1
|
Kisielewska K, Rutkowski P. An evaluation of vimseltinib for treatment of tenosynovial giant cell tumors. Expert Rev Anticancer Ther 2025; 25:327-335. [PMID: 40014878 DOI: 10.1080/14737140.2025.2469755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/05/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Tenosynovial giant cell tumor (TGCT) is a rare soft tissue neoplasm with aggressive local growth. The disease is driven by excessive CSF1 expression in tumor cells, leading to increased recruitment of monocytes and macrophages, cytokine production, and tumor development. Targeted therapy against CSF1R is an effective treatment approach for unresectable, symptomatic TGCT. Vimseltinib, a novel, small-molecule tyrosine kinase inhibitor of CSF1R, has shown clinical efficacy in patients with TGCT. AREAS COVERED This paper outlines the pathogenesis and therapeutic options for TGCT, along with a detailed profile of vimseltinib, including its mechanism of action, pharmacokinetics, efficacy and safety data from clinical studies. The efficacy and tolerability of vimseltinib are indirectly compared with previously known CSF1R inhibitors. EXPERT OPINION In the MOTION study, the use of vimseltinib in patients with advanced TGCT resulted in a high objective response rate, substantial benefit in reducing clinical symptoms (such as pain and stiffness), and a favorable safety profile. Vimseltinib represents a promising new therapeutic option for patients with unresectable TGCT and is currently awaiting regulatory review by the FDA and EMA.
Collapse
Affiliation(s)
- Katarzyna Kisielewska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology Warsaw Poland, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology Warsaw Poland, Warsaw, Poland
| |
Collapse
|
2
|
Hacıosmanoğlu-Aldoğan E, Lama D, Yetke Hİ, Şenol H, Yöntem FD. Necroptotic Suppression of Lung Cancer Cell Proliferation and Migration: A Comprehensive In Vitro and In Silico Study to Determine New Molecular Targets for Pexidartinib. Cell Biochem Funct 2025; 43:e70068. [PMID: 40079395 DOI: 10.1002/cbf.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
In this study, the cytotoxic effects of pexidartinib (PLX), a tyrosine kinase inhibitor approved for tenosynovial giant cell tumor through inhibition of colony-stimulating factor 1 receptor (CSF1R), against A549 lung adenocarcinoma cells and Beas-2B healthy bronchial cells were investigated by in detailed in-vitro and in-silico studies. Through MTT assays, PLX demonstrated significant inhibition of A549 cell viability with IC50 values of 2.15 and 1.3 µM at 24 and 48 h, respectively, while having minimal effects on Beas-2B cells, with IC50 values of 36.2 and 9.3 µM. The high selectivity index indicates PLX's preferential action against cancerous cells. The mechanism of cell death induced by PLX was further explored using Annexin V/PI staining and flow cytometry, revealing that PLX primarily induces necrosis in A549 cells, with an increase in necrotic cell populations and reduced efficacy at higher concentrations. Western blot analysis showed an upregulation of necroptosis markers (RIP3 and pMLKL) in A549 cells, while apoptotic markers like Caspase-3 remained unchanged. In addition, wound healing assays demonstrated that PLX significantly inhibits A549 cell migration in a dose-dependent manner. Molecular docking studies identified key amino acids involved in PLX binding interactions with target proteins. RIPK1 showed the strongest binding affinity. MD simulations revealed that the PLX-VEGFR2 complex was the most stable. As conclusion, PLX, although approved for tenosynovial giant cell tumors, shows promising potential for lung adenocarcinoma treatment. It selectively inhibits cancer cell viability, induces necroptosis, and reduces cell migration. Its stronger binding to RIPK1 and VEGFR2 more than CSF1R.
Collapse
Affiliation(s)
- Ebru Hacıosmanoğlu-Aldoğan
- Department of Biophysics, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Fatih, Istanbul, Türkiye
| | - Dilhan Lama
- Faculty of Medicine, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| | - Hande İpek Yetke
- Department of Biophysics, Faculty of Medicine, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| | - Halil Şenol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| | - Fulya Dal Yöntem
- Department of Biophysics, School of Medicine, Koç University, Sarıyer, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Sarıyer, Istanbul, Türkiye
| |
Collapse
|
3
|
Zong T, Li N, Han F, Liu J, Deng M, Li V, Zhang M, Zhou Y, Yu M. Microglial depletion rescues spatial memory impairment caused by LPS administration in adult mice. PeerJ 2024; 12:e18552. [PMID: 39559328 PMCID: PMC11572354 DOI: 10.7717/peerj.18552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
Recent studies have highlighted the importance of microglia, the resident macrophages in the brain, in regulating cognitive functions such as learning and memory in both healthy and diseased states. However, there are conflicting results and the underlying mechanisms are not fully understood. In this study, we examined the effect of depleting adult microglia on spatial learning and memory under both physiological conditions and lipopolysaccharide (LPS)-induced neuroinflammation. Our results revealed that microglial depletion by PLX5622 caused mild spatial memory impairment in mice under physiological conditions; however, it prevented memory deficits induced by systemic LPS insult. Inactivating microglia through minocycline administration replicated the protective effect of microglial depletion on LPS-induced memory impairment. Furthermore, our study showed that PLX5622 treatment suppressed LPS-induced neuroinflammation, microglial activation, and synaptic dysfunction. These results strengthen the evidence for the involvement of microglial immunoactivation in LPS-induced synaptic and cognitive malfunctions. They also suggest that targeting microglia may be a potential approach to treating neuroinflammation-associated cognitive dysfunction seen in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tao Zong
- Affiliated Qingdao Third People’s Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
| | - Na Li
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
- Qingdao Binhai University, Qingdao, Shandong, China
| | - Fubing Han
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, China, China
| | - Junru Liu
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China, China
| | - Mingru Deng
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China, China
| | - Vincent Li
- Beverly Hills High School, Unaffiliated, Beverly Hills, California, United States
| | - Meng Zhang
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
| | - Yu Zhou
- Affiliated Qingdao Third People’s Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China, China
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ming Yu
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
4
|
Wickel J, Chung HY, Ceanga M, von Stackelberg N, Hahn N, Candemir Ö, Baade-Büttner C, Mein N, Tomasini P, Woldeyesus DM, Andreas N, Baumgarten P, Koch P, Groth M, Wang ZQ, Geis C. Repopulated microglia after pharmacological depletion decrease dendritic spine density in adult mouse brain. Glia 2024; 72:1484-1500. [PMID: 38780213 DOI: 10.1002/glia.24541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Microglia are innate immune cells in the brain and show exceptional heterogeneity. They are key players in brain physiological development regulating synaptic plasticity and shaping neuronal networks. In pathological disease states, microglia-induced synaptic pruning mediates synaptic loss and targeting microglia was proposed as a promising therapeutic strategy. However, the effect of microglia depletion and subsequent repopulation on dendritic spine density and neuronal function in the adult brain is largely unknown. In this study, we investigated whether pharmacological microglia depletion affects dendritic spine density after long-term permanent microglia depletion and after short-term microglia depletion with subsequent repopulation. Long-term microglia depletion using colony-stimulating-factor-1 receptor (CSF1-R) inhibitor PLX5622 resulted in increased overall spine density, especially of mushroom spines, and increased excitatory postsynaptic current amplitudes. Short-term PLX5622 treatment with subsequent repopulation of microglia had an opposite effect resulting in activated microglia with increased synaptic phagocytosis and consequently decreased spine density and reduced excitatory neurotransmission, while Barnes maze and elevated plus maze testing was unaffected. Moreover, RNA sequencing data of isolated repopulated microglia showed an activated and proinflammatory phenotype. Long-term microglia depletion might be a promising therapeutic strategy in neurological diseases with pathological microglial activation, synaptic pruning, and synapse loss. However, repopulation after depletion induces activated microglia and results in a decrease of dendritic spines possibly limiting the therapeutic application of microglia depletion. Instead, persistent modulation of pathological microglia activity might be beneficial in controlling synaptic damage.
Collapse
Affiliation(s)
- Jonathan Wickel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Ha-Yeun Chung
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Mihai Ceanga
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nikolai von Stackelberg
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nina Hahn
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Özge Candemir
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Carolin Baade-Büttner
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nils Mein
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Paula Tomasini
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Dan M Woldeyesus
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nico Andreas
- Department of Neurosurgery, Jena University Hospital, Jena, Germany
| | - Peter Baumgarten
- Department of Neurosurgery, Jena University Hospital, Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
5
|
Li MY, Ye W, Luo KW. Immunotherapies Targeting Tumor-Associated Macrophages (TAMs) in Cancer. Pharmaceutics 2024; 16:865. [PMID: 39065562 PMCID: PMC11280177 DOI: 10.3390/pharmaceutics16070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most plentiful immune compositions in the tumor microenvironment, which are further divided into anti-tumor M1 subtype and pro-tumor M2 subtype. Recent findings found that TAMs play a vital function in the regulation and progression of tumorigenesis. Moreover, TAMs promote tumor vascularization, and support the survival of tumor cells, causing an impact on tumor growth and patient prognosis. Numerous studies show that reducing the density of TAMs, or modulating the polarization of TAMs, can inhibit tumor growth, indicating that TAMs are a promising target for tumor immunotherapy. Recently, clinical trials have found that treatments targeting TAMs have achieved encouraging results, and the U.S. Food and Drug Administration has approved a number of drugs for use in cancer treatment. In this review, we summarize the origin, polarization, and function of TAMs, and emphasize the therapeutic strategies targeting TAMs in cancer treatment in clinical studies and scientific research, which demonstrate a broad prospect of TAMs-targeted therapies in tumor immunotherapy.
Collapse
Affiliation(s)
- Mei-Ye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Ke-Wang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
- People’s Hospital of Longhua, The affiliated hospital of Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
6
|
Elkhamisy FAA, Aboelkomsan EA, Sallam MK, Eesa AN. Cytoplasmic PPARγ Significantly Correlates With P53 Immunohistochemical Expression and Tumor Size in Localized Tenosynovial Giant Cell Tumor. Cureus 2024; 16:e60377. [PMID: 38882990 PMCID: PMC11178509 DOI: 10.7759/cureus.60377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Tenosynovial giant cell tumor (TGCT) is a monoarticular fibrohistiocytic benign or locally aggressive soft tissue tumor that originates from the synovium of joints, bursae, and tendon sheaths. It has an inflammatory neoplastic nature, with a clinical presentation ranging from pain, swelling, stiffness, and limited range of movement to joint instability and blockage. Its uncommon incidence leads to a poorly understood pathogenesis. Localized forms of TGCT (LTGCT) can cause significant morbidity, interfere with daily patient activities, and decrease the patient's quality of life in challenging cases. This study aimed to investigate the immunohistochemical expression of PPARγ (peroxisome proliferator-activated receptor gamma) and P53 in LTGCT to understand the disease better and offer potential therapeutic targets. METHODS The study is cross-sectional, in which 27 LTGCT cases were collected from the Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt. Solitary and multiple LTGCT cases retrieved between January 2018 and December 2022 were included, and immunohistochemically stained with anti-PPARγ and P53 antibodies. The TGCT samples were excluded if they were insufficient for sectioning, processing, and interpretation, over-fixed, had process artifacts, or were of the diffuse TGCT type. Scoring of stain expression was performed by ImageJ (National Institutes of Health, Bethesda, MD) analysis using the threshold method and was expressed in percent area/high power field. Clinicopathological correlations were analyzed. RESULTS All the 27 collected LTGCT cases were located in the small joints of patients' hands. Cases with solitary LGTCTs constituted 55.6% (n = 15), while 44.4% (n = 12) had multiple LTGCTs related to one affected site/case (e.g., multiple tumors in one finger). PPARγ was expressed in the cytoplasm of mononuclear and multinucleated tumor cells and foamy histiocytes, while P53 expression was mainly in mononuclear cells' nuclei. PPARγ significantly correlated with P53 expression (r = 0.9 and P = 0.000). PPARγ (r = 0.4 and P = 0.02) and P53 (r = 0.5 and P = 0.01) were positively correlated with tumor size. Only P53 expression was positively correlated with tumor multiplicity (r = 0.4 and P = 0.03). Using the receiver operating characteristic curve test, the P53 cutoff score detecting the multiplicity of TGCTs was ≥20.5%, with a 75% sensitivity and 80% specificity. CONCLUSION PPARγ and P53 have a significant role in LTGCT growth, while P53 plays a role in tumor multiplicity. They can be possible targets in LTGCTs unfit for excision.
Collapse
Affiliation(s)
| | | | - Marwa K Sallam
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Giza, EGY
| | - Ahmed N Eesa
- Pathology Department, Faculty of Medicine, Cairo University, Giza, EGY
| |
Collapse
|
7
|
Mein N, von Stackelberg N, Wickel J, Geis C, Chung HY. Low-dose PLX5622 treatment prevents neuroinflammatory and neurocognitive sequelae after sepsis. J Neuroinflammation 2023; 20:289. [PMID: 38041192 PMCID: PMC10691003 DOI: 10.1186/s12974-023-02975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is characterized by symptoms of delirium including hallucinations, impaired concentration, agitation, or coma and is associated with poor outcome in the early phase of sepsis. In addition, sepsis survivors often suffer from persisting memory deficits and impaired executive functions. Recent studies provide evidence that microglia are involved in the pathophysiology of SAE. METHODS Here, we investigated whether pharmacological depletion of microglia using PLX5622 (1200 ppm or 300 ppm) in the acute phase of sepsis is able to prevent long-term neurocognitive decline in a male mouse model of polymicrobial sepsis or lipopolysaccharide-induced sterile neuroinflammation. Therefore, we performed the novel object recognition test at different time points after sepsis to address hippocampus-dependent learning. To further assess synapse engulfment in microglia, colocalization analysis was performed using high-resolution 3D Airyscan imaging of Iba1 and Homer1. We also investigated the effect of PLX5622 on acute astrocyte and chronic microglia proliferation in the hippocampus after sepsis induction using immunofluorescence staining. RESULTS High-dose application of the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 (1200 ppm) seven days prior to sepsis induction lead to 70-80% microglia reduction but resulted in fatal outcome of bacterial sepsis or LPS induced inflammation. This is likely caused by severely compromised host immune response upon PLX5622-induced depletion of peripheral monocytes and macrophages. We therefore tested partial microglia depletion using a low-dose of PLX5622 (300 ppm) for seven days prior to sepsis which resulted in an increased survival in comparison to littermates subjected to high-dose CSF1R inhibiton and to a stable microglia reduction of ~ 40%. This partial microglia depletion in the acute stage of sepsis largely prevented the engulfment and microglia-induced stripping of postsynaptic terminals. In addition, PLX5622 low-dose microglia depletion attenuated acute astrogliosis as well as long-term microgliosis and prevented long-term neurocognitive decline after experimental sepsis. CONCLUSIONS We conclude that partial microglia depletion before the induction of sepsis may be sufficient to attenuate long-term neurocognitive dysfunction. Application of PLX5622 (300 ppm) acts by reducing microglia-induced synaptic attachement/engulfment and preventing chronic microgliosis.
Collapse
Affiliation(s)
- Nils Mein
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Nikolai von Stackelberg
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
- German Center for Mental Health, Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Ha-Yeun Chung
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| |
Collapse
|
8
|
Maleddu A, Zhu J, Clay MR, Wilky BA. Current therapies and future prospective for locally aggressive mesenchymal tumors. Front Oncol 2023; 13:1160239. [PMID: 37546427 PMCID: PMC10401592 DOI: 10.3389/fonc.2023.1160239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/11/2023] [Indexed: 08/08/2023] Open
Abstract
Locally aggressive mesenchymal tumors comprise a heterogeneous group of soft tissue and bone tumors with intermediate histology, incompletely understood biology, and highly variable natural history. Despite having a limited to absent ability to metastasize and excellent survival prognosis, locally aggressive mesenchymal tumors can be symptomatic, require prolonged and repeat treatments including surgery and chemotherapy, and can severely impact patients' quality of life. The management of locally aggressive tumors has evolved over the years with a focus on minimizing morbid treatments. Extensive oncologic surgeries and radiation are pillars of care for high grade sarcomas, however, play a more limited role in management of locally aggressive mesenchymal tumors, due to propensity for local recurrence despite resection, and the risk of transformation to a higher-grade entity following radiation. Patients should ideally be evaluated in specialized sarcoma centers that can coordinate complex multimodal decision-making, taking into consideration the individual patient's clinical presentation and history, as well as any available prognostic factors into customizing therapy. In this review, we aim to discuss the biology, clinical management, and future treatment frontiers for three representative locally aggressive mesenchymal tumors: desmoid-type fibromatosis (DF), tenosynovial giant cell tumor (TSGCT) and giant cell tumor of bone (GCTB). These entities challenge clinicians with their unpredictable behavior and responses to treatment, and still lack a well-defined standard of care despite recent progress with newly approved or promising experimental drugs.
Collapse
Affiliation(s)
- Alessandra Maleddu
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jessica Zhu
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Michael Roy Clay
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Breelyn Ann Wilky
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
9
|
Lipplaa A, Meijer D, van de Sande MAJ, Gelderblom H, Bovée JVMG, Mei H, Szuhai K. A novel colony-stimulating factor 1 (CSF1) translocation involving human endogenous retroviral element in a tenosynovial giant cell tumor. Genes Chromosomes Cancer 2023; 62:223-230. [PMID: 36504457 PMCID: PMC10108088 DOI: 10.1002/gcc.23116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 12/14/2022] Open
Abstract
Tenosynovial giant cell tumors (TSGCTs) are rare tumors arising in tendons or the synoviae of joints and bursae. The localized type is benign while the diffuse type shows expansive growth leading to greater morbidity and is therefore considered locally aggressive. Typical recurrent chromosomal aberrations are found in the majority of TSCGT and the CSF1 gene is frequently involved. In this article, we describe a newly identified gene fusion mediated by an inversion in a case of diffuse TSGCT. Multicolor-fluorescence in situ hybridization (FISH) molecular karyotyping identified a pericentric inversion of chromosome 1 in 7 out of 17 analyzed cells 46,XX,inv(1)(p13.3q24.3) [7]/46,XX [10], and with interphase FISH the involvement the CSF1 locus was detected. After performing transcriptome sequencing analysis for fusion detection, only one out of five fusion gene algorithms detected a fusion involving the CSF1 gene product. The resulting chimera fuses a sequence from a human endogenous retrovirus (HERV) gene to CSF1 Exon 6 on chromosome 1, abrogating the regulatory element of the 3' untranslated region of the CSF1 gene. This new translocation involving Exon 6 of the CSF1 gene fused to 1q24.1, supports the hypothesis that a mutated CSF1 protein is likely to play a vital role in the pathogenesis of TSGCT. The role of the HERV partner identified as a translocation partner, however, remains unclear. Our data add to the complexity of involved translocation partners in TSGCT and point to the potential difficulty of identifying fusion partners in tumor diagnostics using transcriptome sequencing when HERV or other repeat elements are involved.
Collapse
Affiliation(s)
- Astrid Lipplaa
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Debora Meijer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Center for Computational Oncology, Leiden, The Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Spierenburg G, van der Heijden L, Mastboom MJL, van Langevelde K, van der Wal RJP, Gelderblom H, van de Sande MAJ. Surgical management of 144 diffuse-type TGCT patients in a single institution: A 20-year cohort study. J Surg Oncol 2022; 126:1087-1095. [PMID: 35736790 PMCID: PMC9796668 DOI: 10.1002/jso.26991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Surgery is the mainstay of treatment for tenosynovial giant cell tumors (TGCTs). However, achieving a cure through surgery alone remains challenging, especially for the diffuse-type (D-TGCT). METHODS Our goal was to describe the surgical management of patients with D-TGCT related to large joints, treated between 2000 and 2020. We analyzed the effect of (in)complete resections and the presence of postoperative tumor (POT) on magnetic resonance imaging (MRI) on radiological and clinical outcomes. RESULTS A total of 144 patients underwent open surgery for D-TGCT, of which 58 (40%) had treatment before. The median follow-up was 65 months. One hundred twenty-five patients underwent isolated open surgeries, in which 25 (20%) patients' D-TGCT was intentionally removed incompletely. POT presence on the first postoperative MRI was observed in 64%. Both incomplete resections and POT presence were associated with higher rates of radiological progression (73% vs. 44%; Kaplan-Meier [KM] analysis p = 0.021) and 59% versus 7%; KM analysis p < 0.001), respectively. Furthermore, patients with POT presence clinically worsened more often than patients without having POT (49% vs. 24%; KM analysis p = 0.003). CONCLUSIONS D-TGCT is often resected incompletely and tumor presence is commonly observed on the first postoperative MRI, resulting in worse radiological and clinical outcomes. Therefore, surgeons should try to remove D-TGCT in toto and consider other multimodal therapeutic strategies.
Collapse
Affiliation(s)
- Geert Spierenburg
- Department of Orthopedic SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Lizz van der Heijden
- Department of Orthopedic SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | | | | | | | - Hans Gelderblom
- Department of Medical OncologyLeiden University Medical CenterLeidenThe Netherlands
| | | |
Collapse
|
11
|
Hamel-Lemaire S, Fortin M, Avon SL. Pigmented villonodular synovitis of the temporomandibular joint: case report and literature review. J Oral Maxillofac Surg 2022; 80:1691-1704. [DOI: 10.1016/j.joms.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
|