1
|
Azzollini A, Sgorbini B, Lecoultre N, Bicchi C, Wolfender JL, Rubiolo P, Gindro K. A mass spectrometry-based strategy for investigating volatile molecular interactions in microbial consortia: unveiling a Fusarium-specific induction of an antifungal compound. Front Microbiol 2025; 15:1417919. [PMID: 40070966 PMCID: PMC11895703 DOI: 10.3389/fmicb.2024.1417919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/26/2024] [Indexed: 03/14/2025] Open
Abstract
Co-cultivation of microorganisms has emerged as a promising methodology for deciphering the intricate molecular interactions between species. This approach facilitates the replication of natural niches of ecological or clinical relevance where microbes consistently interact. In this context, increasing attention has been addressed toward elucidating the molecular crosstalk within fungal co-cultures. However, a major challenge in this area of research is determining the fungal origin of metabolites induced in co-cultivation systems. Molecules elicited in co-cultures may not be detectable in the individual cultures, making it challenging to establish which microorganism is responsible for their induction. For agar-diffused metabolites, imaging mass spectrometry can help overcome this obstacle by localizing the induced molecules during fungal confrontations. For volatile metabolites, however, this remains an open problem. To address this issue, in this study, a three-head-to-head co-culture strategy was developed, specifically focusing on the exploration of volatile interactions between fungi via headspace solid-phase microextraction combined with gas chromatography mass spectrometry. This methodology was applied to study the volatile molecular interactions of three fungal species: Fusarium culmorum, Aspergillus amstelodami, and Cladosporium cladosporioides. The adopted strategy revealed a Fusarium-specific induction of three volatile molecules: γ-terpinene and two unidentified sesquiterpene compounds. Interestingly, γ-terpinene showed antifungal activity in a bioassay against the other two fungal species: Aspergillus amstelodami and Cladosporium cladosporioides. The proposed methodology could help to investigate volatile molecular interactions and highlight metabolite induction specific to a particular fungus involved in in vitro fungal confrontations. This is relevant for a better understanding of the complex biosynthetic responses of fungi in consortia and for identifying volatile molecules with antifungal activity.
Collapse
Affiliation(s)
- Antonio Azzollini
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Barbara Sgorbini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Carlo Bicchi
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | |
Collapse
|
2
|
Hsiao BY, Huang CS, Wu CF, Chien KL, Yang HY. Residential Proximity Land Use Characteristics and Exhaled Volatile Organic Compounds' Impact on Pulmonary Function in Asthmatic Children. J Xenobiot 2025; 15:27. [PMID: 39997370 PMCID: PMC11856375 DOI: 10.3390/jox15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Urban air pollution adversely affects children's respiratory systems, but the impact of volatile organic compounds (VOCs) on children's pulmonary function remains unclear. This study aims to identify exhaled VOCs linked to land use characteristics and reduced pulmonary function in asthmatic children, as well as to explore environmental thresholds influencing VOC exposure levels. METHODS We enrolled 97 asthmatic children, aged 7 to 20, from Changhua County, Taiwan, and collected personal and residential data, collected exhaled VOC samples, and conducted pulmonary function tests. Land use characteristics were derived from the children's residential addresses. This study used two models to explore the relationships between land use, VOC levels, and pulmonary function. RESULTS Our results show that m/p-xylene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene were key contributors to FEV1/FVC and significantly predicted FEV1/FVC < 90% (AUC = 0.66; 95% CI: 0.53 to 0.79). These VOCs were also linked to major road areas within a 300 m buffer around children's homes. CONCLUSIONS This study fills a research gap on low-level outdoor VOC exposure and pediatric respiratory health, examining 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and m/p-xylene as potential biomarkers for impaired pulmonary function in children.
Collapse
Affiliation(s)
- Bo-Yu Hsiao
- Population Health Research Center, National Taiwan University, Taipei 10055, Taiwan; (B.-Y.H.); (C.-F.W.); (K.-L.C.)
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Chun-Sheng Huang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan;
| | - Chang-Fu Wu
- Population Health Research Center, National Taiwan University, Taipei 10055, Taiwan; (B.-Y.H.); (C.-F.W.); (K.-L.C.)
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan;
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Kuo-Liong Chien
- Population Health Research Center, National Taiwan University, Taipei 10055, Taiwan; (B.-Y.H.); (C.-F.W.); (K.-L.C.)
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Hsiao-Yu Yang
- Population Health Research Center, National Taiwan University, Taipei 10055, Taiwan; (B.-Y.H.); (C.-F.W.); (K.-L.C.)
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan;
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Community and Family Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| |
Collapse
|
3
|
Bertuccio FR, D’Agnano V, Cordoni S, Tafa M, Novy C, Baio N, Mucaj K, Bortolotto C, Melloni G, Bianco A, Corsico AG, Perrotta F, Stella GM. Impact of Triple Inhaler Therapy on COPD Patients with Non-Small Cell Lung Cancer After Radical Surgery: A Single-Centre Retrospective Analysis. J Clin Med 2025; 14:249. [PMID: 39797331 PMCID: PMC11722558 DOI: 10.3390/jcm14010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is among the most relevant comorbidity associated with lung cancer. The advent of innovative triple treatment approaches for COPD has significantly improved patients' quality of life and outcomes. Few data are available regarding the impact of triple inhaler therapy on patients featuring COPD and lung cancer. Methods: We retrospectively evaluated the impact of triple inhale bronchodilators in a cohort of 56 patients with treated COPD who underwent lung surgery for primary cancer. Results: Triple bronchodilation can help to relieve the symptoms of the disease and improve lung function, allowing people with lung cancer to reduce the risk of serious exacerbations and improve their quality of life. Conclusions: Within the limits of the study, it should be underlined that bronchodilators can effectively affect the outcome and performance status after thoracic surgery.
Collapse
Affiliation(s)
- Francesco Rocco Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.C.); (M.T.); (C.N.); (N.B.); (K.M.); (G.M.); (A.G.C.)
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (A.B.); (F.P.)
- U.O.C. Clinica Pneumologica L. Vanvitelli, Monaldi Hospital, A.O. dei Colli, 80131 Naples, Italy
| | - Simone Cordoni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.C.); (M.T.); (C.N.); (N.B.); (K.M.); (G.M.); (A.G.C.)
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mitela Tafa
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.C.); (M.T.); (C.N.); (N.B.); (K.M.); (G.M.); (A.G.C.)
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Cristina Novy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.C.); (M.T.); (C.N.); (N.B.); (K.M.); (G.M.); (A.G.C.)
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Nicola Baio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.C.); (M.T.); (C.N.); (N.B.); (K.M.); (G.M.); (A.G.C.)
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Klodjana Mucaj
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.C.); (M.T.); (C.N.); (N.B.); (K.M.); (G.M.); (A.G.C.)
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy;
- Radiology Institute, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulio Melloni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.C.); (M.T.); (C.N.); (N.B.); (K.M.); (G.M.); (A.G.C.)
- Unit of Thoracic Surgery, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (A.B.); (F.P.)
- U.O.C. Clinica Pneumologica L. Vanvitelli, Monaldi Hospital, A.O. dei Colli, 80131 Naples, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.C.); (M.T.); (C.N.); (N.B.); (K.M.); (G.M.); (A.G.C.)
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (A.B.); (F.P.)
- U.O.C. Clinica Pneumologica L. Vanvitelli, Monaldi Hospital, A.O. dei Colli, 80131 Naples, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.C.); (M.T.); (C.N.); (N.B.); (K.M.); (G.M.); (A.G.C.)
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
4
|
V A B, Mathew P, Thomas S, Mathew L. Detection of lung cancer and stages via breath analysis using a self-made electronic nose device. Expert Rev Mol Diagn 2024; 24:341-353. [PMID: 38369930 DOI: 10.1080/14737159.2024.2316755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Breathomics is an emerging area focusing on monitoring and diagnosing pulmonary diseases, especially lung cancer. This research aims to employ metabolomic methods to create a breathprint in human-expelled air to rapidly identify lung cancer and its stages. RESEARCH DESIGN AND METHODS An electronic nose (e-nose) system with five metal oxide semiconductor (MOS) gas sensors, a microcontroller, and machine learning algorithms was designed and developed for this application. The volunteers in this study include 114 patients with lung cancer and 147 healthy controls to understand the clinical potential of the e-nose system to detect lung cancer and its stages. RESULTS In the training phase, in discriminating lung cancer from controls, the XGBoost classifier model with 10-fold cross-validation gave an accuracy of 91.67%. In the validation phase, the XGBoost classifier model correctly identified 35 out of 42 patients with lung cancer samples and 44 out of 51 healthy control samples providing an overall sensitivity of 83.33% and specificity of 86.27%. CONCLUSIONS These results indicate that the exhaled breath VOC analysis method may be developed as a new diagnostic tool for lung cancer detection. The advantages of e-nose based diagnostics, such as an easy and painless method of sampling, and low-cost procedures, will make it an excellent diagnostic method in the future.
Collapse
Affiliation(s)
- Binson V A
- Saintgits College of Engineering, Kottayam, Kerala, India
| | - Philip Mathew
- Department of Critical Care Medicine, Believers Church Medical College Hospital, Thiruvalla, Kerala, India
| | - Sania Thomas
- Saintgits College of Engineering, Kottayam, Kerala, India
| | - Luke Mathew
- Department of Pulmonology, Believers Church Medical College Hospital, Thiruvalla, Kerala, India
| |
Collapse
|
5
|
Romano A, Fehervari M, Boshier PR. Influence of ventilatory parameters on the concentration of exhaled volatile organic compounds in mechanically ventilated patients. Analyst 2023; 148:4020-4029. [PMID: 37497696 DOI: 10.1039/d3an00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Analysis of volatile organic compounds (VOC) within exhaled breath is subject to numerous sources of methodological and physiological variability. Whilst breathing pattern is expected to influence the concentrations of selected exhaled VOCs, it remains challenging to investigate respiratory rate and depth accurately in awake subjects. Online breath sampling was performed in 20 mechanically ventilated patients using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). The effect of variation in respiratory rate (RR) and tidal volume (TV) on the VOC release profiles was examined. A panel of nineteen VOCs were selected, including isoprene, acetone, propofol, volatile aldehydes, acids and phenols. Variation in RR had the greatest influence on exhaled isoprene levels, with maximum and average concentrations being inversely correlated with RR. Variations in RR had a statistically significant impact on acetone, C3-C7 linear aldehydes and acetic acid. In comparison, phenols (including propofol), C8-C10 aldehydes and C3-C6 carboxylic acids were not influenced by RR. Isoprene was the only compound to be influenced by variation in TV. These findings, obtained under controlled conditions, provide useful guidelines for the optimisation of breath sampling protocols to be applied on awake patients.
Collapse
Affiliation(s)
- Andrea Romano
- Department Surgery and Cancer, Imperial College, London, UK
| | | | - Piers R Boshier
- Department Surgery and Cancer, Imperial College, London, UK
- Francis Crick Institute, London, UK
| |
Collapse
|
6
|
Savito L, Scarlata S, Bikov A, Carratù P, Carpagnano GE, Dragonieri S. Exhaled volatile organic compounds for diagnosis and monitoring of asthma. World J Clin Cases 2023; 11:4996-5013. [PMID: 37583852 PMCID: PMC10424019 DOI: 10.12998/wjcc.v11.i21.4996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
The asthmatic inflammatory process results in the generation of volatile organic compounds (VOCs), which are subsequently secreted by the airways. The study of these elements through gas chromatography-mass spectrometry (GC-MS), which can identify individual molecules with a discriminatory capacity of over 85%, and electronic-Nose (e-NOSE), which is able to perform a quick onboard pattern-recognition analysis of VOCs, has allowed new prospects for non-invasive analysis of the disease in an "omics" approach. In this review, we aim to collect and compare the progress made in VOCs analysis using the two methods and their instrumental characteristics. Studies have described the potential of GC-MS and e-NOSE in a multitude of relevant aspects of the disease in both children and adults, as well as differential diagnosis between asthma and other conditions such as wheezing, cystic fibrosis, COPD, allergic rhinitis and last but not least, the accuracy of these methods compared to other diagnostic tools such as lung function, FeNO and eosinophil count. Due to significant limitations of both methods, it is still necessary to improve and standardize techniques. Currently, e-NOSE appears to be the most promising aid in clinical practice, whereas GC-MS, as the gold standard for the structural analysis of molecules, remains an essential tool in terms of research for further studies on the pathophysiologic pathways of the asthmatic inflammatory process. In conclusion, the study of VOCs through GC-MS and e-NOSE appears to hold promise for the non-invasive diagnosis, assessment, and monitoring of asthma, as well as for further research studies on the disease.
Collapse
Affiliation(s)
- Luisa Savito
- Department of Internal Medicine, Unit of Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Universitario Campus Bio Medico, Rome 00128, Italy
| | - Simone Scarlata
- Department of Internal Medicine, Unit of Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Universitario Campus Bio Medico, Rome 00128, Italy
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Pierluigi Carratù
- Department of Internal Medicine "A.Murri", University of Bari "Aldo Moro", Bari 70124, Italy
| | | | - Silvano Dragonieri
- Department of Respiratory Diseases, University of Bari, Bari 70124, Italy
| |
Collapse
|
7
|
Keogh RJ, Riches JC. The Use of Breath Analysis in the Management of Lung Cancer: Is It Ready for Primetime? Curr Oncol 2022; 29:7355-7378. [PMID: 36290855 PMCID: PMC9600994 DOI: 10.3390/curroncol29100578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Breath analysis is a promising non-invasive method for the detection and management of lung cancer. Exhaled breath contains a complex mixture of volatile and non-volatile organic compounds that are produced as end-products of metabolism. Several studies have explored the patterns of these compounds and have postulated that a unique breath signature is emitted in the setting of lung cancer. Most studies have evaluated the use of gas chromatography and mass spectrometry to identify these unique breath signatures. With recent advances in the field of analytical chemistry and machine learning gaseous chemical sensing and identification devices have also been created to detect patterns of odorant molecules such as volatile organic compounds. These devices offer hope for a point-of-care test in the future. Several prospective studies have also explored the presence of specific genomic aberrations in the exhaled breath of patients with lung cancer as an alternative method for molecular analysis. Despite its potential, the use of breath analysis has largely been limited to translational research due to methodological issues, the lack of standardization or validation and the paucity of large multi-center studies. It is clear however that it offers a potentially non-invasive alternative to investigations such as tumor biopsy and blood sampling.
Collapse
|
8
|
Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 2022; 59:353-372. [PMID: 35188863 DOI: 10.1080/10408363.2022.2038075] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.
Collapse
|
9
|
Exhaled Metabolite Patterns to Identify Recent Asthma Exacerbations. Metabolites 2021; 11:metabo11120872. [PMID: 34940630 PMCID: PMC8708458 DOI: 10.3390/metabo11120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Asthma is a chronic respiratory disease that can lead to exacerbations, defined as acute episodes of worsening respiratory symptoms and lung function. Predicting the occurrence of these exacerbations is an important goal in asthma management. The measurement of exhaled breath by electronic nose (eNose) may allow for the monitoring of clinically unstable asthma and exacerbations. However, data on its ability to perform this is lacking. We aimed to evaluate whether eNose could identify patients that recently had asthma exacerbations. We performed a cross-sectional study, measuring exhaled breath using the SpiroNose in adults with a physician-reported diagnosis of asthma. Patients were randomly divided into a training (n = 252) and validation (n = 109) set. For the analysis of eNose signals, principal component (PC) and linear discriminant analysis (LDA) were performed. LDA, based on PC1-4, reliably discriminated between patients who had a recent exacerbation from those who had not (training receiver operating characteristic (ROC)–area under the curve (AUC) = 0.76,95% CI 0.69–0.82), (validation AUC = 0.76, 95% CI 0.64–0.87). Our study showed that, exhaled breath analysis using eNose could accurately identify asthma patients who recently had an exacerbation, and could indicate that asthma exacerbations have a specific exhaled breath pattern detectable by eNose.
Collapse
|
10
|
Prediction of oral squamous cell carcinoma based on machine learning of breath samples: a prospective controlled study. BMC Oral Health 2021; 21:500. [PMID: 34615514 PMCID: PMC8496028 DOI: 10.1186/s12903-021-01862-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background The aim of this study was to evaluate the possibility of breath testing as a method of cancer detection in patients with oral squamous cell carcinoma (OSCC). Methods Breath analysis was performed in 35 OSCC patients prior to surgery. In 22 patients, a subsequent breath test was carried out after surgery. Fifty healthy subjects were evaluated in the control group. Breath sampling was standardized regarding location and patient preparation. All analyses were performed using gas chromatography coupled with ion mobility spectrometry and machine learning. Results Differences in imaging as well as in pre- and postoperative findings of OSCC patients and healthy participants were observed. Specific volatile organic compound signatures were found in OSCC patients. Samples from patients and healthy individuals could be correctly assigned using machine learning with an average accuracy of 86–90%. Conclusions Breath analysis to determine OSCC in patients is promising, and the identification of patterns and the implementation of machine learning require further assessment and optimization. Larger prospective studies are required to use the full potential of machine learning to identify disease signatures in breath volatiles. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01862-z.
Collapse
|
11
|
Noninvasive detection of COPD and Lung Cancer through breath analysis using MOS Sensor array based e-nose. Expert Rev Mol Diagn 2021; 21:1223-1233. [PMID: 34415806 DOI: 10.1080/14737159.2021.1971079] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION This paper describes the research work done toward the development of a breath analyzing electronic nose (e-nose), and the results obtained from testing patients with lung cancer, patients with chronic obstructive pulmonary disease (COPD), and healthy controls. Pulmonary diseases like COPD and lung cancer are detected with MOS sensor array-based e-noses. The e-nose device with the sensor array, data acquisition system, and pattern recognition can detect the variations of volatile organic compounds (VOC) present in the expelled breath of patients and healthy controls. MATERIALS AND METHODS This work presents the e-nose equipment design, study subjects selection, breath sampling procedures, and various data analysis tools. The developed e-nose system is tested in 40 patients with lung cancer, 48 patients with COPD, and 90 healthy controls. RESULTS In differentiating lung cancer and COPD from controls, support vector machine (SVM) with 3-fold cross-validation outperformed all other classifiers with an accuracy of 92.3% in cross-validation. In external validation, the same discrimination was achieved by k-nearest neighbors (k-NN) with 75.0% accuracy. CONCLUSION The reported results show that the VOC analysis with an e-nose system holds exceptional possibilities in noninvasive disease diagnosis applications.
Collapse
|
12
|
Kalidoss R, Kothalam R, Manikandan A, Jaganathan SK, Khan A, Asiri AM. Socio-economic demands and challenges for non-invasive disease diagnosis through a portable breathalyzer by the incorporation of 2D nanosheets and SMO nanocomposites. RSC Adv 2021; 11:21216-21234. [PMID: 35478818 PMCID: PMC9034087 DOI: 10.1039/d1ra02554f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022] Open
Abstract
Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials. The trace level selective detection of volatile organic compounds (VOCs) in breath facilitates the study of physiological disorder and real-time health monitoring. This review focuses on advancements in chemiresistive gas sensor technology for biomarker detection associated with different diseases. Emphasis is placed on selective biomarker detection by semiconducting metal oxide (SMO) nanostructures, 2-dimensional nanomaterials (2DMs) and nanocomposites through various optimization strategies and sensing mechanisms. Their synergistic properties for incorporation in a portable breathalyzer have been elucidated. Furthermore, the socio-economic demands of a breathalyzer in terms of recent establishment of startups globally and challenges of a breathalyzer are critically reviewed. This initiative is aimed at highlighting the challenges and scope for improvement to realize a high performance chemiresistive gas sensor for non-invasive disease diagnosis. Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials.![]()
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India +91-9840-959832
| | - Radhakrishnan Kothalam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603 203 India
| | - A Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India.,Centre for Nanoscience and Nanotechnology, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India
| | - Saravana Kumar Jaganathan
- Bionanotechnology Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam.,Department of Engineering, Faculty of Science and Engineering, University of Hull HU6 7RX UK
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
13
|
Application of chemoresistive gas sensors and chemometric analysis to differentiate the fingerprints of global volatile organic compounds from diseases. Preliminary results of COPD, lung cancer and breast cancer. Clin Chim Acta 2021; 518:83-92. [PMID: 33766555 DOI: 10.1016/j.cca.2021.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/20/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Analysis of volatile organic compounds (VOCs) in exhaled breath has been proposed as a screening method that discriminates between disease and healthy subjects, few studies evaluate whether these chemical fingerprints are specific when compared between diseases. We evaluated global VOCs and their discrimination capacity in chronic obstructive pulmonary disease (COPD), lung cancer, breast cancer and healthy subjects by chemoresistive sensors and chemometric analysis. METHODS A cross-sectional study was conducted with the participation of 30 patients with lung cancer, 50 with breast cancer, 50 with COPD and 50 control subjects. Each participant's exhaled breath was analyzed with the electronic nose. A multivariate analysis was carried: principal component analysis (PCA) and, canonical analysis of principal coordinates (CAP). Twenty single-blind samples from the 4 study groups were evaluated by CAP. RESULTS A separation between the groups of patients to the controls was achieved through PCA with explanations of >90% of the data and with a correct classification of 100%. In the CAP of the 4 study groups, discrimination between the diseases was obtained with 2 canonical axes with a correct general classification of 91.35%. This model was used for the prediction of the single-blind samples resulting in correct classification of 100%. CONCLUSIONS The application of chemoresistive gas sensors and chemometric analysis can be used as a useful tool for a screening test for lung cancer, breast cancer and COPD since this equipment detects the set of VOCs present in the exhaled breath to generate a characteristic chemical fingerprint of each disease.
Collapse
|
14
|
Khoubnasabjafari M, Mogaddam MRA, Rahimpour E, Soleymani J, Saei AA, Jouyban A. Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Crit Rev Anal Chem 2021; 52:1461-1487. [PMID: 33691552 DOI: 10.1080/10408347.2021.1889961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics. A number of important technical issues in exhaled breath collection and factors affecting the sampling procedures are presented. We review the recent progress in metabolomics approaches and a summary of their applications on the respiratory and non-respiratory diseases investigated by breath analysis. Recent reports on breathomics studies retrieved from Scopus and Pubmed were reviewed in this work. We conclude that analyzing breath metabolites (both volatile and nonvolatile) is valuable in disease diagnoses, and therefore believe that breathomics will turn into a promising noninvasive discipline in biomarker discovery and early disease detection in personalized medicine. The problem of wide variations in the reported metabolite concentrations from breathomics studies should be tackled by developing more accurate analytical methods and sophisticated numerical analytical alogorithms.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center and Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Dragonieri S, Scioscia G, Quaranta VN, Carratu P, Venuti MP, Falcone M, Carpagnano GE, Foschino Barbaro MP, Resta O, Lacedonia D. Exhaled volatile organic compounds analysis by e-nose can detect idiopathic pulmonary fibrosis. J Breath Res 2020; 14:047101. [PMID: 32320958 DOI: 10.1088/1752-7163/ab8c2e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current diagnostic work-up and monitoring of idiopathic pulmonary fibrosis (IPF) is often invasive and time consuming. Breath analysis by e-nose technology has shown potential in the diagnosis of numerous respiratory diseases. In this pilot study, we investigated whether exhaled breath analysis by an e-nose could discriminate among patients with IPF, healthy controls and COPD. Second, we verified whether these classification could be repeated in a set of newly recruited patients as external validation. Third, we evaluated any significant relationships between exhaled VOCs and Bronchoalveolar lavage fluid (BALF) in IPF patients. We enrolled 32 patients with well-characterized IPF, 33 individuals with COPD and 36 healthy controls. An electronic nose (Cyranose 320) was used to analyze exhaled breath samples. Raw data were processed by Principal component reduction and linear discriminant analysis. External validation in newly recruited patients (10 IPF, 10 COPD and 10 controls) was tested using the previous training set. Exhaled VOC-profiles of patients with IPF were distinct from those of healthy controls (CVA = 98.5%) as well as those with COPD (CVA = 80.0%). External validation confirmed the above findings (IPF vs COPD vs healthy controls, CVA 96.7%). Moreover, a significant inversely proportional correlation was shown between BALF total cell count and both Principal Components 1 and 2 (r = 0.543, r2 = 0.295, p < 0.01; r = 0.501, r2 = 0.251; p < 0.01, respectively). The exhaled breath Volatile Organic Compounds- profile of patients with IPF can be detected by an electronic nose. This suggests that breath analysis has potential for diagnosis and/or monitoring of IPF.
Collapse
Affiliation(s)
- Silvano Dragonieri
- Respiratory Diseases, University of Bari, Bari, Italy. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hérivaux A, Gonçalves SM, Carvalho A, Cunha C. Microbiota-derived metabolites as diagnostic markers for respiratory fungal infections. J Pharm Biomed Anal 2020; 189:113473. [PMID: 32771720 DOI: 10.1016/j.jpba.2020.113473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 01/05/2023]
Abstract
An emerging body of evidence has highlighted the significant role of the pulmonary microbiota during respiratory infections. The individual microbiome is nowadays recognized to supervise the outcome of the host-pathogen interaction by orchestrating mechanisms of immune regulation, inflammation, metabolism, and other physiological processes. A shift in the normal flora of the respiratory tract is associated with several lung inflammatory disorders including asthma, chronic obstructive pulmonary disease, or cystic fibrosis. These diseases are characterized by a lung microenvironment that becomes permissive to infections caused by the opportunistic fungal pathogen Aspergillus fumigatus. Although the role of the lung microbiota in the pathophysiology of respiratory fungal diseases remains elusive, microbiota-derived components have been proposed as important biomarkers to be considered in the diagnosis of these severe infections. Here, we review this emerging area of research and discuss the potential of microbiota-derived products in the diagnosis of respiratory fungal diseases.
Collapse
Affiliation(s)
- Anaїs Hérivaux
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
17
|
Becker R. Non-invasive cancer detection using volatile biomarkers: Is urine superior to breath? Med Hypotheses 2020; 143:110060. [PMID: 32683218 DOI: 10.1016/j.mehy.2020.110060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]
Abstract
In recent years numerous reports have highlighted the options of chemical breath analysis with regard to non-invasive cancer detection. Certain volatile organic compounds (VOC) supposedly present in higher amounts or in characteristic patterns have been suggested as potential biomarkers. However, so far no clinical application based on a specific set of compounds appears to exist. Numerous reports on the capability of sniffer dogs and sensor arrays or electronic noses to distinguish breath of cancer patients and healthy controls supports the concept of genuine cancer-related volatile profiles. However, the actual compounds responsible for the scent are completely unknown and there is no correlation with the potential biomarkers suggested on basis of chemical trace analysis. It is outlined that specific features connected with the VOC analysis in breath - namely small concentrations of volatiles, interfering background concentrations, considerable sampling effort and sample instability, impracticability regarding routine application - stand in the way of substantial progress. The underlying chemical-analytical challenge can only be met considering the severe susceptibility of VOC determination to these adverse conditions. Therefore, the attention is drawn to the needs for appropriate quality assurance/quality control as the most important feature for the reliable quantification of volatiles present in trace concentration. Consequently, the advantages of urine as an alternative matrix for volatile biomarker search in the context of diagnosing lung and other cancers are outlined with specific focus on quality assurance and practicability in clinical chemistry. The headspace over urine samples as the VOC source allows adapting gas chromatographical procedures well-established in water analysis. Foremost, the selection of urine over breath as non-invasive matrix should provide considerably more resilience to adverse effects during sampling and analysis. The most important advantage of urine over breath is seen in the option to partition, dispense, mix, spike, store, and thus to dispatch taylor-made urine samples on demand for quality control measures. Although it is still open at this point if cancer diagnosis supported by non-invasively sampled VOC profiles will ultimately reach clinical application the advantages of urine over breath should significantly facilitate urgently required steps beyond the current proof-of-concept stage and towards standardisation.
Collapse
Affiliation(s)
- Roland Becker
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| |
Collapse
|
18
|
Longo V, Forleo A, Capone S, Scoditti E, Carluccio MA, Siciliano P, Massaro M. In vitro profiling of endothelial volatile organic compounds under resting and pro-inflammatory conditions. Metabolomics 2019; 15:132. [PMID: 31583479 DOI: 10.1007/s11306-019-1602-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The evaluation of volatile organic compounds(VOCs) emitted by human body offers a unique tool to set up new non-invasive devices for early diagnosis and long-lasting monitoring of most human diseases. However, their cellular origin and metabolic fate have not been completely elucidated yet, thus limiting their clinical application. Endothelium acts as an interface between blood and surrounding tissues. As such, it adapts its physiology in response to different environmental modifications thus playing a role in the pathogenesis of many metabolic and inflammatory diseases. OBJECTIVES Since endothelium specifically reshapes its physiologic functions upon environmental changes the objective of this study was to evaluate if and how pro-inflammatory stimuli affect VOC metabolism in endothelial cell in culture. METHODS Gas chromatography with mass spectrometric detection was applied to profile VOCs in the headspace of cultured endothelial cells (EC) in the absence or presence of the pro-inflammatory stimulus lipopolysaccharide (LPS). RESULTS We observed that, under resting conditions, EC affected the amount of 58 VOCs belonging to aldehyde, alkane and ketone families. Among these, LPS significantly altered the amount of 15 VOCs. ROC curves show a perfect performance (AUC = 1) for 10 metabolites including 1-butanol, 3-methyl-1-butanol and 2-ethyl-1-hexanol. DISCUSSION The emission and uptake of the aforementioned VOCs disclose potential unexplored metabolic pathways for EC that deserve to be investigated. Overall, we identified new candidate VOC potentially exploitable, upon experimental confirm in in vivo model of disease, as potential biomarkers of sepsis and pro-inflammatory clinical settings.
Collapse
Affiliation(s)
- V Longo
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy.
| | - A Forleo
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - S Capone
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - E Scoditti
- National Research Council of Italy, Institute of Clinical Physiology, Lecce, Italy
| | - M A Carluccio
- National Research Council of Italy, Institute of Clinical Physiology, Lecce, Italy
| | - P Siciliano
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - M Massaro
- National Research Council of Italy, Institute of Clinical Physiology, Lecce, Italy.
| |
Collapse
|
19
|
Finamore P, Scarlata S, Cardaci V, Incalzi RA. Exhaled Breath Analysis in Obstructive Sleep Apnea Syndrome: A Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E538. [PMID: 31461988 PMCID: PMC6780099 DOI: 10.3390/medicina55090538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 11/23/2022]
Abstract
Background and Objectives: Obstructive sleep apnea syndrome (OSAS) represents an independent risk factor for cardiovascular, metabolic and neurological events. Polysomnography is the gold-standard for the diagnosis, however is expensive and time-consuming and not suitable for widespread use. Breath analysis is an innovative, non-invasive technique, able to provide clinically relevant information about OSAS. This systematic review was aimed to outline available evidence on the role of exhaled breath analysis in OSAS, taking into account the techniques' level of adherence to the recently proposed technical standards. Materials and Methods: Articles reporting original data on exhaled breath analysis in OSAS were identified through a computerized and manual literature search and screened. Duplicate publications, case reports, case series, conference papers, expert opinions, comments, reviews and meta-analysis were excluded. Results: Fractional exhaled Nitric Oxide (FeNO) is higher in OSAS patients than controls, however its absolute value is within reported normal ranges. FeNO association with AHI is controversial, as well as its change after continuous positive airway pressure (C-PAP) therapy. Exhaled breath condensate (EBC) is acid in OSAS, cytokines and oxidative stress markers are elevated, they positively correlate with AHI and normalize after treatment. The analysis of volatile organic compounds (VOCs) by spectrometry or electronic nose is able to discriminate OSAS from healthy controls. The main technical issues regards the dilution of EBC and the lack of external validation in VOCs studies. Conclusions: Exhaled breath analysis has a promising role in the understanding of mechanisms underpinning OSAS and has demonstrated a clinical relevance in identifying individuals affected by the disease, in assessing the response to treatment and, potentially, to monitor patient's adherence to mechanical ventilation. Albeit the majority of the technical standards proposed by the ERS committee have been followed by existing papers, further work is needed to uniform the methodology.
Collapse
Affiliation(s)
- Panaiotis Finamore
- Unit of Geriatrics, Campus Bio-Medico di Roma University, via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Simone Scarlata
- Unit of Geriatrics, Campus Bio-Medico di Roma University, via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Vittorio Cardaci
- Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Raffaele Antonelli Incalzi
- Unit of Geriatrics, Campus Bio-Medico di Roma University, via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|