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, China
- Oncology Department of Tongji Hospital of Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Yao Zhou
- Department of Breast Surgery, the Third hospital of Nanchang, No. 2, Xiangshan Road, Xihu District, Nanchang, Jiangxi, 330009, China
| | - Xiao-Ming Ding
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Run-Ze Gong
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yan Zhou
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Hai-Yan Hu
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yuan Liu
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Xiao-Bin Lv
- Central Laboratory of the Third Affiliated Hospital of Nanchang University, No. 128 Xiangshan N Road, Donghu District, Nanchang, Jiangxi, 330008, China
| | - Bing Zhang
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, 445 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
6
|
Wei L, Xiang Z, Zou Y. The Role of NKG2D and Its Ligands in Autoimmune Diseases: New Targets for Immunotherapy. Int J Mol Sci 2023; 24:17545. [PMID: 38139373 PMCID: PMC10744089 DOI: 10.3390/ijms242417545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Natural killer (NK) cells and CD8+ T cells can clear infected and transformed cells and generate tolerance to themselves, which also prevents autoimmune diseases. Natural killer group 2 member D (NKG2D) is an important activating immune receptor that is expressed on NK cells, CD8+ T cells, γδ T cells, and a very small percentage of CD4+ T cells. In contrast, the NKG2D ligand (NKG2D-L) is generally not expressed on normal cells but is overexpressed under stress. Thus, the inappropriate expression of NKG2D-L leads to the activation of self-reactive effector cells, which can trigger or exacerbate autoimmunity. In this review, we discuss the role of NKG2D and NKG2D-L in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), type I diabetes (T1DM), inflammatory bowel disease (IBD), and celiac disease (CeD). The data suggest that NKG2D and NKG2D-L play a pathogenic role in some autoimmune diseases. Therefore, the development of strategies to block the interaction of NKG2D and NKG2D-L may have therapeutic effects in some autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Yizhou Zou
- Department of Immunology, School of Basic Medical, Central South University, Changsha 410083, China; (L.W.); (Z.X.)
| |
Collapse
|
7
|
Wang J, Nakafuku KM, Ziff J, Gelin CF, Gholami H, Thompson AA, Karpowich NK, Limon L, Coate HR, Damm-Ganamet KL, Shih AY, Grant JC, Côte M, Mak PA, Pascual HA, Rives ML, Edwards JP, Venable JD, Venkatesan H, Shi Z, Allen SJ, Sharma S, Kung PP, Shireman BT. Development of small molecule inhibitors of natural killer group 2D receptor (NKG2D). Bioorg Med Chem Lett 2023; 96:129492. [PMID: 37778428 DOI: 10.1016/j.bmcl.2023.129492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Natural killer group 2D (NKG2D) is a homodimeric activating immunoreceptor whose function is to detect and eliminate compromised cells upon binding to the NKG2D ligands (NKG2DL) major histocompatibility complex (MHC) molecules class I-related chain A (MICA) and B (MICB) and UL16 binding proteins (ULBP1-6). While typically present at low levels in healthy cells and tissue, NKG2DL expression can be induced by viral infection, cellular stress or transformation. Aberrant activity along the NKG2D/NKG2DL axis has been associated with autoimmune diseases due to the increased expression of NKG2D ligands in human disease tissue, making NKG2D inhibitors an attractive target for immunomodulation. Herein we describe the discovery and optimization of small molecule PPI (protein-protein interaction) inhibitors of NKG2D/NKG2DL. Rapid SAR was guided by structure-based drug design and accomplished by iterative singleton and parallel medicinal chemistry synthesis. These efforts resulted in the identification of several potent analogs (14, 21, 30, 45) with functional activity and improved LLE.
Collapse
Affiliation(s)
- Jocelyn Wang
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States.
| | - Kohki M Nakafuku
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States.
| | - Jeannie Ziff
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Christine F Gelin
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Hadi Gholami
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Aaron A Thompson
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Nathan K Karpowich
- Janssen Research & Development L.L.C., 1400 McKean Rd., Spring House, PA 19477, United States
| | - Luis Limon
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Heather R Coate
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Kelly L Damm-Ganamet
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Amy Y Shih
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Joanna C Grant
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Marjorie Côte
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Puiying A Mak
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Heather A Pascual
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Marie-Laure Rives
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - James P Edwards
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Jennifer D Venable
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Hariharan Venkatesan
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Zhicai Shi
- Janssen Research & Development L.L.C., 1400 McKean Rd., Spring House, PA 19477, United States
| | - Samantha J Allen
- Janssen Research & Development L.L.C., 1400 McKean Rd., Spring House, PA 19477, United States
| | - Sujata Sharma
- Janssen Research & Development L.L.C., 1400 McKean Rd., Spring House, PA 19477, United States
| | - Pei-Pei Kung
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Brock T Shireman
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| |
Collapse
|
8
|
Alkhayer R, Ponath V, Frech M, Adhikary T, Graumann J, Neubauer A, von Strandmann EP. KLF4-mediated upregulation of the NKG2D ligand MICA in acute myeloid leukemia: a novel therapeutic target identified by enChIP. Cell Commun Signal 2023; 21:94. [PMID: 37143070 PMCID: PMC10157933 DOI: 10.1186/s12964-023-01118-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
The immunoreceptor NKG2D, which is expressed on NK cells and T cell subsets is critically involved in tumor immune surveillance. This applies in particular to acute myeloid leukemia (AML), which evades immune detection by downregulation of NKG2D ligands (NKG2D-L), including MICA. The absence of NKG2D-L on AML cells is moreover associated with leukemia stem cell characteristics. The NKG2D/NKG2D-L system thus qualifies as an interesting and promising therapeutic target.Here we aimed to identify transcription factors susceptible to pharmacological stimulation resulting in the expression of the NKG2D-L MICA in AML cells to restore anti-tumor activity. Using a CRISPR-based engineered ChIP (enChIP) assay for the MICA promoter region and readout by mass spectrometry-based proteomics, we identified the transcription factor krüppel-like factor 4 (KLF4) as associated with the promoter. We demonstrated that the MICA promoter comprises functional binding sites for KLF4 and genetic as well as pharmacological gain- and loss-of-function experiments revealed inducible MICA expression to be mediated by KLF4.Furthermore, induction in AML cells was achieved with the small compound APTO253, a KLF4 activator, which also inhibits MYC expression and causes DNA damage. This induction in turn yielded increased expression and cell surface presentation of MICA, thus rendering AML cells more susceptible to NK cell-mediated killing. These data unravel a novel link between APTO253 and the innate anti-tumor immune response providing a rationale for targeting AML cells via APTO253-dependent KFL4/MICA induction to allow elimination by endogenous or transplanted NK and T cells in vivo. Video Abstract.
Collapse
Affiliation(s)
- Reem Alkhayer
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
- Clinic for Hematology, Oncology, and Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
- Clinic for Hematology, Oncology, and Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Miriam Frech
- Clinic for Hematology, Oncology, and Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research, Institute for Medical Bioinformatics and Biostatistics, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Philipps University of Marburg, Marburg, Germany
| | - Andreas Neubauer
- Clinic for Hematology, Oncology, and Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany.
- Clinic for Hematology, Oncology, and Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
9
|
Whalen KA, Rakhra K, Mehta NK, Steinle A, Michaelson JS, Baeuerle PA. Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors. MAbs 2023; 15:2208697. [PMID: 37165468 PMCID: PMC10173799 DOI: 10.1080/19420862.2023.2208697] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
The field of immuno-oncology has revolutionized cancer patient care and improved survival and quality of life for patients. Much of the focus in the field has been on exploiting the power of the adaptive immune response through therapeutic targeting of T cells. While these approaches have markedly advanced the field, some challenges remain, and the clinical benefit of T cell therapies does not extend to all patients or tumor indications. Alternative strategies, such as engaging the innate immune system, have become an intense area of focus in the field. In particular, the engagement of natural killer (NK) cells as potent effectors of the innate immune response has emerged as a promising modality in immunotherapy. Here, we review therapeutic approaches for selective engagement of NK cells for cancer therapy, with a particular focus on targeting the key activating receptors NK Group 2D (NKG2D) and cluster of differentiation 16A (CD16A).
Collapse
Affiliation(s)
- Kerry A. Whalen
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Kavya Rakhra
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Naveen K. Mehta
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Preclinical and Early Development, Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | | | - Patrick A. Baeuerle
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
- Institute for Immunology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
10
|
Li J, Li X, Guo Q. Drug Resistance in Cancers: A Free Pass for Bullying. Cells 2022; 11:3383. [PMID: 36359776 PMCID: PMC9654341 DOI: 10.3390/cells11213383] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
The cancer burden continues to grow globally, and drug resistance remains a substantial challenge in cancer therapy. It is well established that cancerous cells with clonal dysplasia generate the same carcinogenic lesions. Tumor cells pass on genetic templates to subsequent generations in evolutionary terms and exhibit drug resistance simply by accumulating genetic alterations. However, recent evidence has implied that tumor cells accumulate genetic alterations by progressively adapting. As a result, intratumor heterogeneity (ITH) is generated due to genetically distinct subclonal populations of cells coexisting. The genetic adaptive mechanisms of action of ITH include activating "cellular plasticity", through which tumor cells create a tumor-supportive microenvironment in which they can proliferate and cause increased damage. These highly plastic cells are located in the tumor microenvironment (TME) and undergo extreme changes to resist therapeutic drugs. Accordingly, the underlying mechanisms involved in drug resistance have been re-evaluated. Herein, we will reveal new themes emerging from initial studies of drug resistance and outline the findings regarding drug resistance from the perspective of the TME; the themes include exosomes, metabolic reprogramming, protein glycosylation and autophagy, and the relates studies aim to provide new targets and strategies for reversing drug resistance in cancers.
Collapse
Affiliation(s)
| | | | - Qie Guo
- The Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
11
|
Hammad R, Eldosoky MA, Mosaad AM, El-Nasser AM, Kotb FM, Elshennawy SI, Eldesoky NAR, Selim MA, Naguib GG, Ahmed OA, Alboraie M, Aglan RB. Natural Killer Group 2D Receptor and B1a Cells Crosstalk in Post-Hepatitis C Virus Infection Hepatocellular Carcinoma and Cirrhosis. J Hepatocell Carcinoma 2022; 9:609-619. [PMID: 35879974 PMCID: PMC9307915 DOI: 10.2147/jhc.s360886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background Natural killer (NK) and B1a cells are implicated in innate immune surveillance against chronic hepatitis C virus (CHCV). NK group 2D (NKG2D) receptor is important for B cell differentiation. This study was designed to assess whether B1a cells and NK Cells expressing NKG2D are implicated in post-hepatitis C infection hepatocellular carcinoma (post-HCV HCC) and cirrhosis using flow cytometry and investigate the association between NK-expressing NKG2D and B1a in complications of CHCV infection. Methods In this cross-sectional study, 111 participants were included and divided into the post-HCV HCC (n = 50), post-HCV liver cirrhosis (n = 31), and CHCV (n = 30) groups. Results The percentage of B1a cells (B1a%) and the mean fluorescence intensity (MFI) of NKG2D (NKG2D MFI) showed a significant increase in the CHCV group compared with those in the post-HCV liver cirrhosis and post-HCV HCC groups (P < 0.05). A positive correlation was observed between NKG2D MFI and B1a% (r = 0.6, P < 0.001). The receiver operating characteristic (ROC) curve revealed that NKG2D MFI and B1a% differentiated between patients with CHCV infection and those with HCC with a sensitivity of 92% and 98%, respectively, and differentiated between patients with CHCV infection and those with liver cirrhosis with a sensitivity of 94% and 90%, respectively. Conclusion Downregulation of B1a frequency and NKG2D intensity is implicated in the progression of CHCV infection to cirrhosis and HCC. NKG2D receptor is associated with the frequency of circulating B1a cells. NKG2D intensity and B1a% can be used as indicators of CHCV progression.
Collapse
Affiliation(s)
- Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Alshaimaa M Mosaad
- Hepatogastroenterology and Infectious Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa M El-Nasser
- Medical Microbiology and Immunology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma M Kotb
- Internal Medicine Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Salwa I Elshennawy
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Noha Abdel-Rahman Eldesoky
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (for Girls), Al-Azhar University, Cairo, Egypt
| | - Mohamed A Selim
- Botany and Microbiology Department, Faculty of Science (for Boys), Al-Azhar University, Cairo, Egypt
| | - Gina G Naguib
- Internal Medicine, Gastroenterology and Hepatology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ossama A Ahmed
- Internal Medicine, Gastroenterology and Hepatology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Alboraie
- Department of internal medicine, Al-Azhar University, Cairo, Egypt
| | - Reda Badr Aglan
- Hepatology and Gastroenterology Department, National Liver Institute Menoufia university, Menoufia, Egypt
| |
Collapse
|
12
|
Su X, Jin H, Du N, Wang J, Lu H, Xiao J, Li X, Yi J, Gu T, Dan X, Gao Z, Li M. A Novel Computational Framework for Predicting the Survival of Cancer Patients With PD-1/PD-L1 Checkpoint Blockade Therapy. Front Oncol 2022; 12:930589. [PMID: 35832540 PMCID: PMC9271954 DOI: 10.3389/fonc.2022.930589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) induce durable responses, but only a minority of patients achieve clinical benefits. The development of gene expression profiling of tumor transcriptomes has enabled identifying prognostic gene expression signatures and patient selection with targeted therapies. Methods Immune exclusion score (IES) was built by elastic net-penalized Cox proportional hazards (PHs) model in the discovery cohort and validated via four independent cohorts. The survival differences between the two groups were compared using Kaplan-Meier analysis. Both GO and KEGG analyses were performed for functional annotation. CIBERSORTx was also performed to estimate the relative proportion of immune-cell types. Results A fifteen-genes immune exclusion score (IES) was developed in the discovery cohort of 65 patients treated with anti-PD-(L)1 therapy. The ROC efficiencies of 1- and 3- year prognosis were 0.842 and 0.82, respectively. Patients with low IES showed a longer PFS (p=0.003) and better response rate (ORR: 43.8% vs 18.2%, p=0.03). We found that patients with low IES enriched with high expression of immune eliminated cell genes, such as CD8+ T cells, CD4+ T cells, NK cells and B cells. IES was positively correlated with other immune exclusion signatures. Furthermore, IES was successfully validated in four independent cohorts (Riaz’s SKCM, Liu’s SKCM, Nathanson’s SKCM and Braun’s ccRCC, n = 367). IES was also negatively correlated with T cell–inflamed signature and independent of TMB. Conclusions This novel IES model encompassing immune-related biomarkers might serve as a promising tool for the prognostic prediction of immunotherapy.
Collapse
Affiliation(s)
- Xiaofan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Translational Medicine, YuceBioTechnology Co., Ltd., Shenzhen, China
- Department of Translational Medicine, YuceNeo Technology Co., Ltd., Shenzhen, China
| | - Haoxuan Jin
- Department of Translational Medicine, YuceBioTechnology Co., Ltd., Shenzhen, China
- Department of Translational Medicine, YuceNeo Technology Co., Ltd., Shenzhen, China
| | - Ning Du
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaqian Wang
- Department of Translational Medicine, YuceBioTechnology Co., Ltd., Shenzhen, China
- Department of Translational Medicine, YuceNeo Technology Co., Ltd., Shenzhen, China
| | - Huiping Lu
- Department of Translational Medicine, YuceBioTechnology Co., Ltd., Shenzhen, China
- Department of Translational Medicine, YuceNeo Technology Co., Ltd., Shenzhen, China
| | - Jinyuan Xiao
- Department of Translational Medicine, YuceBioTechnology Co., Ltd., Shenzhen, China
- Department of Translational Medicine, YuceNeo Technology Co., Ltd., Shenzhen, China
| | - Xiaoting Li
- Department of Translational Medicine, YuceBioTechnology Co., Ltd., Shenzhen, China
- Department of Translational Medicine, YuceNeo Technology Co., Ltd., Shenzhen, China
| | - Jian Yi
- Department of Translational Medicine, YuceBioTechnology Co., Ltd., Shenzhen, China
- Department of Translational Medicine, YuceNeo Technology Co., Ltd., Shenzhen, China
| | - Tiantian Gu
- Department of Translational Medicine, YuceBioTechnology Co., Ltd., Shenzhen, China
- Department of Translational Medicine, YuceNeo Technology Co., Ltd., Shenzhen, China
| | - Xu Dan
- Department of Translational Medicine, YuceBioTechnology Co., Ltd., Shenzhen, China
- Department of Translational Medicine, YuceNeo Technology Co., Ltd., Shenzhen, China
| | - Zhibo Gao
- Department of Translational Medicine, YuceBioTechnology Co., Ltd., Shenzhen, China
- Department of Translational Medicine, YuceNeo Technology Co., Ltd., Shenzhen, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Manxiang Li,
| |
Collapse
|
13
|
Zhang Y, Hu R, Xi B, Nie D, Xu H, Liu A. Mechanisms of Senescence-Related NKG2D Ligands Release and Immune Escape Induced by Chemotherapy in Neuroblastoma Cells. Front Cell Dev Biol 2022; 10:829404. [PMID: 35309907 PMCID: PMC8924122 DOI: 10.3389/fcell.2022.829404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
Chemotherapy-induced senescence promotes immunocyte aggregation in the tumor microenvironment by upregulating the surface expression of activating ligands in cancer cells. However, these senescent tumor cells cannot be completely cleared and can induce tumor recurrence. Previous studiesshowed that soluble natural killer (NK) group 2D (NKG2D) ligands impair the recognition of multiple immune cells. In this study, we established an in vitro senescence model using neuroblastoma cells subjected to low-dose Chemotherapeutic drug doxorubicin or the Aurora A inhibitor MLN8237. The results showed that different neuroblastoma cell lines showed increased secretion of the NKG2D ligand MHC class I polypeptide-related sequence A/B (MICA/B) following proteolysis after treatment, with MICA/B subsequently recruited to exosomes to downregulate NKG2D expression in NK cells. Interestingly, disintegrin and metalloproteinase domain-containing 10 (ADAM10) was upregulated in senescent tumor cells, and combined treatment with the ADAM10 inhibitor GI254023X and chemotherapeutic drugs inhibited MICA/B secretion and enhanced recognition and killing by NK cells. Additionally, we found that expression of the long noncoding RNA MALAT1 was significantly increased in senescent neuroblastoma cells, and that MALAT1 served as a sponge for microRNA (miR)-92a-3p to counteract miR-92a-3p-mediated repression of ADAM10 levels. Furthermore, administration of a MALAT1 inhibitor or an miR-92a-3p mimic reduced the MICA/B shedding and enhanced recognition and killing by NK cells. These results confirmed that low-dose chemotherapy induces senescence in neuroblastoma cells, and that senescent tumor cells promote the shedding of the NKG2D ligand MICA/B through the MALAT1/miR-92a/ADAM10 axis, thereby contributing to the formation of a suppressive immune microenvironment and promoting immune escape.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pediatrics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ruimin Hu
- Department of Pediatrics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bixin Xi
- Department of Pediatrics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dimin Nie
- Department of Pediatrics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hanxiao Xu
- Department of Pediatrics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Zhang Y, Chen Z, Jiang A, Gao G. KLRK1 as a prognostic biomarker for lung adenocarcinoma cancer. Sci Rep 2022; 12:1976. [PMID: 35132098 PMCID: PMC8821622 DOI: 10.1038/s41598-022-05997-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the most common malignancy worldwide and causes estimated 1.6 million deaths each year. Cancer immunosurveillance has been found to play an important role in lung cancer and may be related with its prognosis. KLRK1, encoding NKG2D, is a homodimeric lectin-like receptor. However, there has not been one research of KLRK1 as a biomarker in lung cancer. Data including patients` clinical characteristics and RNAseq information of KLRK1 from TCGA were downloaded. A total of 1019 patients with lung cancer were included in this study, among which 407 patients were female and 611 patients were male. Evaluations of mRNA expression, diagnostic value by ROC (receiver operating characteristic) curves and prognostic value by survival curve, Cox model and subgroup analysis were performed. The level of KLRK1 expression in lung adenocarcinoma cancer tissues and normal lung tissues was detected by qRT-PCR. The CCK-8 assay investigated the proliferation rate and the wound healing assay assessed the migratory ability in vitro. The expression of KLRK1 in tumor was lower than that in normal tissue. KLRK1 expression was associated with gender, histologic grade, stage, T classification and vital status. Patients with high KLRK1 expression presented an improved overall survival (P = 0.0036) and relapse free survival (P = 0.0031). KLRK1 was found to have significant prognostic value in lung adenocarcinoma (P = 0.015), stage I/II (P = 0.03), older patients (P = 0.0052), and male (P = 0.0047) by subgroup overall survival analysis, and in lung adenocarcinoma (P = 0.0094), stage I/II (P = 0.0076), older patients (P = 0.0072), and male (P = 0.0033) by subgroup relapse free survival analysis. Lung adenocarcinoma cancer patients with high KLRK1 expression presented an improved overall survival (P = 0.015) and relapse free survival (P = 0.0094). In vitro studies indicated that KLRK1 inhibited tumor cell proliferation and migration. KLRK1 was an independent prognostic factor and high KLRK1 expression indicated a better overall and relapse free survival. KLRK1 may be a prognostic biomarker for lung adenocarcinoma cancer.
Collapse
Affiliation(s)
- Yanan Zhang
- Clinical Medical College, Weifang Medical University, Weifang, 261000, China.,Linyi People's Hospital, Linyi, 276000, China
| | - Zeyang Chen
- Clinical Medical College, Qingdao University, Qingdao, 266000, China
| | - Aifang Jiang
- Weifang Medical University, Weifang, 261000, China.
| | - Guanqi Gao
- Linyi People's Hospital, Linyi, 276000, China.
| |
Collapse
|
15
|
Elebyary O, Barbour A, Fine N, Tenenbaum HC, Glogauer M. The Crossroads of Periodontitis and Oral Squamous Cell Carcinoma: Immune Implications and Tumor Promoting Capacities. FRONTIERS IN ORAL HEALTH 2022; 1:584705. [PMID: 35047982 PMCID: PMC8757853 DOI: 10.3389/froh.2020.584705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Periodontitis (PD) is increasingly considered to interact with and promote a number of inflammatory diseases, including cancer. In the case of oral squamous cell carcinoma (OSCC) the local inflammatory response associated with PD is capable of triggering altered cellular events that can promote cancer cell invasion and proliferation of existing primary oral carcinomas as well as supporting the seeding of metastatic tumor cells into the gingival tissue giving rise to secondary tumors. Both the immune and stromal components of the periodontium exhibit phenotypic alterations and functional differences during PD that result in a microenvironment that favors cancer progression. The inflammatory milieu in PD is ideal for cancer cell seeding, migration, proliferation and immune escape. Understanding the interactions governing this attenuated anti-tumor immune response is vital to unveil unexplored preventive or therapeutic possibilities. Here we review the many commonalities between the oral-inflammatory microenvironment in PD and oral-inflammatory responses that are associated with OSCC progression, and how these conditions can act to promote and sustain the hallmarks of cancer.
Collapse
Affiliation(s)
- Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Howard C Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
16
|
Liu M, Du M, Yu J, Qian Z, Gao Y, Pan W, Zhao X, Wang M, Li H, Zheng J, Huang Q, Wang LM, Xiao H. CEBPA mutants down-regulate AML cell susceptibility to NK-mediated lysis by disruption of the expression of NKG2D ligands, which can be restored by LSD1 inhibition. Oncoimmunology 2022; 11:2016158. [PMID: 35003895 PMCID: PMC8741297 DOI: 10.1080/2162402x.2021.2016158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NK group 2, member D (NKG2D) is one of the most critical activating receptors expressed by natural killer (NK) cells. There is growing evidence that acute myeloid leukemia (AML) cells may evade NK cell-mediated cell lysis by expressing low or no ligands for NKG2D (NKG2D-Ls). We hypothesized that CCAAT/enhancer-binding protein α (C/EBPα), one of the most studied lineage-specific transcription factors in hematopoiesis, might influence the expression of NKG2D-Ls. To test this hypothesis, we first examined the endogenous expression of wild-type C/EBPα (C/EBPα-p42) in human AML cell lines and demonstrated that its expression level was highly relevant to the sensitivity of AML cells to NK cell cytotoxicity. Induction of C/EBPα-p42 in the low endogenous CEBPA-expressing AML cell line increased the sensitivity to NK-induced lysis. Moreover, decreased expression of C/EBPα-p42 by RNA interference in AML cells abrogated NK-mediated cytotoxicity. We further showed that the increase in NK susceptibility caused by C/EBPα-p42 occurred through up-regulation of the NKG2D-Ls ULBP2/5/6 in AML cells. More importantly, chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing captured C/EBPα motif signatures at the enhancer regions of the ULBP 2/5/6 genes. Whilst, the AML-associated C/EBPα C-terminal mutant and N-terminal truncated mutant (C/EBPα-p30) diminished ULBP2/5/6 transcription. Finally, we identified that histone demethylase lysine-specific demethylase 1 (LSD1) inhibition can restore the expression of ULBPs via induction of CEBPA expression in AML cells, which may represent a novel therapeutic strategy for CEBPA-mutated AML. Abbreviations: C/EBPα: CCAAT/enhancer-binding protein α; TF: Transcription factor; AML: Acute myeloid leukemia; TAD: Transactivation domain; FS: Frameshift; NK: Natural killer; NKG2D: NK group 2, member D; NKG2D-Ls: Ligands for NKG2D; MHC: Major histocompatibility complex; MICA: MHC class I-related chain A; ULBP: UL16-binding protein; STAT3: Signal transducer and activator of transcription 3; LSD1: Lysine-specific demethylase 1; Ab: Antibody; PBMC: Peripheral blood mononuclear cell; PBS: Phosphate-buffered saline; CFSE: Carboxyfluorescein diacetate succinimidyl ester; PI: Propidium iodide; shRNA: Short hairpin RNA; ChIP: Chromatin immunoprecipitation; BM: Binding motif; HCNE: Highly conserved noncoding element; TSS: Transcription start site; HMA: Hypomethylating agent; AZA: Azacitidine/5-azacytidine; DAC: Decitabine/5-aza-29-deoxycytidine; 2-PCPA: Tranylcypromine; RBP: RNA-binding protein; MSI2: MUSASHI-2; HDACi: Inhibitor of histone deacetylases; VPA: Valproate; DNMTi: DNA methyl transferase inhibitor; SCLC: Small cell lung cancer
Collapse
Affiliation(s)
- Meng Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Mengbao Du
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Zijun Qian
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Yang Gao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Wenjue Pan
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Xiujie Zhao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Mowang Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Huimin Li
- Undergraduate School, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Jiaqi Zheng
- Undergraduate School, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Qianshuo Huang
- Undergraduate School, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Li-Mengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P R China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P R China.,Institute of Hematology, Zhejiang University, Hangzhou, P R China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P R China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P R China.,Institute of Hematology, Zhejiang University, Hangzhou, P R China
| |
Collapse
|
17
|
Liu R, Luo Q, Luo W, Wan L, Zhu Q, Yin X, Lu X, Song Z, Wei L, Xiang Z, Zou Y. A Soluble NK-CAR Mediates the Specific Cytotoxicity of NK Cells toward the Target CD20 + Lymphoma Cells. Aging Dis 2022; 13:1576-1588. [PMID: 36186137 PMCID: PMC9466963 DOI: 10.14336/ad.2022.0415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/15/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Rongjiao Liu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Qizhi Luo
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Weiguang Luo
- Department of Laboratory Medicine, Henan Provincial People's Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ling Wan
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Quan Zhu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Xiangli Yin
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Xiaofang Lu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Zixuan Song
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Leiyan Wei
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Zhiqing Xiang
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Yizhou Zou
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Yizhou Zou, Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China. .
| |
Collapse
|
18
|
Tallima H, Azzazy HME, El Ridi R. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion. Lipids Health Dis 2021; 20:150. [PMID: 34717628 PMCID: PMC8557557 DOI: 10.1186/s12944-021-01581-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface biochemical changes, notably excessive increase in outer leaflet sphingomyelin (SM) content, are important in cancer initiation, growth, and immune evasion. Innumerable reports describe methods to initiate, promote, or enhance immunotherapy of clinically detected cancer, notwithstanding the challenges, if not impossibility, of identification of tumor-specific, or associated antigens, the lack of tumor cell surface membrane expression of major histocompatibility complex (MHC) class I alpha and β2 microglobulin chains, and lack of expression or accessibility of Fas and other natural killer cell immune checkpoint molecules. Conversely, SM synthesis and hydrolysis are increasingly implicated in initiation of carcinogenesis and promotion of metastasis. Surface membrane SM readily forms inter- and intra- molecular hydrogen bond network, which excessive tightness would impair cell-cell contact inhibition, inter- and intra-cellular signals, metabolic pathways, and susceptibility to host immune cells and mediators. The present review aims at clarifying the tumor immune escape mechanisms, which face common immunotherapeutic approaches, and attracting attention to an entirely different, neglected, key aspect of tumorigenesis associated with biochemical changes in the cell surface that lead to failure of contact inhibition, an instrumental tumorigenesis mechanism. Additionally, the review aims to provide evidence for surface membrane SM levels and roles in cells resistance to death, failure to respond to growth suppressor signals, and immune escape, and to suggest possible novel approaches to cancer control and cure.
Collapse
Affiliation(s)
- Hatem Tallima
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt. .,Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Hassan M E Azzazy
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
19
|
Bufalin enhances the killing efficacy of NK cells against hepatocellular carcinoma by inhibiting MICA shedding. Int Immunopharmacol 2021; 101:108195. [PMID: 34678691 DOI: 10.1016/j.intimp.2021.108195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023]
Abstract
Bufalin, as a Chinese traditional anti-tumor agent, has been studied about inhibiting proliferation and promoting apoptosis of liver cancer, however, there are few reports on immune modulating function. We used the human liver cancer cell lines along with 91 pathologically-verified postoperative hepatocellular carcinoma (HCC) specimens to assess immune modulating function of bufalin. We found that bufalin directly balances stimulatory and inhibitory receptors on the surface of NK cells and indirectly activates natural killer (NK) cells by inhibiting MICA shedding, which prevented immune escape and indirectly enhanced NKG2D-dependent immune surveillance. This study showed that bufalin can directly or indirectly regulate the immune response, which provides a new theoretical basis for the clinical application of "Huachansu injection".
Collapse
|
20
|
Lin Z, Wu Z, Luo W. Chimeric Antigen Receptor T-Cell Therapy: The Light of Day for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13174469. [PMID: 34503279 PMCID: PMC8431424 DOI: 10.3390/cancers13174469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary As a novel immunotherapy, chimeric antigen receptor (CAR) T-cell therapy has achieved encouraging results in leukemia and lymphoma. Furthermore, CAR-T cells have been explored in the treatment of osteosarcoma (OS). However, there is no strong comprehensive evidence to support their efficacy. Therefore, we reviewed the current evidence on CAR-T cells for OS to demonstrate their feasibility and provide new options for the treatment of OS. Abstract Osteosarcoma (OS) is the most common malignant bone tumor, arising mainly in children and adolescents. With the introduction of multiagent chemotherapy, the treatments of OS have remarkably improved, but the prognosis for patients with metastases is still poor, with a five-year survival rate of 20%. In addition, adverse effects brought by traditional treatments, including radical surgery and systemic chemotherapy, may seriously affect the survival quality of patients. Therefore, new treatments for OS await exploitation. As a novel immunotherapy, chimeric antigen receptor (CAR) T-cell therapy has achieved encouraging results in treating cancer in recent years, especially in leukemia and lymphoma. Furthermore, researchers have recently focused on CAR-T therapy in solid tumors, including OS. In this review, we summarize the safety, specificity, and clinical transformation of the targets in treating OS and point out the direction for further research.
Collapse
|
21
|
Leivas A, Valeri A, Córdoba L, García-Ortiz A, Ortiz A, Sánchez-Vega L, Graña-Castro O, Fernández L, Carreño-Tarragona G, Pérez M, Megías D, Paciello ML, Sánchez-Pina J, Pérez-Martínez A, Lee DA, Powell DJ, Río P, Martínez-López J. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J 2021; 11:146. [PMID: 34392311 PMCID: PMC8364555 DOI: 10.1038/s41408-021-00537-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
CAR-T-cell therapy against MM currently shows promising results, but usually with serious toxicities. CAR-NK cells may exert less toxicity when redirected against resistant myeloma cells. CARs can be designed through the use of receptors, such as NKG2D, which recognizes a wide range of ligands to provide broad target specificity. Here, we test this approach by analyzing the antitumor activity of activated and expanded NK cells (NKAE) and CD45RA- T cells from MM patients that were engineered to express an NKG2D-based CAR. NKAE cells were cultured with irradiated Clone9.mbIL21 cells. Then, cells were transduced with an NKG2D-4-1BB-CD3z-CAR. CAR-NKAE cells exhibited no evidence of genetic abnormalities. Although memory T cells were more stably transduced, CAR-NKAE cells exhibited greater in vitro cytotoxicity against MM cells, while showing minimal activity against healthy cells. In vivo, CAR-NKAE cells mediated highly efficient abrogation of MM growth, and 25% of the treated mice remained disease free. Overall, these results demonstrate that it is feasible to modify autologous NKAE cells from MM patients to safely express a NKG2D-CAR. Additionally, autologous CAR-NKAE cells display enhanced antimyeloma activity demonstrating that they could be an effective strategy against MM supporting the development of NKG2D-CAR-NK-cell therapy for MM.
Collapse
Affiliation(s)
- Alejandra Leivas
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Valeri
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Ortiz
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Sánchez-Vega
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Lucía Fernández
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Gonzalo Carreño-Tarragona
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Manuel Pérez
- Confocal Microscopy Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - María Liz Paciello
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jose Sánchez-Pina
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Dean A Lee
- Cellular Therapy and Cancer Immunology Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, 28040, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, 28040, Spain
| | - Joaquín Martínez-López
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain.
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
22
|
Kaweme NM, Zhou F. Optimizing NK Cell-Based Immunotherapy in Myeloid Leukemia: Abrogating an Immunosuppressive Microenvironment. Front Immunol 2021; 12:683381. [PMID: 34220833 PMCID: PMC8247591 DOI: 10.3389/fimmu.2021.683381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are prominent cytotoxic and cytokine-producing components of the innate immune system representing crucial effector cells in cancer immunotherapy. Presently, various NK cell-based immunotherapies have contributed to the substantial improvement in the reconstitution of NK cells against advanced-staged and high-risk AML. Various NK cell sources, including haploidentical NK cells, adaptive NK cells, umbilical cord blood NK cells, stem cell-derived NK cells, chimeric antigen receptor NK cells, cytokine-induced memory-like NK cells, and NK cell lines have been identified. Devising innovative approaches to improve the generation of therapeutic NK cells from the aforementioned sources is likely to enhance NK cell expansion and activation, stimulate ex vivo and in vivo persistence of NK cells and improve conventional treatment response of myeloid leukemia. The tumor-promoting properties of the tumor microenvironment and downmodulation of NK cellular metabolic activity in solid tumors and hematological malignancies constitute a significant impediment in enhancing the anti-tumor effects of NK cells. In this review, we discuss the current NK cell sources, highlight ongoing interventions in enhancing NK cell function, and outline novel strategies to circumvent immunosuppressive factors in the tumor microenvironment to improve the efficacy of NK cell-based immunotherapy and expand their future success in treating myeloid leukemia.
Collapse
Affiliation(s)
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
The NKG2D ligand ULBP4 is not expressed by human monocytes. PLoS One 2021; 16:e0246726. [PMID: 33556116 PMCID: PMC7870063 DOI: 10.1371/journal.pone.0246726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
The C-type lectin-like receptor NKG2D contributes to the immunosurveillance of virally infected and malignant cells by cytotoxic lymphocytes. A peculiar and puzzling feature of the NKG2D-based immunorecognition system is the high number of ligands for this single immunoreceptor. In humans, there are a total of eight NKG2D ligands (NKG2DL) comprising two members of the MIC (MICA, MICB) and six members of the ULBP family of glycoproteins (ULBP1 to ULBP6). While MICA has been extensively studied with regard to its biochemistry, cellular expression and function, very little is known about the NKG2DL ULBP4. This is, at least in part, due to its rather restricted expression by very few cell lines and tissues. Recently, constitutive ULBP4 expression by human monocytes was reported, questioning the view of tissue-restricted ULBP4 expression. Here, we scrutinized ULBP4 expression by human peripheral blood mononuclear cells and monocytes by analyzing ULBP4 transcripts and ULBP4 surface expression. In contrast to MICA, there was no ULBP4 expression detectable, neither by freshly isolated monocytes nor by PAMP-activated monocytes. However, a commercial antibody erroneously indicated surface ULBP4 on monocytes due to a non-ULBP4-specific binding activity, emphasizing the critical importance of validated reagents for life sciences. Collectively, our data show that ULBP4 is not expressed by monocytes, and likely also not by other peripheral blood immune cells, and therefore exhibits an expression pattern rather distinct from other human NKG2DL.
Collapse
|
24
|
Zhang K, Sakamoto A, Chang L, Qu Y, Wang S, Pu Y, Tan Y, Wang X, Fujita Y, Ishima T, Hatano M, Hashimoto K. Splenic NKG2D confers resilience versus susceptibility in mice after chronic social defeat stress: beneficial effects of (R)-ketamine. Eur Arch Psychiatry Clin Neurosci 2021; 271:447-456. [PMID: 31875248 PMCID: PMC7981328 DOI: 10.1007/s00406-019-01092-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
The spleen is a large immune organ that plays a key role in the immune system. The precise molecular mechanisms underlying the relationship between the spleen and stress-related psychiatric disorders are unknown. Here we investigated the role of spleen in stress-related psychiatric disorders. FACS analysis was applied to determine the contribution of the spleen to susceptibility and resilience in mice that were subjected to chronic social defeat stress (CSDS). We found a notable increase in splenic volume and weight in CSDS-susceptible mice compared to control (no CSDS) mice and CSDS-resilient mice. The number of granulocytes, but not of T cells and B cells, in the spleen of susceptible mice was higher than in the spleen of both control and resilient mice. Interestingly, NKG2D (natural killer group 2, member D) expression in the spleen of CSDS-susceptible mice was higher than that in control mice and CSDS-resilient mice. In addition, NKG2D expression in the spleen of patients with depression was higher than that in controls. Both increased splenic weight and increased splenic NKG2D expression in CSDS-susceptible mice were ameliorated after a subsequent administration of (R)-ketamine. The present findings indicate a novel role of splenic NKG2D in stress susceptibility versus resilience in mice subjected to CSDS. Furthermore, abnormalities in splenic functions in CSDS-susceptible mice were ameliorated after subsequent injection of (R)-ketamine. Thus, the brain-spleen axis might, at least in part, contribute to the pathogenesis of stress-related psychiatric disorders such as depression.
Collapse
Affiliation(s)
- Kai Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan ,Present Address: Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, 238000 China
| | - Akemi Sakamoto
- Department of Biomedical Science, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
25
|
Raynaud A, Desrumeaux K, Vidard L, Termine E, Baty D, Chames P, Vigne E, Kerfelec B. Anti-NKG2D single domain-based antibodies for the modulation of anti-tumor immune response. Oncoimmunology 2020; 10:1854529. [PMID: 33457075 PMCID: PMC7781768 DOI: 10.1080/2162402x.2020.1854529] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The natural killer group 2 member D (NKG2D) receptor is a C-type lectin-like activating receptor mainly expressed by cytotoxic immune cells including NK, CD8+ T, γδ T and NKT cells and in some pathological conditions by a subset of CD4+ T cells. It binds a variety of ligands (NKG2DL) whose expressions is finely regulated by stress-related conditions. The NKG2DL/NKG2D axis plays a central and complex role in the regulation of immune responses against diverse cellular threats such as oncogene-mediated transformations or infections. We generated a panel of seven highly specific anti-human NKG2D single-domain antibodies targeting various epitopes. These single-domain antibodies were integrated into bivalent and bispecific antibodies using a versatile plug-and-play Fab-like format. Depending on the context, these Fab-like antibodies exhibited activating or inhibitory effects on the immune response mediated by the NKG2DL/NKG2D axis. In solution, the bivalent anti-NKG2D antibodies that compete with NKG2DL potently blocked the activation of NK cells seeded on immobilized MICA, thus constituting antagonizing candidates. Bispecific anti-NKG2DxHER2 antibodies that concomitantly engage HER2 on tumor cells and NKG2D on NK cells elicited cytotoxicity of unstimulated NK in a tumor-specific manner, regardless of their apparent affinities and epitopes. Importantly, the bispecific antibodies that do not compete with ligands binding retained their full cytotoxic activity in the presence of ligands, a valuable property to circumvent immunosuppressive effects induced by soluble ligands in the microenvironment.
Collapse
Affiliation(s)
- Adeline Raynaud
- Cancer Research Center of Marseille, INSERM, CNRS, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France.,Sanofi Oncology, Vitry-sur-Seine, France
| | | | | | - Elise Termine
- Cancer Research Center of Marseille, INSERM, CNRS, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | - Daniel Baty
- Cancer Research Center of Marseille, INSERM, CNRS, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | - Patrick Chames
- Cancer Research Center of Marseille, INSERM, CNRS, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | | | - Brigitte Kerfelec
- Cancer Research Center of Marseille, INSERM, CNRS, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| |
Collapse
|
26
|
Bertolini M, McElwee K, Gilhar A, Bulfone‐Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol 2020; 29:703-725. [DOI: 10.1111/exd.14155] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Kevin McElwee
- Monasterium Laboratory Münster Germany
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver British Columbia Canada
| | - Amos Gilhar
- Laboratory for Skin Research Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Silvia Bulfone‐Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
| | - Ralf Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| |
Collapse
|
27
|
Lazarova M, Wels WS, Steinle A. Arming cytotoxic lymphocytes for cancer immunotherapy by means of the NKG2D/NKG2D-ligand system. Expert Opin Biol Ther 2020; 20:1491-1501. [PMID: 32726145 DOI: 10.1080/14712598.2020.1803273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The activating NKG2D receptor plays a central role in the immune recognition and elimination of abnormal self-cells by cytotoxic lymphocytes. NKG2D binding to cell stress-inducible ligands (NKG2DL) up-regulated on cancer cells facilitates their immunorecognition. Yet tumor cells utilize various escape mechanisms to avert NKG2D-based immunosurveillance. Hence, therapeutic strategies targeting the potent NKG2D/NKG2DL axis and such immune escape mechanisms become increasingly attractive in cancer therapy. AREAS COVERED This perspective provides a brief introduction into the NKG2D/NKG2DL axis and its relevance for cancer immune surveillance. Subsequently, the most advanced therapeutic approaches targeting the NKG2D system are presented focusing on NKG2D-CAR engineered immune cells and antibody-mediated strategies to inhibit NKG2DL shedding by tumors. EXPERT OPINION Thus far, NKG2D-CAR engineered lymphocytes represent the most advanced therapeutic approach utilizing the NKG2D system. Similarly to other tumor-targeting CAR approaches, NKG2D-CAR cells demonstrate powerful on-target activity, but may also cause off-tumor toxicities or lose efficacy, if NKG2DL expression by tumors is reduced. However, NKG2D-CAR cells also act on the tumor microenvironment curtailing its immunosuppressive properties, thus providing an independent therapeutic benefit. The potency of tumoricidal NKG2D-expressing lymphocytes can be further boosted by enhancing NKG2DL expression through small molecules and therapeutic antibodies inhibiting tumor-associated shedding of NKG2DL.
Collapse
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe University Frankfurt , Frankfurt am Main, Germany
| | - Winfried S Wels
- Institute for Tumor Biology and Experimental Therapy , Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt , Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz , Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University Frankfurt , Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt , Frankfurt am Main, Germany
| |
Collapse
|
28
|
Zhang JZ, Ma YZ, Gu JL, Huo JG. Clinical research progress of immune checkpoint inhibitors in treatment of primary liver cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:605-616. [DOI: 10.11569/wcjd.v28.i14.605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer (PLC) is a common malignant tumor of the digestive system in China. At present, the main treatments for liver cancer (LC) are surgical resection, radiofrequency ablation, chemotherapy, transarterial chemoembolization, and liver transplantation. Due to the limited treatment options, the overall 5-year survival rate of patients with advanced LC is still low. New treatments are urgently needed to prolong their survival and improve their quality of life. In recent years, immune checkpoint inhibitors reprensented by programmed death receptor-1 and cytotoxic T lymphocyte-associated antigen-4 have made breakthrough progress in the treatment of LC, and bring new hope for LC patients. In this paper, the clinical research progress of immune checkpoint inhibitors in the treatment of PLC is reviewed.
Collapse
Affiliation(s)
- Jin-Zhi Zhang
- The Third Clinical Medical College of Nanjing University Of Chinese Medicine, Jiangsu Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210002, Jiangsu Province, China
| | - Yu-Zhu Ma
- The Third Clinical Medical College of Nanjing University Of Chinese Medicine, Jiangsu Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210002, Jiangsu Province, China
| | - Jia-Lin Gu
- The Third Clinical Medical College of Nanjing University Of Chinese Medicine, Jiangsu Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210002, Jiangsu Province, China
| | - Jie-Ge Huo
- The Third Clinical Medical College of Nanjing University Of Chinese Medicine, Jiangsu Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
29
|
Kim Y, Born C, Bléry M, Steinle A. MICAgen Mice Recapitulate the Highly Restricted but Activation-Inducible Expression of the Paradigmatic Human NKG2D Ligand MICA. Front Immunol 2020; 11:960. [PMID: 32582150 PMCID: PMC7287395 DOI: 10.3389/fimmu.2020.00960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
NKG2D is a potent activating immunoreceptor expressed on nearly all cytotoxic lymphocytes promoting their cytotoxicity against self-cells expressing NKG2D ligands (NKG2DLs). NKG2DLs are MHC class I-like glycoproteins that usually are not expressed on "healthy" cells. Rather, their surface expression is induced by various forms of cellular stress, viral infection, or malignant transformation. Hence, cell surface NKG2DLs mark "dangerous" cells for elimination by cytotoxic lymphocytes and therefore can be considered as "kill-me" signals. In addition, NKG2DLs are up-regulated on activated leukocytes, which facilitates containment of immune responses. While the NKG2D receptor is conserved among mammals, NKG2DL genes have rapidly diversified during mammalian speciation, likely due to strong selective pressures exerted by species-specific pathogens. Consequently, NKG2DL genes are not conserved in man and mice, although their NKG2D-binding domains maintained structural homology. Human NKG2DLs comprise two members of the MIC (MICA/MICB) and six members of the ULBP family of glycoproteins (ULBP1-6) with MICA representing the best-studied human NKG2DLs by far. Many of these studies implicate a role of MICA in various malignant, infectious, or autoimmune diseases. However, conclusions from these studies often were limited in default of supporting in vivo experiments. Here, we report a MICA transgenic (MICAgen) mouse model that replicates central features of human MICA expression and function and, therefore, constitutes a novel tool to critically assess and extend conclusions from previous in vitro studies on MICA. Similarly to humans, MICA transcripts are broadly present in organs of MICAgen mice, while MICA glycoproteins are barely detectable. Upon activation, hematopoietic cells up-regulate and proteolytically shed surface MICA. Shed soluble MICA (sMICA) is also present in plasma of MICAgen mice but affects neither surface NKG2D expression of circulating NK cells nor their functional recognition of MICA-expressing tumor cells. Accordingly, MICAgen mice also show a delayed growth of MICA-expressing B16F10 tumors, not accompanied by an emergence of MICA-specific antibodies. Such immunotolerance for the xenoantigen MICA ideally suits MICAgen mice for anti-MICA-based immunotherapies. Altogether, MICAgen mice represent a valuable model to study regulation, function, disease relevance, and therapeutic targeting of MICA in vivo.
Collapse
Affiliation(s)
- Younghoon Kim
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Christina Born
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Mathieu Bléry
- Science & Innovation Division, Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Engineered IL-7 Receptor Enhances the Therapeutic Effect of AXL-CAR-T Cells on Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4795171. [PMID: 31998790 PMCID: PMC6970498 DOI: 10.1155/2020/4795171] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023]
Abstract
Triple-negative breast cancer (TNBC) is a very aggressive malignant type of tumor that currently lacks effective targeted therapies. In hematological malignancies, chimeric antigen receptor T (CAR-T) cells have shown very significant antitumor ability; however, in solid tumors, the efficacy is poor. In order to apply CAR-T cells in the treatment of TNBC, in this study, constitutively activated IL-7 receptor (C7R) that has been reported is used to enhance the antitumor function of constructed CAR-T cells by ourselves. Using in vitro coincubation experiments with target cells and in vivo antitumor experiments in mice, we found that the coexpressed C7R can significantly improve the activation, cell proliferation, and cytotoxicity of CAR-T cells. In addition, the in vivo experiments suggested that the enhanced CAR-T cells displayed significant antitumor activity in a TNBC subcutaneous xenograft model, in which in vivo, the survival time of CAR-T cells was prolonged. Together, these results indicated that CAR-T cells that coexpress C7R may be a novel therapeutic strategy for TNBC.
Collapse
|
31
|
Lazarova M, Steinle A. Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Front Immunol 2019; 10:2689. [PMID: 31803194 PMCID: PMC6873348 DOI: 10.3389/fimmu.2019.02689] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) suppresses innate and adaptive immune responses via multiple mechanisms. TGF-β also importantly contributes to the formation of an immunosuppressive tumor microenvironment thereby promoting tumor growth. Amongst others, TGF-β impairs tumor recognition by cytotoxic lymphocytes via NKG2D. NKG2D is a homodimeric C-type lectin-like receptor expressed on virtually all human NK cells and cytotoxic T cells, and stimulates their effector functions upon engagement by NKG2D ligands (NKG2DL). While NKG2DL are mostly absent from healthy cells, their expression is induced by cellular stress and malignant transformation, and, accordingly, frequently detected on various tumor cells. Hence, the NKG2D axis is thought to play a decisive role in cancer immunosurveillance and, obviously, often is compromised in clinically apparent tumors. There is mounting evidence that TGF-β, produced by tumor cells and immune cells in the tumor microenvironment, plays a key role in blunting the NKG2D-mediated tumor surveillance. Here, we review the current knowledge on the impairment of NKG2D-mediated cancer immunity through TGF-β and discuss therapeutic approaches aiming at counteracting this major immune escape pathway. By reducing tumor-associated expression of NKG2DL and blinding cytotoxic lymphocytes through down-regulation of NKG2D, TGF-β is acting upon both sides of the NKG2D axis severely compromising NKG2D-mediated tumor rejection. Consequently, novel therapies targeting the TGF-β pathway are expected to reinvigorate NKG2D-mediated tumor elimination and thereby to improve the survival of cancer patients.
Collapse
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
32
|
Paczulla AM, Rothfelder K, Raffel S, Konantz M, Steinbacher J, Wang H, Tandler C, Mbarga M, Schaefer T, Falcone M, Nievergall E, Dörfel D, Hanns P, Passweg JR, Lutz C, Schwaller J, Zeiser R, Blazar BR, Caligiuri MA, Dirnhofer S, Lundberg P, Kanz L, Quintanilla-Martinez L, Steinle A, Trumpp A, Salih HR, Lengerke C. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature 2019; 572:254-259. [PMID: 31316209 PMCID: PMC6934414 DOI: 10.1038/s41586-019-1410-1] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Patients with acute myeloid leukaemia (AML) often achieve remission after therapy, but subsequently die of relapse1 that is driven by chemotherapy-resistant leukaemic stem cells (LSCs)2,3. LSCs are defined by their capacity to initiate leukaemia in immunocompromised mice4. However, this precludes analyses of their interaction with lymphocytes as components of anti-tumour immunity5, which LSCs must escape to induce cancer. Here we demonstrate that stemness and immune evasion are closely intertwined in AML. Using xenografts of human AML as well as syngeneic mouse models of leukaemia, we show that ligands of the danger detector NKG2D-a critical mediator of anti-tumour immunity by cytotoxic lymphocytes, such as NK cells6-9-are generally expressed on bulk AML cells but not on LSCs. AML cells with LSC properties can be isolated by their lack of expression of NKG2D ligands (NKG2DLs) in both CD34-expressing and non-CD34-expressing cases of AML. AML cells that express NKG2DLs are cleared by NK cells, whereas NKG2DL-negative leukaemic cells isolated from the same individual escape cell killing by NK cells. These NKG2DL-negative AML cells show an immature morphology, display molecular and functional stemness characteristics, and can initiate serially re-transplantable leukaemia and survive chemotherapy in patient-derived xenotransplant models. Mechanistically, poly-ADP-ribose polymerase 1 (PARP1) represses expression of NKG2DLs. Genetic or pharmacologic inhibition of PARP1 induces NKG2DLs on the LSC surface but not on healthy or pre-leukaemic cells. Treatment with PARP1 inhibitors, followed by transfer of polyclonal NK cells, suppresses leukaemogenesis in patient-derived xenotransplant models. In summary, our data link the LSC concept to immune escape and provide a strong rationale for targeting therapy-resistant LSCs by PARP1 inhibition, which renders them amenable to control by NK cells in vivo.
Collapse
Affiliation(s)
- Anna M Paczulla
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Kathrin Rothfelder
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Tuebingen, Germany
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany
- DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), Eberhard-Karls University, Tuebingen, Germany
| | - Simon Raffel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Julia Steinbacher
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Tuebingen, Germany
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Hui Wang
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Claudia Tandler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Tuebingen, Germany
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany
- DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), Eberhard-Karls University, Tuebingen, Germany
| | - Marcelle Mbarga
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Thorsten Schaefer
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Mattia Falcone
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Eva Nievergall
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Daniela Dörfel
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Pauline Hanns
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Jakob R Passweg
- Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| | - Christoph Lutz
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Juerg Schwaller
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- University Children's Hospital Basel, Basel, Switzerland
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Caligiuri
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
- Beckman Research Institute, Duarte, CA, USA
| | - Stephan Dirnhofer
- Institute for Pathology & Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Pontus Lundberg
- Diagnostic Hematology, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Lothar Kanz
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany
| | | | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Tuebingen, Germany.
- Department of Internal Medicine II, Hematology and Oncology, Eberhard-Karls University, Tuebingen, Germany.
- DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), Eberhard-Karls University, Tuebingen, Germany.
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|