1
|
Zhang X, Wu W, Zhou G, Huang X, Xu M, Zhao Q, Yan H. Relationship between alcohol use and traumatic brain injury: evidence from Mendelian randomization. Brain Inj 2025:1-8. [PMID: 39894956 DOI: 10.1080/02699052.2025.2460740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Observational studies suggest that alcohol consumption increases the risk of traumatic brain injury (TBI); however, the causality of this association remains unclear. OBJECTIVES This study aimed to identify which drinking pattern is the primary factor influencing TBI. METHOD Two-sample Mendelian randomization (MR) was used to assess whether drinking patterns (alcohol consumption, abuse, and intake frequency) are causally associated with TBI risk. RESULTS MR analysis revealed causal effects of alcohol intake frequency [odds ratio (OR) 0.806, 95% confidence interval (CI): 0.665-0.978, p = 0.028, beta: -0.215, se: 0.098], alcohol drinks per week (OR 1.772, 95% CI: 1.140-2.753, p = 0.011, beta: 0.572, se: 0.225), and alcohol abuse (OR 1.095, 95% CI: 1.006-1.192, p = 0.035, beta: 0.091, se: 0.043) on TBI. Additionally, no causal effect of alcohol consumption (OR 0.730, 95% CI: 0.264-2.025, p = 0.546, beta: -0.314, se: 0.520) or average monthly alcohol intake (OR 1.138, 95% CI: 0.805-1.609, p = 0.463, beta: 0.130, se: 0.177) on TBI was observed. Similarly, the effects of TBI on alcohol intake were statistically non-significant. CONCLUSION Drinking patterns, including alcohol intake frequency and abuse, influence TBI, whereas TBI rarely influences drinking patterns.
Collapse
Affiliation(s)
- Xiaohang Zhang
- School of Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenze Wu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guisheng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Huang
- School of Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Xu
- School of Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiulong Zhao
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Hui Yan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Tasevski S, Kyung Nam H, Ghannam A, Moughni S, Atoui T, Mashal Y, Hatch N, Zhang Z. Tissue nonspecific alkaline phosphatase deficiency impairs Purkinje cell development and survival in a mouse model of infantile hypophosphatasia. Neuroscience 2024; 560:357-370. [PMID: 39369942 DOI: 10.1016/j.neuroscience.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Loss-of-function mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in hypophosphatasia (HPP), an inherited multi-systemic metabolic disorder that is well-known for skeletal and dental hypomineralization. However, emerging evidence shows that both adult and pediatric patients with HPP suffer from cognitive deficits, higher measures of depression and anxiety, and impaired sensorimotor skills. The cerebellum plays an important role in sensorimotor coordination, cognition, and emotion. To date, the impact of TNAP mutation on the cerebellar circuitry development and function remains poorly understood. The main objective of this study was to investigate the roles of TNAP in cerebellar development and function, with a particular focus on Purkinje cells, in a mouse model of infantile HPP. Male and female wild type (WT) and TNAP knockout (KO) mice underwent behavioral testing on postnatal day 13-14 and were euthanized after completion of behavioral tests. Cerebellar tissues were harvested for gene expression and immunohistochemistry analyses. We found that TNAP mutation resulted in significantly reduced body weight, shorter body length, and impaired sensorimotor functions in both male and female KO mice. These developmental and behavioral deficits were accompanied by abnormal Purkinje cell morphology and dysregulation of genes that regulates synaptic transmission, cellular growth, proliferation, and death. In conclusion, inactivation of TNAP via gene deletion causes developmental delays, sensorimotor impairment, and Purkinje cell maldevelopment. These results shed light on a new perspective of cerebellar dysfunction in HPP.
Collapse
Affiliation(s)
- Stefanie Tasevski
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Amanda Ghannam
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Sara Moughni
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Tia Atoui
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Yara Mashal
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA.
| |
Collapse
|
3
|
Gaughan C, Nasa A, Roman E, Cullinane D, Kelly L, Riaz S, Brady C, Browne C, Sooknarine V, Mosley O, Almulla A, Alsehli A, Kelliher A, Murphy C, O'Hanlon E, Cannon M, Roddy DW. A Pilot Study of Adolescents with Psychotic Experiences: Potential Cerebellar Circuitry Disruption Early Along the Psychosis Spectrum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1772-1782. [PMID: 37351730 PMCID: PMC11489369 DOI: 10.1007/s12311-023-01579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
A berrant connectivity in the cerebellum has been found in psychotic conditions such as schizophrenia corresponding with cognitive and motor deficits found in these conditions. Diffusion differences in the superior cerebellar peduncles, the white matter connecting the cerebellar circuitry to the rest of the brain, have also been found in schizophrenia and high-risk states. However, white matter diffusivity in the peduncles in individuals with sub-threshold psychotic experiences (PEs) but not reaching the threshold for a definitive diagnosis remains unstudied. This study investigates the cerebellar peduncles in adolescents with PEs but no formal psychiatric diagnosis.Sixteen adolescents with PEs and 17 age-matched controls recruited from schools underwent High-Angular-Resolution-Diffusion neuroimaging. Following constrained spherical deconvolution whole-brain tractography, the superior, inferior and middle peduncles were isolated and virtually dissected out using ExploreDTI. Differences for macroscopic and microscopic tract metrics were calculated using one-way between-group analyses of covariance controlling for age, sex and estimated Total Intracranial Volume (eTIV). Multiple comparisons were corrected using Bonferroni correction.A decrease in fractional anisotropy was identified in the right (p = 0.045) and left (p = 0.058) superior cerebellar peduncle; however, this did not survive strict Bonferroni multiple comparison correction. There were no differences in volumes or other diffusion metrics in either the middle or inferior peduncles.Our trend level changes in the superior cerebellar peduncle in a non-clinical sample exhibiting psychotic experiences complement similar but more profound changes previously found in ultra-high-risk individuals and those with psychotic disorders. This suggests that superior cerebellar peduncle circuitry perturbations may occur early along in the psychosis spectrum.
Collapse
Affiliation(s)
- Caoimhe Gaughan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Anurag Nasa
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Elena Roman
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Dearbhla Cullinane
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Linda Kelly
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Sahar Riaz
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Conan Brady
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Ciaran Browne
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Vitallia Sooknarine
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Olivia Mosley
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Ahmad Almulla
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Assael Alsehli
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Allison Kelliher
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Cian Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Darren William Roddy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
4
|
Pericleous K, McIntyre C, Fuller M. Neurocognitive testing in a murine model of mucopolysaccharidosis type IIIA. Mol Genet Metab Rep 2023; 36:100985. [PMID: 37332488 PMCID: PMC10276283 DOI: 10.1016/j.ymgmr.2023.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is an inherited metabolic disorder caused by a lysosomal enzyme deficiency resulting in heparan sulphate (HS) accumulation and manifests with a progressive neurodegenerative phenotype. A naturally occurring MPS IIIA mouse model is invaluable for preclinical evaluation of potential treatments but the ability to effectively assess neurological function has proved challenging. Here, the aim was to evaluate a set of behaviour tests for their reliability in assessing disease progression in the MPS IIIA mouse model. Compared to wild-type (WT) mice, MPS IIIA mice displayed memory and learning deficits in the water crossmaze from mid-stage disease and locomotor impairment in the hind-limb gait assessment at late-stage disease, supporting previous findings. Declined wellbeing was also observed in the MPS IIIA mice via burrowing and nest building evaluation at late-stage disease compared to WT mice, mirroring the progressive nature of neurological disease. Excessive HS accumulation observed in the MPS IIIA mouse brain from 1 month of age did not appear to manifest as abnormal behaviours until at least 6 months of age suggesting there may be a threshold of HS accumulation before measurable neurocognitive decline. Results obtained from the open field and three-chamber sociability test are inconsistent with previous studies and do not reflect MPS IIIA patient disease progression, suggesting these assessments are not reliable. In conclusion, water cross-maze, hind-limb gait, nest building and burrowing, are promising assessments in the MPS IIIA mouse model, which produce consistent results that mimic the human disease.
Collapse
Affiliation(s)
- Kleopatra Pericleous
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide 5006, Australia
- School of Biological Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Chantelle McIntyre
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide 5006, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide 5006, Australia
- School of Biological Sciences, University of Adelaide, Adelaide 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
5
|
Kuo EY, Chern JS, Chu CC. The Effect of Computerized Cognitive Training on Body Function and Activity Participation of Patient with Schizophrenia. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083082 DOI: 10.1109/embc40787.2023.10341178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Schizophrenia spectrum disorder (SSD) is a neurobiological illness that causes considerable deficits in body functions and activity participation. This study examined the effects of a computerized cognitive training (CCT) on cognition, motor functions and activity participation with a quasi-experimental, pretest-posttest design. A total of 14 patients participated. All participants underwent two stages of CCT but one did not complete the posttest. The training was 3 times a week, 40 minutes each time and lasted for 12 weeks. Cognition, upper extremity motor, postural control performance, and activity participation (work behavior) were measured at three times: before and after 6 and 12 weeks of training. CCT improved participant's cognition and work behavior significantly and have the tendency to improve motor function. The training dosage might be insufficient for motor function improvement.Clinical Relevance- SSD patients benefit from the CCT in cognition and work behavior significantly but Motor function slightly.
Collapse
|
6
|
Ribeiro RT, Carvalho AVS, Palavro R, Durán-Carabali LE, Zemniaçak ÂB, Amaral AU, Netto CA, Wajner M. L-2-Hydroxyglutaric Acid Administration to Neonatal Rats Elicits Marked Neurochemical Alterations and Long-Term Neurobehavioral Disabilities Mediated by Oxidative Stress. Neurotox Res 2023; 41:119-140. [PMID: 36580261 DOI: 10.1007/s12640-022-00625-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
L-2-Hydroxyglutaric aciduria (L-2-HGA) is an inherited neurometabolic disorder caused by deficient activity of L-2-hydroxyglutarate dehydrogenase. L-2-Hydroxyglutaric acid (L-2-HG) accumulation in the brain and biological fluids is the biochemical hallmark of this disease. Patients present exclusively neurological symptoms and brain abnormalities, particularly in the cerebral cortex, basal ganglia, and cerebellum. Since the pathogenesis of this disorder is still poorly established, we investigated the short-lived effects of an intracerebroventricular injection of L-2-HG to neonatal rats on redox homeostasis in the cerebellum, which is mostly affected in this disorder. We also determined immunohistochemical landmarks of neuronal viability (NeuN), astrogliosis (S100B and GFAP), microglia activation (Iba1), and myelination (MBP and CNPase) in the cerebral cortex and striatum following L-2-HG administration. Finally, the neuromotor development and cognitive abilities were examined. L-2-HG elicited oxidative stress in the cerebellum 6 h after its injection, which was verified by increased reactive oxygen species production, lipid oxidative damage, and altered antioxidant defenses (decreased concentrations of reduced glutathione and increased glutathione peroxidase and superoxide dismutase activities). L-2-HG also decreased the content of NeuN, MBP, and CNPase, and increased S100B, GFAP, and Iba1 in the cerebral cortex and striatum at postnatal days 15 and 75, implying long-standing neuronal loss, demyelination, astrocyte reactivity, and increased inflammatory response, respectively. Finally, L-2-HG administration caused a delay in neuromotor development and a deficit of cognition in adult animals. Importantly, the antioxidant melatonin prevented L-2-HG-induced deleterious neurochemical, immunohistochemical, and behavioral effects, indicating that oxidative stress may be central to the pathogenesis of brain damage in L-2-HGA.
Collapse
Affiliation(s)
- Rafael Teixeira Ribeiro
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Andrey Vinícios Soares Carvalho
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rafael Palavro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Luz Elena Durán-Carabali
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Ângela Beatris Zemniaçak
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada Do Alto Uruguai E das Missões, Av. Sete de Setembro, Erechim, RS, 162199709-910, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, Porto Alegre, RS, 235090035-007, Brazil.
| |
Collapse
|
7
|
Perochon S, Matias Di Martino J, Carpenter KLH, Compton S, Davis N, Espinosa S, Franz L, Rieder AD, Sullivan C, Sapiro G, Dawson G. A tablet-based game for the assessment of visual motor skills in autistic children. NPJ Digit Med 2023; 6:17. [PMID: 36737475 PMCID: PMC9898502 DOI: 10.1038/s41746-023-00762-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence suggests that early motor impairments are a common feature of autism. Thus, scalable, quantitative methods for measuring motor behavior in young autistic children are needed. This work presents an engaging and scalable assessment of visual-motor abilities based on a bubble-popping game administered on a tablet. Participants are 233 children ranging from 1.5 to 10 years of age (147 neurotypical children and 86 children diagnosed with autism spectrum disorder [autistic], of which 32 are also diagnosed with co-occurring attention-deficit/hyperactivity disorder [autistic+ADHD]). Computer vision analyses are used to extract several game-based touch features, which are compared across autistic, autistic+ADHD, and neurotypical participants. Results show that younger (1.5-3 years) autistic children pop the bubbles at a lower rate, and their ability to touch the bubble's center is less accurate compared to neurotypical children. When they pop a bubble, their finger lingers for a longer period, and they show more variability in their performance. In older children (3-10-years), consistent with previous research, the presence of co-occurring ADHD is associated with greater motor impairment, reflected in lower accuracy and more variable performance. Several motor features are correlated with standardized assessments of fine motor and cognitive abilities, as evaluated by an independent clinical assessment. These results highlight the potential of touch-based games as an efficient and scalable approach for assessing children's visual-motor skills, which can be part of a broader screening tool for identifying early signs associated with autism.
Collapse
Affiliation(s)
- Sam Perochon
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
- Ecole Normale Supérieure Paris-Saclay, Gif-Sur-Yvette, France
| | - J Matias Di Martino
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Kimberly L H Carpenter
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
| | - Scott Compton
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
| | - Naomi Davis
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Steven Espinosa
- Office of Information Technology, Duke University, Durham, NC, USA
| | - Lauren Franz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Amber D Rieder
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
| | - Connor Sullivan
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
| | - Guillermo Sapiro
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| | - Geraldine Dawson
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Psychomotor slowing alters gait velocity, cadence, and stride length and indicates negative symptom severity in psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:116. [PMID: 36585399 PMCID: PMC9803648 DOI: 10.1038/s41537-022-00324-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/17/2022] [Indexed: 01/01/2023]
Abstract
Schizophrenia is a severe mental disorder, in which 50% of the patients present with motor abnormalities such as psychomotor slowing. Slow spontaneous gait has been reported in schizophrenia. However, comprehensive objective instrumental assessments of multiple gait conditions are missing. Finally, the specific gait patterns of subjects with psychomotor slowing are still unknown. Therefore, this study aimed to objectively assess multiple gait parameters at different walking conditions in patients with schizophrenia with and without psychomotor slowing. Also, we hypothesised gait impairments to correlate with expert ratings of hypokinetic movement disorders and negative symptoms. We collected gait data (GAITRite®) in 70 patients with psychomotor slowing (SRRS (Salpetriere retardation rating scale) ≥15), 22 non-psychomotor slowed patients (SRRS < 15), and 42 healthy controls. Participants performed four walking conditions (self-selected speed, maximum speed, head reclined, and eyes closed) and six gait parameters were extracted (velocity, cadence, stride length, functional ambulation profile (FAP), and variance of stride length and time). Patients with psychomotor slowing presented slower velocity, lower cadence, and shorter stride length in all walking conditions compared to healthy controls, with the non-slowed patients in an intermediate position (all F > 16.18, all p < 0.001). Secondly, slower velocity was associated with more severe hypokinetic movement disorders and negative symptoms. In conclusion, gait impairments exist in a spectrum with healthy controls on one end and patients with psychomotor slowing on the other end. Patients with psychomotor slowing are specifically impaired when an adaptation of gait patterns is required, contributing to the deleterious effects of sedentary behaviours.
Collapse
|
9
|
Kaiser FMP, Gruenbacher S, Oyaga MR, Nio E, Jaritz M, Sun Q, van der Zwaag W, Kreidl E, Zopf LM, Dalm VASH, Pel J, Gaiser C, van der Vliet R, Wahl L, Rietman A, Hill L, Leca I, Driessen G, Laffeber C, Brooks A, Katsikis PD, Lebbink JHG, Tachibana K, van der Burg M, De Zeeuw CI, Badura A, Busslinger M. Biallelic PAX5 mutations cause hypogammaglobulinemia, sensorimotor deficits, and autism spectrum disorder. J Exp Med 2022; 219:213392. [PMID: 35947077 PMCID: PMC9372349 DOI: 10.1084/jem.20220498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
The genetic causes of primary antibody deficiencies and autism spectrum disorder (ASD) are largely unknown. Here, we report a patient with hypogammaglobulinemia and ASD who carries biallelic mutations in the transcription factor PAX5. A patient-specific Pax5 mutant mouse revealed an early B cell developmental block and impaired immune responses as the cause of hypogammaglobulinemia. Pax5 mutant mice displayed behavioral deficits in all ASD domains. The patient and the mouse model showed aberrant cerebellar foliation and severely impaired sensorimotor learning. PAX5 deficiency also caused profound hypoplasia of the substantia nigra and ventral tegmental area due to loss of GABAergic neurons, thus affecting two midbrain hubs, controlling motor function and reward processing, respectively. Heterozygous Pax5 mutant mice exhibited similar anatomic and behavioral abnormalities. Lineage tracing identified Pax5 as a crucial regulator of cerebellar morphogenesis and midbrain GABAergic neurogenesis. These findings reveal new roles of Pax5 in brain development and unravel the underlying mechanism of a novel immunological and neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Fabian M P Kaiser
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Sarah Gruenbacher
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Maria Roa Oyaga
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Enzo Nio
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Qiong Sun
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | | | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Lydia M Zopf
- Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Division of Allergy and Clinical Immunology, Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Johan Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Carolin Gaiser
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Netherlands
| | - Rick van der Vliet
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, Netherlands
| | - Lucas Wahl
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - André Rietman
- Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Netherlands
| | - Louisa Hill
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ines Leca
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Gertjan Driessen
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Charlie Laffeber
- Department of Molecular Genetics, Oncode Institute, Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | | | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Cancer Institute, Erasmus MC, Rotterdam, Netherlands.,Department of Radiation Oncology, Erasmus MC, Rotterdam, Netherlands
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
10
|
Basile C, Lecce S, van Vugt FT. Synchrony During Online Encounters Affects Social Affiliation and Theory of Mind but Not Empathy. Front Psychol 2022; 13:886639. [PMID: 36092070 PMCID: PMC9450704 DOI: 10.3389/fpsyg.2022.886639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Moving together in time affects human social affiliation and cognition. However, it is unclear whether these effects hold for on-line video meetings and whether they extend to empathy (understanding or sharing others' emotions) and theory of mind (ToM; attribution of mental states to others). 126 young adult participants met through online video in unacquainted pairs. Participants either performed 3 min of synchronous arm movements paced by sounds (n = 40), asynchronous movements (n = 46) or a small talk condition (n = 40). In a subsequent empathy task, participants engaged in a conversation. A video recording of this conversation was played back, and each participant rated, at predetermined time points, how they felt and how they thought their partner felt. From this we calculated empathic accuracy (accuracy of the estimation of the other's emotions) and emotional congruence (emotion sharing). ToM was measured by showing videos of geometrical shapes interacting and asking the participants to describe what happened, measuring the amount of intentionality. We found that participants in the synchrony condition rated feeling greater closeness and similarity to their partners relative to the asynchronous condition. Further, participants in the synchrony group tended to ascribe more intentionality to the abstract shapes than participants in asynchrony condition, suggesting greater ToM. Synchrony and asynchrony groups did not reliably differ in empathic accuracy nor emotional congruence. These results suggest that moving in synchrony has effects on social affiliation measures even in online encounters. These effects extend to ToM tendencies but not empathic accuracy or emotion sharing. These results highlight the potential of synchronous movement in online encounters to affect a subset of social cognition and affiliation measures.
Collapse
Affiliation(s)
- Chiara Basile
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Serena Lecce
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Floris Tijmen van Vugt
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research BRAMS, Montreal, QC, Canada
- Centre for Research on Brain, Language and Music – CRBLM, Montreal, QC, Canada
- Haskins Laboratories, Yale University, New Haven, CI, United States
| |
Collapse
|
11
|
Han Y, Huang K, Chen K, Pan H, Ju F, Long Y, Gao G, Wu R, Wang A, Wang L, Wei P. MouseVenue3D: A Markerless Three-Dimension Behavioral Tracking System for Matching Two-Photon Brain Imaging in Free-Moving Mice. Neurosci Bull 2022; 38:303-317. [PMID: 34637091 PMCID: PMC8975979 DOI: 10.1007/s12264-021-00778-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022] Open
Abstract
Understanding the connection between brain and behavior in animals requires precise monitoring of their behaviors in three-dimensional (3-D) space. However, there is no available three-dimensional behavior capture system that focuses on rodents. Here, we present MouseVenue3D, an automated and low-cost system for the efficient capture of 3-D skeleton trajectories in markerless rodents. We improved the most time-consuming step in 3-D behavior capturing by developing an automatic calibration module. Then, we validated this process in behavior recognition tasks, and showed that 3-D behavioral data achieved higher accuracy than 2-D data. Subsequently, MouseVenue3D was combined with fast high-resolution miniature two-photon microscopy for synchronous neural recording and behavioral tracking in the freely-moving mouse. Finally, we successfully decoded spontaneous neuronal activity from the 3-D behavior of mice. Our findings reveal that subtle, spontaneous behavior modules are strongly correlated with spontaneous neuronal activity patterns.
Collapse
Affiliation(s)
- Yaning Han
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Huang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Chen
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongli Pan
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Furong Ju
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yueyue Long
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Rochester, Rochester, NY, 14627, USA
| | - Gao Gao
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- Honam University, Gwangju, 62399, South Korea
| | - Runlong Wu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing, 100101, China
| | - Aimin Wang
- Department of Electronics, Peking University, Beijing, 100871, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing, 100101, China
| | - Liping Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pengfei Wei
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Muresanu DF, Sharma A, Sahib S, Tian ZR, Feng L, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma HS. Diabetes exacerbates brain pathology following a focal blast brain injury: New role of a multimodal drug cerebrolysin and nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:285-367. [PMID: 33223037 DOI: 10.1016/bs.pbr.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blast brain injury (bBI) is a combination of several forces of pressure, rotation, penetration of sharp objects and chemical exposure causing laceration, perforation and tissue losses in the brain. The bBI is quite prevalent in military personnel during combat operations. However, no suitable therapeutic strategies are available so far to minimize bBI pathology. Combat stress induces profound cardiovascular and endocrine dysfunction leading to psychosomatic disorders including diabetes mellitus (DM). This is still unclear whether brain pathology in bBI could exacerbate in DM. In present review influence of DM on pathophysiology of bBI is discussed based on our own investigations. In addition, treatment with cerebrolysin (a multimodal drug comprising neurotrophic factors and active peptide fragments) or H-290/51 (a chain-breaking antioxidant) using nanowired delivery of for superior neuroprotection on brain pathology in bBI in DM is explored. Our observations are the first to show that pathophysiology of bBI is exacerbated in DM and TiO2-nanowired delivery of cerebrolysin induces profound neuroprotection in bBI in DM, not reported earlier. The clinical significance of our findings with regard to military medicine is discussed.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Uwisengeyimana JDD, Nguchu BA, Wang Y, Zhang D, Liu Y, Qiu B, Wang X. Cognitive function and cerebellar morphometric changes relate to abnormal intra-cerebellar and cerebro-cerebellum functional connectivity in old adults. Exp Gerontol 2020; 140:111060. [PMID: 32814097 DOI: 10.1016/j.exger.2020.111060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Numerous structural studies have already reported volumetric reduction in cerebellum with aging. However, there are still limited studies particularly focusing on analysis of the cerebellar resting state FC in old adults. Even so, the least related studies were unable to include some important cerebellar lobules due to limited cerebellum segmentation methods. OBJECTIVE The purpose of this study is to explore cognitive function in relation to cerebellar lobular morphometry and cortico-cerebellar connectivity changes in old adults' lifespan by incorporating previously undetected cerebellar lobules. METHODS This study includes a sample of 264 old adults subdivided into five cognitively normal age groups (G1 through G5). Cerebellum Segmentation (CERES) software was used to obtain morphometric measures and brain masks of all the 24 cerebellar lobules. We then defined individual lobules as seed regions and mapped the whole-brain to get functional connectivity maps. To analyze age group differences in cortico-cerebellar connectivity and cerebellar lobular volume, we used one way ANOVA and post hoc analysis was performed for multiple comparisons using Bonferroni method. RESULTS Our results report cerebellar lobular volumetric reduction, disrupted intra-cerebellar connectivity and significant differences in cortico-cerebellar resting state FC across age groups. In addition, our results show that disrupted FC between left Crus-II and right ACC relates to well emotion regulation and cognitive decline and is associated with poor performance on TMT-B and logical memory tests in older adults. CONCLUSION Overall, our findings confirm that as humans get older and older, the cerebellar lobular volumes as well as the cortico-cerebellar functional connectivity are affected and hence reduces cognition.
Collapse
Affiliation(s)
- Jean de Dieu Uwisengeyimana
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China; Department of Electrical and Electronics Engineering, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Benedictor Alexander Nguchu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanming Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Du Zhang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanpeng Liu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxiao Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
15
|
López Hill X, Richeri A, McGregor R, Acuña A, Scorza C. Neuro-behavioral effects after systemic administration of MK-801 and disinhibition of the anterior thalamic nucleus in rats: Potential relevance in schizophrenia. Brain Res 2019; 1718:176-185. [PMID: 31071305 DOI: 10.1016/j.brainres.2019.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
Non-competitive N-methyl-d-aspartate receptor (NMDA-R) antagonists have been suggested to evoke psychotomimetic-like behaviors by selectively targeting GABAergic elements in cortical and thalamic circuits. In previous studies, we had reported the involvement of the reticular and anterior thalamic nuclei (ATN) in the MK-801-evoked hyperactivity and other motor alterations. Consistent with the possibility that these responses were mediated by thalamic disinhibition, we examined the participation of cortical and hippocampal areas innervated by ATN in the responses elicited by the systemic administration of MK-801 (0.2 mg/kg) and compared them to the effects produced by the microinjection of a subconvulsive dose of bicuculline (GABAA receptor antagonist) in the ATN. We used the expression of Fos related antigen 2 (Fra-2) as a neuronal activity marker in the ATN and its projection areas such as hippocampus (HPC), retrosplenial cortex (RS), entorhinal cortex (EC) and medial prefrontal cortex (mPFC). Dorsal (caudate-putamen, CPu) and ventral striatum (nucleus accumbens, core and shell, NAc,co and NAc,sh) were also studied. Behavioral and brain activation results suggest a partial overlap after the effect of MK-801 administration and ATN disinhibition. MK-801 and ATN disinhibition increases locomotor activity and disorganized movements, while ATN disinhibition also reduces rearing behavior. A significant increase in Fra-2 immunoreactivity (Fra-2-IR) in the ATN, mPFC (prelimbic area, PrL) and NAc,sh was observed after MK-801, while a different pattern of Fra-2-IR was detected following ATN disinhibition (e.g., increase in DG and NAc,sh, and decrease in PrL cortex). Overall, our data may contribute to the understanding of dysfunctional neural circuits involved in schizophrenia.
Collapse
Affiliation(s)
- Ximena López Hill
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Analía Richeri
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Laboratory of Cell Biology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ronald McGregor
- Veterans Administration Greater Los Angeles Healthcare System, Neurobiology Research (151A3), North Hills, CA 91343, United States; Department Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, United States; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Alejo Acuña
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Scorza
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
16
|
Moberget T, Alnæs D, Kaufmann T, Doan NT, Córdova-Palomera A, Norbom LB, Rokicki J, van der Meer D, Andreassen OA, Westlye LT. Cerebellar Gray Matter Volume Is Associated With Cognitive Function and Psychopathology in Adolescence. Biol Psychiatry 2019; 86:65-75. [PMID: 30850129 DOI: 10.1016/j.biopsych.2019.01.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Accumulating evidence supports cerebellar involvement in mental disorders, such as schizophrenia, bipolar disorder, depression, anxiety disorders, and attention-deficit/hyperactivity disorder. However, little is known about the cerebellum in developmental stages of these disorders. In particular, whether cerebellar morphology is associated with early expression of specific symptom domains remains unclear. METHODS We used machine learning to test whether cerebellar morphometric features could robustly predict general cognitive function and psychiatric symptoms in a large and well-characterized developmental community sample centered on adolescence (Philadelphia Neurodevelopmental Cohort, n = 1401, age 8-23 years). RESULTS Cerebellar morphology was associated with both general cognitive function and general psychopathology (mean correlations between predicted and observed values: r = .20 and r = .13; p < .001). Analyses of specific symptom domains revealed significant associations with rates of norm-violating behavior (r = .17; p < .001) as well as psychosis (r = .12; p < .001) and anxiety (r = .09; p = .012) symptoms. In contrast, we observed no associations with attention deficits or depressive, manic, or obsessive-compulsive symptoms. Crucially, across 52 brain-wide anatomical features, cerebellar features emerged as the most important for prediction of general psychopathology, psychotic symptoms, and norm-violating behavior. Moreover, the association between cerebellar volume and psychotic symptoms and, to a lesser extent, norm-violating behavior remained significant when adjusting for several potentially confounding factors. CONCLUSIONS The robust associations with psychiatric symptoms in the age range when these typically emerge highlight the cerebellum as a key brain structure in the development of severe mental disorders.
Collapse
Affiliation(s)
- Torgeir Moberget
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aldo Córdova-Palomera
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Bonaventure Norbom
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Prediction, Psychosis, and the Cerebellum. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:820-831. [PMID: 31495402 DOI: 10.1016/j.bpsc.2019.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022]
Abstract
An increasingly influential hypothesis posits that many of the diverse symptoms of psychosis can be viewed as reflecting dysfunctional predictive mechanisms. Indeed, to perceive something is to take a sensory input and make a prediction of the external source of that signal; thus, prediction is perhaps the most fundamental neural computation. Given the ubiquity of prediction, a more challenging problem is to specify the unique predictive role or capability of a particular brain structure. This question is relevant when considering recent claims that one aspect of the predictive deficits observed in psychotic disorders might be related to cerebellar dysfunction, a subcortical structure known to play a critical role in predictive sensorimotor control and perhaps higher-level cognitive function. Here, we review evidence bearing on this question. We first focus on clinical, behavioral, and neuroimaging findings suggesting cerebellar involvement in psychosis and, specifically, schizophrenia. We then review a relatively novel line of research exploring whether computational models of cerebellar motor function can also account for cerebellar involvement in higher-order human cognition, and in particular, language function. We end the review by highlighting some key gaps in these literatures, limitations that currently preclude strong conclusions regarding cerebellar involvement in psychosis.
Collapse
|
18
|
Strungaru SA, Plavan G, Ciobica A, Nicoara M, Robea MA, Solcan C, Petrovici A. Toxicity and chronic effects of deltamethrin exposure on zebrafish (Danio rerio) as a reference model for freshwater fish community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:854-862. [PMID: 30660979 DOI: 10.1016/j.ecoenv.2019.01.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
In this study zebrafish specimens were exposed for 15 days to 0.25, 0.5, 1 and 2 μg L-1 non-lethal concentrations of deltamethrin (DM) knowing that is the active compound in insecticides used on agricultural crops. They were investigated important issues resulted during the chronic exposure with DM: effects on aggressive behavior and swimming performances knowing that is a high neurotoxic compound; toxicity on nervous system investigated on telencephalon, optic tectum and cerebellum; activity of PCNA, p53 and TUNEL as toxicity markers in immunocytochemistry of the histological samples; changes of elements concentrations in the fish body and their role in detoxification of DM. This scenario investigated the harmful effects of this compound for freshwater fish communities. The aggressive behavior significantly increased and remained constant for the concentration 0.5 μg L-1. They were not evidences in changing of anxiety level and swimming performances. The nervous system suffered significant damage for all studied concentrations and confirmed the changes in the behavior. Selenium concentration in the body decreased and may be involved in the detoxification processes.
Collapse
Affiliation(s)
- Stefan-Adrian Strungaru
- "Alexandru Ioan Cuza" University of Iasi, Department of Research, Faculty of Biology, Bd. Carol I, 20 A, 700505 Iasi, Romania.
| | - Gabriel Plavan
- "Alexandru Ioan Cuza" University of Iasi, Department of Biology, Faculty of Biology, Bd. Carol I, 20 A, 700505 Iasi, Romania
| | - Alin Ciobica
- "Alexandru Ioan Cuza" University of Iasi, Department of Research, Faculty of Biology, Bd. Carol I, 20 A, 700505 Iasi, Romania.
| | - Mircea Nicoara
- "Alexandru Ioan Cuza" University of Iasi, Department of Biology, Faculty of Biology, Bd. Carol I, 20 A, 700505 Iasi, Romania
| | - Madalina Andreea Robea
- "Alexandru Ioan Cuza" University of Iasi, Department of Biology, Faculty of Biology, Bd. Carol I, 20 A, 700505 Iasi, Romania
| | - Carmen Solcan
- University of Agricultural Science and Veterinary Medicine "Ion Ionescu de la Brad", Department of Molecular Biology, Histology and Embriology, Faculty of Veterinary Medicine, 8, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Adriana Petrovici
- University of Agricultural Science and Veterinary Medicine "Ion Ionescu de la Brad", Department of Molecular Biology, Histology and Embriology, Faculty of Veterinary Medicine, 8, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| |
Collapse
|
19
|
Insights from perceptual, sensory, and motor functioning in autism and cerebellar primary disturbances: Are there reliable markers for these disorders? Neurosci Biobehav Rev 2018; 95:263-279. [PMID: 30268434 DOI: 10.1016/j.neubiorev.2018.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/09/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022]
Abstract
The contribution of cerebellar circuitry alterations in the pathophysiology of Autism Spectrum Disorder (ASD) has been widely investigated in the last decades. Yet, experimental studies on neurocognitive markers of ASD have not been attentively compared with similar studies in patients with cerebellar primary disturbances (e.g., malformations, agenesis, degeneration, etc). Addressing this neglected issue could be useful to underline unexpected areas of overlap and/or underestimated differences between these sets of conditions. In fact, ASD and cerebellar primary disturbances (notably, Cerebellar Cognitive Affective Syndrome, CCAS) can share atypical manifestations in perceptual, sensory, and motor functions, but neural subcircuits involved in these anomalies/difficulties could be distinct. Here, we specifically deal with this issue focusing on four paradigmatic neurocognitive functions: visual and biological motion perception, multisensory integration, and high stages of the motor hierarchy. From a research perspective, this represents an essential challenge to more deeply understand neurocognitive markers of ASD and of cerebellar primary disturbances/CCAS. Although we cannot assume definitive conclusions, and beyond phenotypical similarities between ASD and CCAS, clinical and experimental evidence described in this work argues that ASD and CCAS are distinct phenomena. ASD and CCAS seem to be characterized by different pathophysiological mechanisms and mediated by distinct neural nodes. In parallel, from a clinical perspective, this characterization may furnish insights to tackle the distinction between autistic functioning/autistic phenotype (in ASD) and dysmetria of thought/autistic-like phenotype (in CCAS).
Collapse
|
20
|
Guo W, Zhang F, Liu F, Chen J, Wu R, Chen DQ, Zhang Z, Zhai J, Zhao J. Cerebellar abnormalities in first-episode, drug-naive schizophrenia at rest. Psychiatry Res Neuroimaging 2018; 276:73-79. [PMID: 29628269 DOI: 10.1016/j.pscychresns.2018.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/01/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
The cerebellum plays a crucial role in higher cortical functions through a cerebellar-cerebral circuit. However, the specific mechanisms through which the cerebellum contributes to the neurobiology of schizophrenia remain unclear. Forty-nine first-episode, drug-naive patients with schizophrenia and 50 healthy controls underwent structural and resting-state functional magnetic resonance imaging (rs-fMRI). The MRI data were analyzed using voxel-based morphometry, amplitude of low-frequency fluctuations (ALFF), cerebellum homogeneity (CH), and seed-based functional connectivity (FC). Patients with schizophrenia did not have anatomical and CH alterations in the cerebellum compared with healthy controls. However, they exhibited decreased ALFF in the right Crus I and abnormal cerebellar FC with brain regions within the dorsal attention network, default-mode network, and ventral attention network. The findings indicate that cerebellar abnormalities in first-episode schizophrenia are mainly in the cerebellar-cerebral connectivities, which may contribute to the neurobiology of schizophrenia.
Collapse
Affiliation(s)
- Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Fengyu Zhang
- The Global Clinical and Translational Research Institute, Bethesda, MD, USA
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Danny Q Chen
- The Lieber Institute for Brain Development at Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zhikun Zhang
- Mental Health Center of the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, Jining, Shandong, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol Psychiatry 2018; 23:1512-1520. [PMID: 28507318 DOI: 10.1038/mp.2017.106] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/20/2017] [Accepted: 04/04/2017] [Indexed: 12/24/2022]
Abstract
Although cerebellar involvement across a wide range of cognitive and neuropsychiatric phenotypes is increasingly being recognized, previous large-scale studies in schizophrenia (SZ) have primarily focused on supratentorial structures. Hence, the across-sample reproducibility, regional distribution, associations with cerebrocortical morphology and effect sizes of cerebellar relative to cerebral morphological differences in SZ are unknown. We addressed these questions in 983 patients with SZ spectrum disorders and 1349 healthy controls (HCs) from 14 international samples, using state-of-the-art image analysis pipelines optimized for both the cerebellum and the cerebrum. Results showed that total cerebellar grey matter volume was robustly reduced in SZ relative to HCs (Cohens's d=-0.35), with the strongest effects in cerebellar regions showing functional connectivity with frontoparietal cortices (d=-0.40). Effect sizes for cerebellar volumes were similar to the most consistently reported cerebral structural changes in SZ (e.g., hippocampus volume and frontotemporal cortical thickness), and were highly consistent across samples. Within groups, we further observed positive correlations between cerebellar volume and cerebral cortical thickness in frontotemporal regions (i.e., overlapping with areas that also showed reductions in SZ). This cerebellocerebral structural covariance was strongest in SZ, suggesting common underlying disease processes jointly affecting the cerebellum and the cerebrum. Finally, cerebellar volume reduction in SZ was highly consistent across the included age span (16-66 years) and present already in the youngest patients, a finding that is more consistent with neurodevelopmental than neurodegenerative etiology. Taken together, these novel findings establish the cerebellum as a key node in the distributed brain networks underlying SZ.
Collapse
|
22
|
Does ventrolateral prefrontal cortex help in searching for the lost key? Evidence from an fNIRS study. Brain Imaging Behav 2017; 12:785-797. [DOI: 10.1007/s11682-017-9734-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Aydinli FE, Çak T, Kirazli MÇ, Çinar BÇ, Pektaş A, Çengel EK, Aksoy S. Effects of distractors on upright balance performance in school-aged children with attention deficit hyperactivity disorder, preliminary study. Braz J Otorhinolaryngol 2016; 84:280-289. [PMID: 27939853 PMCID: PMC9449181 DOI: 10.1016/j.bjorl.2016.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/03/2016] [Accepted: 10/21/2016] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Attention deficit hyperactivity disorder is a common impairing neuropsychiatric disorder with onset in early childhood. Almost half of the children with attention deficit hyperactivity disorder also experience a variety of motor-related dysfunctions ranging from fine/gross motor control problems to difficulties in maintaining balance. OBJECTIVES The main purpose of this study was to investigate the effects of distractors two different auditory distractors namely, relaxing music and white noise on upright balance performance in children with attention deficit hyperactivity disorder. METHODS We compared upright balance performance and the involvement of different sensory systems in the presence of auditory distractors between school-aged children with attention deficit hyperactivity disorder (n=26) and typically developing controls (n=20). Neurocom SMART Balance Master Dynamic Posturography device was used for the sensory organization test. Sensory organization test was repeated three times for each participant in three different test environments. RESULTS The balance scores in the silence environment were lower in the attention deficit hyperactivity disorder group but the differences were not statistically significant. In addition to lower balance scores the visual and vestibular ratios were also lower. Auditory distractors affected the general balance performance positively for both groups. More challenging conditions, using an unstable platform with distorted somatosensory signals were more affected. Relaxing music was more effective in the control group, and white noise was more effective in the attention deficit hyperactivity disorder group and the positive effects of white noise became more apparent in challenging conditions. CONCLUSION To the best of our knowledge, this is the first study evaluating balance performance in children with attention deficit hyperactivity disorder under the effects of auditory distractors. Although more studies are needed, our results indicate that auditory distractors may have enhancing effects on upright balance performance in children with attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Fatma Esen Aydinli
- Hacettepe University, Faculty of Health Sciences, Speech and Language Department, Ankara, Turkey.
| | - Tuna Çak
- Hacettepe University, Faculty of Medicine, Child and Adolescent Mental Health Department, Ankara, Turkey
| | - Meltem Çiğdem Kirazli
- Hacettepe University, Faculty of Health Sciences, Speech and Language Department, Ankara, Turkey
| | - Betül Çiçek Çinar
- Hacettepe University, Faculty of Health Sciences, Audiology Department, Ankara, Turkey
| | - Alev Pektaş
- Hacettepe University Hospital, Ear Nose and Throat Department, Audiology and Speech Pathology Unit, Ankara, Turkey
| | - Ebru Kültür Çengel
- Hacettepe University, Faculty of Medicine, Child and Adolescent Mental Health Department, Ankara, Turkey
| | - Songül Aksoy
- Hacettepe University, Faculty of Health Sciences, Speech and Language Department, Ankara, Turkey
| |
Collapse
|
24
|
Paul JD. Understimulation of Cerebellum in Asperger's Syndrome: A Personal Perspective. Schizophr Bull 2016; 42:1086-9. [PMID: 25069654 PMCID: PMC4988725 DOI: 10.1093/schbul/sbu107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. Am J Hum Genet 2016; 98:541-552. [PMID: 26942287 DOI: 10.1016/j.ajhg.2016.02.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/05/2016] [Indexed: 12/24/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are genetically heterogeneous, and a significant number of genes have been associated with both conditions. A few mutations in POGZ have been reported in recent exome studies; however, these studies do not provide detailed clinical information. We collected the clinical and molecular data of 25 individuals with disruptive mutations in POGZ by diagnostic whole-exome, whole-genome, or targeted sequencing of 5,223 individuals with neurodevelopmental disorders (ID primarily) or by targeted resequencing of this locus in 12,041 individuals with ASD and/or ID. The rarity of disruptive mutations among unaffected individuals (2/49,401) highlights the significance (p = 4.19 × 10(-13); odds ratio = 35.8) and penetrance (65.9%) of this genetic subtype with respect to ASD and ID. By studying the entire cohort, we defined common phenotypic features of POGZ individuals, including variable levels of developmental delay (DD) and more severe speech and language delay in comparison to the severity of motor delay and coordination issues. We also identified significant associations with vision problems, microcephaly, hyperactivity, a tendency to obesity, and feeding difficulties. Some features might be explained by the high expression of POGZ, particularly in the cerebellum and pituitary, early in fetal brain development. We conducted parallel studies in Drosophila by inducing conditional knockdown of the POGZ ortholog row, further confirming that dosage of POGZ, specifically in neurons, is essential for normal learning in a habituation paradigm. Combined, the data underscore the pathogenicity of loss-of-function mutations in POGZ and define a POGZ-related phenotype enriched in specific features.
Collapse
|
26
|
Identification of neuromotor deficits common to autism spectrum disorder and attention deficit/hyperactivity disorder, and imitation deficits specific to autism spectrum disorder. Eur Child Adolesc Psychiatry 2015; 24:1497-507. [PMID: 26233230 DOI: 10.1007/s00787-015-0753-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
Abstract
Deficits in motor and imitation abilities are a core finding in autism spectrum disorders (ASD), but impaired motor functions are also found in attention deficit/hyperactivity disorder (ADHD). Given recent theorising about potential aetiological overlap between the two disorders, the present study aimed to assess difficulties in motor performance and imitation of facial movements and meaningless gestures in a sample of 24 ADHD patients, 22 patients with ASD, and 20 typically developing children, matched for age (6-13 years) and similar in IQ (>80). Furthermore, we explored the impact of comorbid ADHD symptoms on motor and imitation performance in the ASD sample and the interrelationships between the two groups of variables in the clinical groups separately. The results show motor dysfunction was common to both disorders, but imitation deficits were specific to ASD. Together with the pattern of interrelated motor and imitation abilities, which we found exclusively in the ASD group, our findings suggest complex phenotypic, and possibly aetiological, relationships between the two neurodevelopmental conditions.
Collapse
|
27
|
Feedback control of one’s own action: Self-other sensory attribution in motor control. Conscious Cogn 2015; 38:118-29. [DOI: 10.1016/j.concog.2015.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/30/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022]
|
28
|
Modeling possible effects of atypical cerebellar processing on eyeblink conditioning in autism. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 14:1142-64. [PMID: 24590391 DOI: 10.3758/s13415-014-0263-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autism is unique among other disorders in that acquisition of conditioned eyeblink responses is enhanced in children, occurring in a fraction of the trials required for control participants. The timing of learned responses is, however, atypical. Two animal models of autism display a similar phenotype. Researchers have hypothesized that these differences in conditioning reflect cerebellar abnormalities. The present study used computer simulations of the cerebellar cortex, including inhibition by the molecular layer interneurons, to more closely examine whether atypical cerebellar processing can account for faster conditioning in individuals with autism. In particular, the effects of inhibitory levels on delay eyeblink conditioning were simulated, as were the effects of learning-related synaptic changes at either parallel fibers or ascending branch synapses from granule cells to Purkinje cells. Results from these simulations predict that whether molecular layer inhibition results in an enhancement or an impairment of acquisition, or changes in timing, may depend on (1) the sources of inhibition, (2) the levels of inhibition, and (3) the locations of learning-related changes (parallel vs. ascending branch synapses). Overall, the simulations predict that a disruption in the balance or an overall increase of inhibition within the cerebellar cortex may contribute to atypical eyeblink conditioning in children with autism and in animal models of autism.
Collapse
|
29
|
Musalek M, Scharoun SM, Bryden PJ. The link between cerebellar dominance and skilled hand performance in 8-10-year-old right-handed children. J Mot Behav 2015; 47:386-96. [PMID: 25675379 DOI: 10.1080/00222895.2014.1003778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although literature surrounding handedness and cerebellar asymmetry is limited, many researchers have suggested that a relationship exists (e.g., A. A. Beaton, 2003; L. Jäncke, K. Specht, S. Mirzazade, & M. Peters, 1999; I. C. McManus & K. M. Cornish, 1997; M. Peters, 1995; P. J. Snyder, R. M. Bilder, H. Wu, B. Bogerts, & J. A. Lieberman, 1995). For example, J. Tichy and J. Belacek ( 2008 , 2009 ) identified a link between cerebellar dominance and hand preference. The authors aimed to assess the relationship between cerebellar dominance and handedness, in 8-10-year-olds (N = 157 right-handers) as assessed with hand performance tests. Articular joint passivity in the wrist and performance differences between the hands were used as a means of assessing cerebellar dominance, where a link to skilled hand performance tests was revealed. Specifically, significant correlations between articular joint passivity and all measurements of handedness (p < .001) were observed. Greater hypotonia was seen in the left wrist of 95% of right-handers. This result supports the assumption that the preferred and nonpreferred hand could be controlled by the cerebellum in a different ways.
Collapse
Affiliation(s)
- Martin Musalek
- a Department of Kinanthropology and Humanities , Faculty of Physical Education and Sport,Charles University , Prague , Czech Republic
| | | | | |
Collapse
|
30
|
Affiliation(s)
- Deanna M. Barch
- *To whom correspondence should be addressed; Departments of Psychology, Psychiatry, and Radiology, Washington University in St. Louis, Box 1125, One Brookings Drive, St. Louis, MO 63130, US; tel: 314-935-8729 or 314-362-2608, fax: 314-935-8790, e-mail:
| |
Collapse
|
31
|
Biscaldi M, Rauh R, Irion L, Jung NH, Mall V, Fleischhaker C, Klein C. Deficits in motor abilities and developmental fractionation of imitation performance in high-functioning autism spectrum disorders. Eur Child Adolesc Psychiatry 2014; 23:599-610. [PMID: 24085467 DOI: 10.1007/s00787-013-0475-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
The co-occurrence of motor and imitation disabilities often characterises the spectrum of deficits seen in patients with autism spectrum disorders (ASD). Whether these seemingly separate deficits are inter-related and whether, in particular, motor deficits contribute to the expression of imitation deficits is the topic of the present study and was investigated by comparing these deficits' cross-sectional developmental trajectories. To that end, different components of motor performance assessed in the Zurich Neuromotor Assessment and imitation abilities for facial movements and non-meaningful gestures were tested in 70 subjects (aged 6-29 years), including 36 patients with high-functioning ASD and 34 age-matched typically developed (TD) participants. The results show robust deficits in probands with ASD in timed motor performance and in the quality of movement, which are all independent of age, with one exception. Only diadochokinesis improves moderately with increasing age in ASD probands. Imitation of facial movements and of non-meaningful hand, finger, hand finger gestures not related to social context or tool use is also impaired in ASD subjects, but in contrast to motor performance this deficit overall improves with age. A general imitation factor, extracted from the highly inter-correlated imitation tests, is differentially correlated with components of neuromotor performance in ASD and TD participants. By developmentally fractionating developmentally stable motor deficits from developmentally dynamic imitation deficits, we infer that imitation deficits are primarily cognitive in nature.
Collapse
Affiliation(s)
- Monica Biscaldi
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Freiburg, Hauptstr. 8, 79104, Freiburg, Germany,
| | | | | | | | | | | | | |
Collapse
|
32
|
Funahashi Y, Karashima C, Hoshiyama M. Compensatory Postural Sway While Seated Posture During Tasks in Children with Autism Spectrum Disorder. Occup Ther Int 2014; 21:166-75. [DOI: 10.1002/oti.1375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yoshimi Funahashi
- Department of Occupational Therapy, Graduate School of Medicine, School of Health Sciences; Nagoya University; 1-1-20 Daiko-minami, Higashi-ku Nagoya 461-8673 Japan
| | - Chieko Karashima
- Department of Occupational Therapy, Graduate School of Medicine, School of Health Sciences; Nagoya University; 1-1-20 Daiko-minami, Higashi-ku Nagoya 461-8673 Japan
| | - Minoru Hoshiyama
- Department of Occupational Therapy, Graduate School of Medicine, School of Health Sciences; Nagoya University; 1-1-20 Daiko-minami, Higashi-ku Nagoya 461-8673 Japan
| |
Collapse
|
33
|
Decorrelation learning in the cerebellum: computational analysis and experimental questions. PROGRESS IN BRAIN RESEARCH 2014; 210:157-92. [PMID: 24916293 DOI: 10.1016/b978-0-444-63356-9.00007-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many cerebellar models use a form of synaptic plasticity that implements decorrelation learning. Parallel fibers carrying signals positively correlated with climbing-fiber input have their synapses weakened (long-term depression), whereas those carrying signals negatively correlated with climbing input have their synapses strengthened (long-term potentiation). Learning therefore ceases when all parallel-fiber signals have been decorrelated from climbing-fiber input. This is a computationally powerful rule for supervised learning and can be cast in a spike-timing dependent plasticity form for comparison with experimental evidence. Decorrelation learning is particularly well suited to sensory prediction, for example, in the reafference problem where external sensory signals are interfered with by reafferent signals from the organism's own movements, and the required circuit appears similar to the one found to mediate classical eye blink conditioning. However, for certain stimuli, avoidance is a much better option than simple prediction, and decorrelation learning can also be used to acquire appropriate avoidance movements. One example of a stimulus to be avoided is retinal slip that degrades visual processing, and decorrelation learning appears to play a role in the vestibulo-ocular reflex that stabilizes gaze in the face of unpredicted head movements. Decorrelation learning is thus suitable for both sensory prediction and motor control. It may also be well suited for generic spatial and temporal coordination, because of its ability to remove the unwanted side effects of movement. Finally, because it can be used with any kind of time-varying signal, the cerebellum could play a role in cognitive processing.
Collapse
|
34
|
Cook JL, Blakemore SJ, Press C. Atypical basic movement kinematics in autism spectrum conditions. ACTA ACUST UNITED AC 2013; 136:2816-24. [PMID: 23983031 PMCID: PMC4017873 DOI: 10.1093/brain/awt208] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Individuals with autism spectrum conditions have difficulties in understanding and responding appropriately to others. Additionally, they demonstrate impaired perception of biological motion and problems with motor control. Here we investigated whether individuals with autism move with an atypical kinematic profile, which might help to explain perceptual and motor impairments, and in principle may contribute to some of their higher level social problems. We recorded trajectory, velocity, acceleration and jerk while adult participants with autism and a matched control group conducted horizontal sinusoidal arm movements. Additionally, participants with autism took part in a biological motion perception task in which they classified observed movements as ‘natural’ or ‘unnatural’. Results show that individuals with autism moved with atypical kinematics; they did not minimize jerk to the same extent as the matched typical control group, and moved with greater acceleration and velocity. The degree to which kinematics were atypical was correlated with a bias towards perceiving biological motion as ‘unnatural’ and with the severity of autism symptoms as measured by the Autism Diagnostic Observation Schedule. We suggest that fundamental differences in movement kinematics in autism might help to explain their problems with motor control. Additionally, developmental experience of their own atypical kinematic profiles may lead to disrupted perception of others’ actions.
Collapse
Affiliation(s)
- Jennifer L Cook
- UCL Institute of Cognitive Neuroscience, 17 Queen Square, London, WC1N 3AR, UK.
| | | | | |
Collapse
|
35
|
The effect of performing a dual task on postural control in children with autism. ISRN NEUROSCIENCE 2013; 2013:796174. [PMID: 24959567 PMCID: PMC4045564 DOI: 10.1155/2013/796174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/22/2013] [Indexed: 12/27/2022]
Abstract
The aim of the study was to explore the effect of eye movements (saccades and pursuits) on postural stability in children with autism versus typically developing children of comparable age. Postural stability was recorded with a platform (Techno Concept) in seven children with autism (mean age: 6 ± 0.8) while fixating a target or making saccades or pursuit eye movements. Data was compared to that of seven age-matched typically developing children. Surface area and mean speed of the center of pressure (CoP) were measured. Autistic children (AC) were more instable than typically developing children (TD), both in simple as well as dual task conditions. Performing a dual task thus affects AC and TD children in a different way. AC stability is not improved during saccades or pursuit eye movements in the dual task condition; in contrast, saccades significantly improve postural stability in TD children. The postural instability observed in AC during simple as well as dual task supports the hypothesis that such children have deficits in cerebellar functions.
Collapse
|
36
|
Neuropathology and animal models of autism: genetic and environmental factors. AUTISM RESEARCH AND TREATMENT 2013; 2013:731935. [PMID: 24151553 PMCID: PMC3787615 DOI: 10.1155/2013/731935] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023]
Abstract
Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology.
Collapse
|
37
|
Haghir H, Rezaee AAR, Nomani H, Sankian M, Kheradmand H, Hami J. Sexual dimorphism in expression of insulin and insulin-like growth factor-I receptors in developing rat cerebellum. Cell Mol Neurobiol 2013; 33:369-77. [PMID: 23322319 PMCID: PMC11498027 DOI: 10.1007/s10571-012-9903-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/29/2012] [Indexed: 12/30/2022]
Abstract
The insulin and insulin-like growth factor-1 (IGF-1) are considered to play important roles in brain development; and their cognate receptors -InsR and IGF-1R- localized within distinct brain regions including cerebellum. Using Real-Time PCR and western blot analysis, we compared the expression of InsR and IGF-1R in male and female developing rat cerebellum at P0, P7, and P14. At all time points studied, the cerebellar expression of IGF-1R, both at mRNA and protein levels was higher than that of InsR. The lowest InsR and IGF-1R mRNA and protein levels were measured in the neonate cerebellum, independent of gender. In males, the highest InsR and IGF-1R mRNA and protein expression were found at P7. InsR and IGF-1R expression increased significantly between P0 and P7, followed by a marked downregulation at P14. In contrast, in females, mRNA and protein levels of InsR and IGF-1R remain unchanged between P0 and P7, and are upregulated at P14. Therefore, peaked InsR and IGF-1R expression in female cerebelli occurred at P14. Interestingly, changes in mRNA expression and in protein levels followed the same developmental pattern, indicating that InsR and IGF-1R transcription is not subject to modulatory effects during the first 2 weeks of development. These findings indicate that there are prominent sexual differences in InsR and IGF-1R expression in the developing rat cerebellum, suggesting a probable mechanism for the control of gender differences in development and function of the cerebellum.
Collapse
Affiliation(s)
- Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics and Functional Genomics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abd-Al-Rahim Rezaee
- Microbiology and Virology Research Center, Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Nomani
- Microbiology and Virology Research Center, Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Bu-Ali Research Institute, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Kheradmand
- Hazrat Rasoul Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Hami
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
38
|
Szulc KU, Nieman BJ, Houston EJ, Bartelle BB, Lerch JP, Joyner AL, Turnbull DH. MRI analysis of cerebellar and vestibular developmental phenotypes in Gbx2 conditional knockout mice. Magn Reson Med 2013; 70:1707-17. [PMID: 23400959 DOI: 10.1002/mrm.24597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 12/19/2022]
Abstract
PURPOSE Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. METHODS In vivo three-dimensional manganese-enhanced MRI at 100-µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation-based morphometry and volumetric analysis of manganese-enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2-CKO mice. Ex vivo micro-MRI was performed after perfusion-fixation with supplemented gadolinium for higher resolution (50-µm) analysis. RESULTS In vivo manganese-enhanced MRI and deformation-based morphometry correctly identified known cerebellar defects in Gbx2-CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo-cerebellum, both validated using histology. Ex vivo micro-MRI revealed subtle phenotypes in both the vestibulo-cerebellum and the vestibulo-cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. CONCLUSION These results show the potential of three-dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Kamila U Szulc
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA; Biomedical Imaging Program, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Pidsley R, Dempster E, Troakes C, Al-Sarraj S, Mill J. Epigenetic and genetic variation at the IGF2/H19 imprinting control region on 11p15.5 is associated with cerebellum weight. Epigenetics 2012; 7:155-63. [PMID: 22395465 DOI: 10.4161/epi.7.2.18910] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
IGF2 is a paternally expressed imprinted gene with an important role in development and brain function. Allele-specific expression of IGF2 is regulated by DNA methylation at three differentially methylated regions (DMRs) spanning the IGF2/H19 domain on human 11p15.5. We have comprehensively assessed DNA methylation and genotype across the three DMRs and the H19 promoter using tissue from a unique collection of well-characterized and neuropathologically-dissected post-mortem human cerebellum samples (n = 106) and frontal cortex samples (n = 51). We show that DNA methylation, particularly in the vicinity of a key CTCF-binding site (CTCF3) in the imprinting control region (ICR) upstream of H19, is strongly correlated with cerebellum weight. DNA methylation at CTCF3 uniquely explains ~25% of the variance in cerebellum weight. In addition, we report that genetic variation in this ICR is strongly associated with cerebellum weight in a parental-origin specific manner, with maternally-inherited alleles associated with a 16% increase in cerebellum weight compared with paternally-inherited alleles. Given the link between structural brain abnormalities and neuropsychiatric disease, an understanding of the epigenetic and parent-of-origin specific genetic factors associated with brain morphology provides important clues about the etiology of disorders such as schizophrenia and autism.
Collapse
Affiliation(s)
- Ruth Pidsley
- Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | |
Collapse
|
40
|
Sensory integration, sensory processing, and sensory modulation disorders: putative functional neuroanatomic underpinnings. THE CEREBELLUM 2012; 10:770-92. [PMID: 21630084 DOI: 10.1007/s12311-011-0288-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper examines conditions that have variously been called sensory integration disorder, sensory processing disorder, and sensory modulation disorder (SID/SPD/SMD). As these conditions lack readily and consistently agreed-upon operational definitions, there has been confusion as to how these disorders are conceptualized. Rather than addressing various diagnostic controversies, we will instead focus upon explaining the symptoms that are believed to characterize these disorders. First, to clarify the overall context within which to view symptoms, we summarize a paradigm of adaptation characterized by continuous sensorimotor interaction with the environment. Next, we review a dual-tiered, integrated model of brain function in order to establish neuroanatomic underpinnings with which to conceptualize the symptom presentations. Generally accepted functions of the neocortex, basal ganglia, and cerebellum are described to illustrate how interactions between these brain regions generate both adaptive and pathological symptoms and behaviors. We then examine the symptoms of SID/SPD/SMD within this interactive model and in relation to their impact upon the development of inhibitory control, working memory, academic skill development, and behavioral automation. We present likely etiologies for these symptoms, not only as they drive neurodevelopmental pathologies but also as they can be understood as variations in the development of neural networks.
Collapse
|
41
|
Rünker AE, O'Tuathaigh C, Dunleavy M, Morris DW, Little GE, Corvin AP, Gill M, Henshall DC, Waddington JL, Mitchell KJ. Mutation of Semaphorin-6A disrupts limbic and cortical connectivity and models neurodevelopmental psychopathology. PLoS One 2011; 6:e26488. [PMID: 22132072 PMCID: PMC3221675 DOI: 10.1371/journal.pone.0026488] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/28/2011] [Indexed: 12/18/2022] Open
Abstract
Psychiatric disorders such as schizophrenia and autism are characterised by cellular disorganisation and dysconnectivity across the brain and can be caused by mutations in genes that control neurodevelopmental processes. To examine how neurodevelopmental defects can affect brain function and behaviour, we have comprehensively investigated the consequences of mutation of one such gene, Semaphorin-6A, on cellular organisation, axonal projection patterns, behaviour and physiology in mice. These analyses reveal a spectrum of widespread but subtle anatomical defects in Sema6A mutants, notably in limbic and cortical cellular organisation, lamination and connectivity. These mutants display concomitant alterations in the electroencephalogram and hyper-exploratory behaviour, which are characteristic of models of psychosis and reversible by the antipsychotic clozapine. They also show altered social interaction and deficits in object recognition and working memory. Mice with mutations in Sema6A or the interacting genes may thus represent a highly informative model for how neurodevelopmental defects can lead to anatomical dysconnectivity, resulting, either directly or through reactive mechanisms, in dysfunction at the level of neuronal networks with associated behavioural phenotypes of relevance to psychiatric disorders. The biological data presented here also make these genes plausible candidates to explain human linkage findings for schizophrenia and autism.
Collapse
Affiliation(s)
- Annette E. Rünker
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Colm O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mark Dunleavy
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Derek W. Morris
- Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine and Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Graham E. Little
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Aiden P. Corvin
- Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine and Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine and Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - David C. Henshall
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John L. Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
Stoeckli ET. Neural circuit formation in the cerebellum is controlled by cell adhesion molecules of the Contactin family. Cell Adh Migr 2011; 4:523-6. [PMID: 20622526 DOI: 10.4161/cam.4.4.12733] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell adhesion molecules of the immunoglobulin superfamily (IgSF CAMs) have been implicated in neural circuit formation in both the peripheral and the central nervous system. Several recent studies highlight a role of the Contactin group of IgSF CAMs in cerebellar development, in particular in the development of granule cells. Granule cells are the most numerous type of neurons in the nervous system and by forming a secondary proliferative zone in the cerebellum they provide an exception to the rule that neuronal precursors proliferate in the ventricular zone. Granule cells express Contactin-2, Contactin-1, and Contactin-6 in a sequential manner. Contactins are required for axon guidance, fasciculation, and synaptogenesis, and thus affect multiple steps in neural circuit formation in the developing cerebellum.
Collapse
Affiliation(s)
- Esther T Stoeckli
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland.
| |
Collapse
|
43
|
Domellöf E, Fagard J, Jacquet AY, Rönnqvist L. Goal-directed arm movements in children with fetal alcohol syndrome: a kinematic approach. Eur J Neurol 2011; 18:312-320. [PMID: 20629717 DOI: 10.1111/j.1468-1331.2010.03142.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although many studies have documented deficits in general motor functioning in children with fetal alcohol syndrome (FAS), few have employed detailed measurements to explore the specific nature of such disabilities. This pilot study explores whether three-dimensional (3D) kinematic analysis may generate increased knowledge of the effect of intrauterine alcohol exposure on motor control processes by detecting atypical upper-limb movement pattern specificity in children with FAS relative to typically developing (TD) children. METHODS Left and right arm and head movements during a sequential unimanual goal-directed precision task in a sample of children with FAS and in TD children were registered by an optoelectronic tracking system (ProReflex, Qualisys Inc.). RESULTS Children with FAS demonstrated evidently poorer task performance compared with TD children. Additionally, analyses of arm movement kinematics revealed atypical spatio-temporal organization in the children with FAS. In general, they exhibited longer arm movement trajectories at both the proximal and distal level, faster velocities at the proximal level but slower at the distal level, and more segmented distal movements. Children with FAS also showed atypically augmented and fast head movements during the task performance. CONCLUSIONS Findings indicate neuromotor deficits and developmental delay in goal-directed arm movements because of prenatal alcohol exposure. It is suggested that 3D kinematic analysis is a valid technique for furthering the understanding of motor control processes in children with FAS/fetal alcohol spectrum disorders. A combination with relevant neuroimaging techniques in future studies would enable a more clear-cut interpretation of how atypical movement patterns relate to underlying brain abnormalities.
Collapse
Affiliation(s)
- E Domellöf
- Department of Psychology, Umeå University.,Kolbäcken Child Rehabilitation Centre, Umeå, Sweden
| | - J Fagard
- Laboratoire Psychologie de la Perception (CNRS UMR 8158), Université Paris Descartes, Paris, France
| | - A-Y Jacquet
- Laboratoire Psychologie de la Perception (CNRS UMR 8158), Université Paris Descartes, Paris, France
| | | |
Collapse
|
44
|
Botta P, de Souza FMS, Sangrey T, De Schutter E, Valenzuela CF. Alcohol excites cerebellar Golgi cells by inhibiting the Na+/K+ ATPase. Neuropsychopharmacology 2010; 35:1984-96. [PMID: 20520600 PMCID: PMC2904864 DOI: 10.1038/npp.2010.76] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alcohol-induced alterations of cerebellar function cause motor coordination impairments that are responsible for millions of injuries and deaths worldwide. Cognitive deficits associated with alcoholism are also a consequence of cerebellar dysfunction. The mechanisms responsible for these effects of ethanol are poorly understood. Recent studies have identified neurons in the input layer of the cerebellar cortex as important ethanol targets. In this layer, granule cells (GrCs) receive the majority of sensory inputs to the cerebellum through the mossy fibers. Information flow at these neurons is gated by a specialized pacemaker interneuron known as the Golgi cell, which provides divergent GABAergic input to thousands of GrCs. In vivo electrophysiological experiments have previously shown that acute ethanol exposure abolishes GrC responsiveness to sensory inputs carried by mossy fibers. Slice electrophysiological studies suggest that ethanol causes this effect by potentiating GABAergic transmission at Golgi cell-to-GrC synapses through an increase in Golgi cell excitability. Using patch-clamp electrophysiological techniques in cerebellar slices and computer modeling, we show here that ethanol excites Golgi cells by inhibiting the Na(+)/K(+) ATPase. Voltage-clamp recordings of Na(+)/K(+) ATPase currents indicated that ethanol partially inhibits this pump and this effect could be mimicked by low concentrations of ouabain. Partial inhibition of Na(+)/K(+) ATPase function in a computer model of the Golgi cell reproduced these experimental findings. These results establish a novel mechanism of action of ethanol on neuronal excitability, which likely has a role in ethanol-induced cerebellar dysfunction and may also contribute to neuronal functional alterations in other brain regions.
Collapse
Affiliation(s)
- Paolo Botta
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Fabio M Simões de Souza
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Thomas Sangrey
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Department of Theoretical Neurobiology, University of Antwerp, Wilrijk, Belgium
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, BMSB 145-915 Camino de Salud, N.E, Albuquerque, NM 87131-0001, USA, Tel: +505 272 3128, Fax: +505 272 8082, E-mail:
| |
Collapse
|
45
|
Lathrop MJ, Chakrabarti L, Eng J, Rhodes CH, Lutz T, Nieto A, Liggitt HD, Warner S, Fields J, Stöger R, Fiering S. Deletion of the Chd6 exon 12 affects motor coordination. Mamm Genome 2010; 21:130-42. [PMID: 20111866 PMCID: PMC2844962 DOI: 10.1007/s00335-010-9248-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 12/08/2009] [Indexed: 01/03/2023]
Abstract
Members of the CHD protein family play key roles in gene regulation through ATP-dependent chromatin remodeling. This is facilitated by chromodomains that bind histone tails, and by the SWI2/SNF2-like ATPase/helicase domain that remodels chromatin by moving histones. Chd6 is ubiquitously expressed in both mouse and human, with the highest levels of expression in the brain. The Chd6 gene contains 37 exons, of which exons 12-19 encode the highly conserved ATPase domain. To determine the biological role of Chd6, we generated mouse lines with a deletion of exon 12. Chd6 without exon 12 is expressed at normal levels in mice, and Chd6 Exon 12 −/− mice are viable, fertile, and exhibit no obvious morphological or pathological phenotype. Chd6 Exon 12 −/− mice lack coordination as revealed by sensorimotor analysis. Further behavioral testing revealed that the coordination impairment was not due to muscle weakness or bradykinesia. Histological analysis of brain morphology revealed no differences between Chd6 Exon 12 −/− mice and wild-type (WT) controls. The location of CHD6 on human chromosome 20q12 is overlapped by the linkage map regions of several human ataxias, including autosomal recessive infantile cerebellar ataxia (SCAR6), a nonprogressive cerebrospinal ataxia. The genomic location, expression pattern, and ataxic phenotype of Chd6 Exon 12 −/− mice indicate that mutations within CHD6 may be responsible for one of these ataxias.
Collapse
Affiliation(s)
- Melissa J Lathrop
- Department of Microbiology/Immunology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Frings M, Gaertner K, Buderath P, Gerwig M, Christiansen H, Schoch B, Gizewski ER, Hebebrand J, Timmann D. Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Exp Brain Res 2009; 201:167-76. [PMID: 19777220 DOI: 10.1007/s00221-009-2020-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 09/14/2009] [Indexed: 11/29/2022]
Abstract
Structural changes of the cerebellum have been reported in several psychiatric diseases like schizophrenia, autism and attention-deficit/hyperactivity disorder (ADHD). Beside behavioral deficits children with ADHD often show slight motor abnormalities. Cerebellar malfunction may contribute. The cerebellum is a structure essential for motor coordination, various forms of motor learning and timing of motor responses. In the present study, eyeblink conditioning was applied to investigate learning and timing of motor responses both in children with ADHD and children with cerebellar lesions. Acquisition, timing and extinction of conditioned eyeblink responses were investigated in children with ADHD, children with chronic surgical cerebellar lesions and controls using a standard delay paradigm with two different interstimulus intervals. Timing of conditioned eyeblink responses was significantly impaired in children with ADHD in the long interstimulus interval condition. Also in children with cerebellar lesions conditioned responses (CR) tended to occur earlier than in controls. Incidences of CRs were significantly reduced in children with cerebellar lesions and tended to be less in children with ADHD than in controls. Extinction of the CRs was impaired in children with cerebellar lesions in both interstimulus interval conditions and in children with ADHD in the long interstimulus interval condition. Cerebellar malfunction may contribute to disordered eyeblink conditioning in ADHD. However, because CR abnormalities differed between ADHD and cerebellar subjects, dysfunction of non-cerebellar structures cannot be excluded.
Collapse
Affiliation(s)
- Markus Frings
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gowen E, Stanley J, Miall RC. Movement interference in autism-spectrum disorder. Neuropsychologia 2007; 46:1060-8. [PMID: 18096192 DOI: 10.1016/j.neuropsychologia.2007.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/26/2007] [Accepted: 11/02/2007] [Indexed: 11/17/2022]
Abstract
Movement interference occurs when concurrently observing and executing incompatible actions and is believed to be due to co-activation of conflicting populations of mirror neurons. It has also been suggested that mirror neurons contribute towards the imitation of observed actions. However, the exact neural substrate of imitation may depend on task demands: a processing route for goal-directed meaningful actions may be distinct from one for non-goal-directed actions. A more controversial role proposed for these neurons is in theory of mind processing, along with the subsequent suggestion that impairment in the mirror neuron circuit can contribute to autism-spectrum disorder (ASD) where individuals have theory of mind deficits. We have therefore examined movement interference in nine ASD participants and nine matched controls while performing actions congruent and incongruent with observed meaningless arm movements. We hypothesised that if the mirror neuron system was impaired, reduced interference should be observed in the ASD group. However, control and ASD participants demonstrated an equivalent interference effect in an interpersonal condition, with greater movement variability in the incongruent compared to the congruent condition. A component of movement interference which is independent of congruency did differ between groups: ASD participants made generally more variable movements for the interpersonal task than for biological dot-motion task, while the reverse was true for the control participants. We interpret these results as evidence that the ASD participant group either rely to a greater extent on the goal-directed imitation pathway, supporting claims that they have a specific deficit of the non-goal-directed imitation pathway, or exhibit reduced visuomotor integration.
Collapse
Affiliation(s)
- E Gowen
- Faculty of Life Sciences, Moffat Building, The University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD, UK.
| | | | | |
Collapse
|
48
|
Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. CEREBELLUM (LONDON, ENGLAND) 2007; 6:159-62. [PMID: 17786810 DOI: 10.1080/14734220701496448] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Accumulating evidence from both human lesion and functional neuroimaging studies appears to support the hypothesis that the cerebellum contributes to non-motor functions. Along similar lines, cognitive, affective and behavioural changes in psychiatric disorders, such as autism, schizophrenia and dyslexia, have been linked to structural cerebellar abnormalities. The aim of this special issue was to evaluate the current knowledge base after more than 20 years of controversial discussion. The contributions of the special issue cover the most important cognitive domains, i.e., attention, memory and learning, executive control, language and visuospatial function. The available empirical evidence suggests that cognitive changes in patients with cerebellar dysfunction are mild and clearly less severe than the impairments observed after lesions to neocortical areas to which the cerebellum is closely connected via different cerebro-cerebellar loops. Frequently cited early findings, e.g., with respect to a specific cerebellar involvement in attention, have not been replicated or might be confounded by motor or working memory demands of the respective attention task. On the other hand, there is now convincing evidence for a cerebellar involvement in the mediation of a range of cognitive domains, most notably verbal working memory. Verbal working memory problems may partly underlie the compromised performance of cerebellar lesion patients on at least some complex cognitive tasks. Although investigations have moved from anecdotical case reports to hypothesis-driven controlled clinical group studies based on sound methods which are complemented by state-of-the-art functional neuroimaging studies, the empirical evidence available so far does not yet allow a convincing theory of the mechanisms of a cerebellar involvement in cognitive function. Future studies are clearly needed to further elucidate the nature of the processes linked to cerebellar mediation of cognitive processes and their possible link to motor theories of cerebellar function, e.g., its role in prediction and/or timing.
Collapse
Affiliation(s)
- Dagmar Timmann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany.
| | | |
Collapse
|