1
|
Soureas K, Malandrakis P, Papadimitriou MA, Minopoulos C, Ntanasis-Stathopoulos I, Liacos CI, Gavriatopoulou M, Kastritis E, Dimopoulos MA, Scorilas A, Avgeris M, Terpos E. Refining precision prognostics in multiple myeloma: loss of miR-221/222 cluster in CD138+ plasma cells results in short-term progression and worse treatment outcome. Blood Cancer J 2025; 15:41. [PMID: 40089465 PMCID: PMC11910569 DOI: 10.1038/s41408-025-01248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
The persistence of high relapse rates and therapy resistance continues to challenge the effective management of multiple myeloma (MM). The identification of novel MM-specific molecular markers could ameliorate risk-stratification tools and accurately identify high-risk patients towards personalized prognosis and therapy. miRNA-seq analysis of CD138+ plasma cells (n = 24) unveiled miR-221-3p and miR-222-3p (miR-221/222 cluster) as the most downregulated miRNAs in R-ISS III compared to R-ISS I/II patients. Subsequently, miR-221/222 levels were quantified by RT-qPCR in CD138+ plasma cells of our screening cohort (n = 141), assessing patients' mortality and disease progression as clinical endpoints. Internal validation was performed by bootstrap analysis, while clinical benefit was estimated by decision curve analysis. Kryukov et al. (n = 149) and Aass et al. (n = 86) served as institutional-independent validation cohorts. Loss of miR-221/222 cluster was strongly associated with patients' short-term progression and poor overall survival, which was confirmed by Kryukov et al. and Aass et al. validation cohorts. Intriguingly, miR-221/222-fitted multivariate models offered superior risk-stratification within R-ISS staging and risk-based cytogenetics. Moreover, miR-221/222 loss could effectively discriminate optimal 1st-line treatment responders with inferior treatment outcome. Our study identified the loss of miR-221/222 cluster as a powerful independent predictor of patients' post-treatment progression, ameliorating prognosis and supporting precision medicine in MM.
Collapse
Affiliation(s)
- Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Minopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Christine-Ivy Liacos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece.
| |
Collapse
|
2
|
Zhang J, Luo C, Long H, Zhang B, Shan H, Hou B. Circulating exosomal miRNA-451 as an effective diagnostic biomarker and prognostic indicator for multiple myeloma. Int J Biol Markers 2024; 39:301-309. [PMID: 39311052 DOI: 10.1177/03936155241283747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
OBJECTIVE Multiple myeloma (MM) is a plasma cell malignancy characterized by abnormal plasma cell proliferation in the bone marrow. Circulating exosomal miRNA-451 is associated with the progression of many tumors, but the relationship between its expression and MM has not been reported. In this study, we aimed to investigate the clinical value of miRNA-451 as a biomarker for diagnosis and prognosis of multiple myeloma. METHODS A total of 120 patients with multiple myeloma and 120 healthy control people were recruited in this study. The miRNA-451 expression in serum exosomes of participants was measured by quantitative real-time polymerase chain reaction, and the diagnostic value of miRNA-451 for multiple myeloma was assessed by receiver operating characteristic (ROC) curve. The correlation between miRNA-451 expression and plasma cells ratio and M protein content was analyzed by Pearson correlation coefficient. The prognosis of different miRNA-451 expression was evaluated by survival curves. RESULTS Results suggested that serum exosomal miRNA-451 expression was significantly decreased in patients with multiple myeloma rather than in the healthy controls. The ROC curve showed that area under the curve value of miRNA-451 was 0.888, suggesting that miRNA-451 had diagnostic value to multiple myeloma. Moreover, there was a negative correlation between miRNA-451 expression and plasma cells ratio or M protein content. Survival curves showed that patients with high miRNA-451 expression had a longer survival time, suggesting the value of miRNA-451 as a prognostic indicator of multiple myeloma. CONCLUSION We demonstrated the relationship between miRNA-451 expression and multiple myeloma, indicating that miRNA-451 in circulating exosomes may be an effective diagnostic biomarker and prognostic indicator for multiple myeloma.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| | - Cheng Luo
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| | - Haiying Long
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| | - Bin Zhang
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| | - Hongtao Shan
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| | - Benli Hou
- Department of Hematology, the Second Affiliated Hospital of Guizhou Medical University, No. 3 Kangfu Road, Kaili City, Guizhou Province, 556000, China
| |
Collapse
|
3
|
Diamantopoulos MA, Georgoulia KK, Levis P, Kotronopoulos G, Stravodimos K, Kontos CK, Avgeris M, Scorilas A. 28S rRNA-Derived Fragments Represent an Independent Molecular Predictor of Short-Term Relapse in Prostate Cancer. Int J Mol Sci 2023; 25:239. [PMID: 38203408 PMCID: PMC10779029 DOI: 10.3390/ijms25010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancer (PCa) is a global health concern, being a leading cause of cancer-related mortality among males. Early detection and accurate prognosis are crucial for effective management. This study delves into the diagnostic and prognostic potential of 28S rRNA-derived fragments (rRFs) in PCa. Total RNA extracted from 89 PCa and 53 benign prostate hyperplasia (BPH) tissue specimens. After 3'-end polyadenylation, we performed reverse transcription to create first-strand cDNA. Using an in-house quantitative real-time PCR (qPCR) assay, we quantified 28S rRF levels. Post-treatment biochemical relapse served as the clinical endpoint event for survival analysis, which we validated internally through bootstrap analysis. Our results revealed downregulated 28S rRF levels in PCa compared to BPH patients. Additionally, we observed a significant positive correlation between 28S rRF levels and higher Gleason scores and tumor stages. Furthermore, PCa patients with elevated 28S rRF expression had a significantly higher risk of post-treatment disease relapse independently of clinicopathological data. In conclusion, our study demonstrates, for the first time, the prognostic value of 28S rRF in prostate adenocarcinoma. Elevated 28S rRF levels independently predict short-term PCa relapse and enhance risk stratification. This establishes 28S rRF as a potential novel molecular marker for PCa prognosis.
Collapse
Affiliation(s)
- Marios A. Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| | - Konstantina K. Georgoulia
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| | - Panagiotis Levis
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.L.); (G.K.); (K.S.)
| | - Georgios Kotronopoulos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.L.); (G.K.); (K.S.)
| | - Konstantinos Stravodimos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.L.); (G.K.); (K.S.)
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| |
Collapse
|
4
|
Hsieh MC, Lai CY, Lin LT, Chou D, Yeh CM, Cheng JK, Wang HH, Lin KH, Lin TB, Peng HY. Melatonin Relieves Paclitaxel-Induced Neuropathic Pain by Regulating pNEK2-Dependent Epigenetic Pathways in DRG Neurons. ACS Chem Neurosci 2023; 14:4227-4239. [PMID: 37978917 DOI: 10.1021/acschemneuro.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
The neurohormone melatonin (MLT) demonstrates promising potential in ameliorating neuropathic pain induced by paclitaxel (PTX) chemotherapy. However, little is known about its protective effect on dorsal root ganglion (DRG) neurons in neuropathic pain resulting from the chemotherapeutic drug PTX. Here, PTX-treated rats revealed that intrathecal administration of MLT dose-dependently elevated hind paw withdrawal thresholds and latency, indicating that MLT significantly reversed PTX-induced neuropathic pain. Mechanistically, the analgesic effects of MLT were found to be mediated via melatonin receptor 2 (MT2), as pretreatment with an MT2 receptor antagonist inhibited these effects. Moreover, intrathecal MLT injection reversed the pNEK2-dependent epigenetic program induced by PTX. All of the effects caused by MLT were blocked by pretreatment with an MT2 receptor-selective antagonist, 4P-PDOT. Remarkably, multiple MLT administered during PTX treatment (PTX+MLTs) exhibited not only rapid but also lasting reversal of allodynia/hyperalgesia compared to single-bolus MLT administered after PTX treatment (PTX+MLT). In addition, PTX+MLTs exhibited greater efficacy in reversing PTX-induced alterations in pRSK2, pNEK2, JMJD3, H3K27me3, and TRPV1 expression and interaction in DRG neurons than PTX+MLT. These results indicated that MLT administered during PTX treatment reduced the incidence and/or severity of neuropathy and had a better inhibitory effect on the pNEK2-dependent epigenetic program compared to MLT administered after PTX treatment. In conclusion, MLT/MT2 is a promising therapy for the treatment of pNEK2-dependent painful neuropathy resulting from PTX treatment. MLT administered during PTX chemotherapy may be more effective in the prevention or reduction of PTX-induced neuropathy and maintaining quality.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Li-Ting Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung 40343, Taiwan
- Central Taiwan University of Science and Technology, Taichung 40343, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei104, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 252, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung 40604, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| |
Collapse
|
5
|
Pagoni M, Cava C, Sideris DC, Avgeris M, Zoumpourlis V, Michalopoulos I, Drakoulis N. miRNA-Based Technologies in Cancer Therapy. J Pers Med 2023; 13:1586. [PMID: 38003902 PMCID: PMC10672431 DOI: 10.3390/jpm13111586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The discovery of therapeutic miRNAs is one of the most exciting challenges for pharmaceutical companies. Since the first miRNA was discovered in 1993, our knowledge of miRNA biology has grown considerably. Many studies have demonstrated that miRNA expression is dysregulated in many diseases, making them appealing tools for novel therapeutic approaches. This review aims to discuss miRNA biogenesis and function, as well as highlight strategies for delivering miRNA agents, presenting viral, non-viral, and exosomic delivery as therapeutic approaches for different cancer types. We also consider the therapeutic role of microRNA-mediated drug repurposing in cancer therapy.
Collapse
Affiliation(s)
- Maria Pagoni
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Claudia Cava
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy;
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, “P. & A. Kyriakou” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece;
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
6
|
Papadimitriou MA, Soureas K, Papanota AM, Tsiakanikas P, Adamopoulos PG, Ntanasis-Stathopoulos I, Malandrakis P, Gavriatopoulou M, Sideris DC, Kastritis E, Avgeris M, Dimopoulos MA, Terpos E, Scorilas A. miRNA-seq identification and clinical validation of CD138+ and circulating miR-25 in treatment response of multiple myeloma. J Transl Med 2023; 21:245. [PMID: 37024879 PMCID: PMC10080848 DOI: 10.1186/s12967-023-04034-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Despite significant advancements in multiple myeloma (MM) therapy, the highly heterogenous treatment response hinders reliable prognosis and tailored therapeutics. Herein, we have studied the clinical utility of miRNAs in ameliorating patients' management. METHODS miRNA-seq was performed in bone marrow CD138+ plasma cells (PCs) of 24 MM and smoldering MM (sMM) patients to analyze miRNAs profile. CD138+ and circulating miR-25 levels were quantified using in house RT-qPCR assays in our screening MM/sMM cohort (CD138+ plasma cells n = 167; subcohort of MM peripheral plasma samples n = 69). Two external datasets (Kryukov et al. cohort n = 149; MMRF CoMMpass study n = 760) served as institutional-independent validation cohorts. Patients' mortality and disease progression were assessed as clinical endpoints. Internal validation was performed by bootstrap analysis. Clinical benefit was estimated by decision curve analysis. RESULTS miRNA-seq highlighted miR-25 of CD138+ plasma cells to be upregulated in MM vs. sMM, R-ISS II/III vs. R-ISS I, and in progressed compared to progression-free patients. The analysis of our screening cohort highlighted that CD138+ miR-25 levels were correlated with short-term progression (HR = 2.729; p = 0.009) and poor survival (HR = 4.581; p = 0.004) of the patients; which was confirmed by Kryukov et al. cohort (HR = 1.878; p = 0.005) and MMRF CoMMpass study (HR = 1.414; p = 0.039) validation cohorts. Moreover, multivariate miR-25-fitted models contributed to superior risk-stratification and clinical benefit in MM prognostication. Finally, elevated miR-25 circulating levels were correlated with poor survival of MM patients (HR = 5.435; p = 0.021), serving as a potent non-invasive molecular prognostic tool. CONCLUSIONS Our study identified miR-25 overexpression as a powerful independent predictor of poor treatment outcome and post-treatment progression, aiding towards modern non-invasive disease prognosis and personalized treatment decisions.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Aristea-Maria Papanota
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, "Alexandra" General Hospital, 80 Vas. Sofias Ave., 11528, Athens, Greece.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
| |
Collapse
|
7
|
Panoutsopoulou K, Liu Y, Avgeris M, Dreyer T, Dorn J, Magdolen V, Scorilas A. Repression of miR-146a in predicting poor treatment outcome in triple-negative breast cancer. Clin Biochem 2023; 114:43-51. [PMID: 36502883 DOI: 10.1016/j.clinbiochem.2022.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES In the era of precision medicine, the highly aggressive and heterogenous triple-negative breast cancer (TNBC) is still characterized by limited options to support personalized prognosis and guide therapeutic interventions. Thereafter, the aim of the present study has been the thorough evaluation of miR-146a as a novel molecular indicator of TNBC prognosis and treatment outcome, utilizing four independent TNBC cohorts. DESIGN & METHODS miR-146a levels were clinically evaluated in our screening (n = 122) and three external validation TNBC cohorts (de Rinaldis et al. 2013, n = 114; Jézéquel et al. 2015, n = 107; TCGA, n = 180). Analysis of miR-146a and validated gene targets was performed in Jézéquel et al. and TCGA validation cohorts. Patients' survival, recurrence and metastasis were determined as clinical endpoints for the survival analysis. Internal validation was performed by bootstrap analysis and clinical net benefit was evaluated by decision curve analysis. RESULTS Reduction of miR-146a is strongly associated with patients' poor survival and can predict post-treatment disease early-recurrence, independently of tumor size, lymph node status, histological grade and patients' age. The analysis of the external validation cohorts corroborated the unfavorable nature of miR-146a repression regarding patients' survival and, strikingly, unveiled the ability of miR-146a to predict TNBC metastasis. Combined assessment of miR-146a levels and lymph node status resulted in superior risk-stratification of TNBC patients and higher clinical benefit regarding disease prognosis and post-treatment outcome. Ultimately, miR-146a was negatively associated with EGFR and SOX2 expression in TNBC. CONCLUSIONS miR-146a evaluation could ameliorate personalized prognosis and support precision medicine decisions in TNBC.
Collapse
Affiliation(s)
- Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Yueyang Liu
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany; Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
8
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Fang X, Wang Y, Wang S, Liu B. Nanomaterials assisted exosomes isolation and analysis towards liquid biopsy. Mater Today Bio 2022; 16:100371. [PMID: 35937576 PMCID: PMC9352971 DOI: 10.1016/j.mtbio.2022.100371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Exosomes has attracted tremendous research interests as they are emerging as a new paradigm of liquid biopsy. Although the concentration of exosomes in blood is relatively abundant, there still exists various vesicle-like nanoparticles, such as microvesicles, apoptotic bodies. It's an urgent need to isolate and enrich exosomes from the complex contaminants in biofluid samples. Moreover, the expressing level of exosomal biomarkers varies a lot, which make the sensitive molecular detection of exosomes in high demand. Unfortunately, the efficient isolation and sensitive molecular quantification of exosomes is still a major obstacle hindering the further development and clinical application of exosome-based liquid biopsy. Nanomaterials, with unique physiochemical properties, have been widely used in biosensing and analysis aspects, thus they are thought as powerful tools for effective purification and molecular analysis of exosomes. In this review, we summarized the most recent progresses in nanomaterials assisted exosome isolation and analysis towards liquid biopsy. On the one hand, nanomaterials can be used as capture substrates to afford large binding area and specific affinity to exosomes. Meanwhile, nanomaterials can also be served as promising signal transducers and amplifiers for molecular detection of exosomes. Furthermore, we also pointed out several potential and promising research directions in nanomaterials assisted exosome analysis. It's envisioned that this review will give the audience a complete outline of nanomaterials in exosome study, and further promote the intersection of nanotechnology and bio-analysis.
Collapse
Affiliation(s)
- Xiaoni Fang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yuqing Wang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Shurong Wang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Baohong Liu
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
10
|
Desjardins P, Berthiaume R, Couture C, Le-Bel G, Roy V, Gros-Louis F, Moulin VJ, Proulx S, Chemtob S, Germain L, Guérin SL. Impact of Exosomes Released by Different Corneal Cell Types on the Wound Healing Properties of Human Corneal Epithelial Cells. Int J Mol Sci 2022; 23:12201. [PMID: 36293057 PMCID: PMC9602716 DOI: 10.3390/ijms232012201] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 09/26/2023] Open
Abstract
Corneal wound healing involves communication between the different cell types that constitute the three cellular layers of the cornea (epithelium, stroma and endothelium), a process ensured in part by a category of extracellular vesicles called exosomes. In the present study, we isolated exosomes released by primary cultured human corneal epithelial cells (hCECs), corneal fibroblasts (hCFs) and corneal endothelial cells (hCEnCs) and determined whether they have wound healing characteristics of their own and to which point they modify the genetic and proteomic pattern of these cell types. Exosomes released by all three cell types significantly accelerated wound closure of scratch-wounded hCECs in vitro compared to controls (without exosomes). Profiling of activated kinases revealed that exosomes from human corneal cells caused the activation of signal transduction mediators that belong to the HSP27, STAT, β-catenin, GSK-3β and p38 pathways. Most of all, data from gene profiling analyses indicated that exosomes, irrespective of their cellular origin, alter a restricted subset of genes that are completely different between each targeted cell type (hCECs, hCFS, hCEnCs). Analysis of the genes specifically differentially regulated for a given cell-type in the microarray data using the Ingenuity Pathway Analysis (IPA) software revealed that the mean gene expression profile of hCECs cultured in the presence of exosomes would likely promote cell proliferation and migration whereas it would reduce differentiation when compared to control cells. Collectively, our findings represent a conceptual advance in understanding the mechanisms of corneal wound repair that may ultimately open new avenues for the development of novel therapeutic approaches to improve closure of corneal wounds.
Collapse
Affiliation(s)
- Pascale Desjardins
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Rébecca Berthiaume
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Vincent Roy
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - François Gros-Louis
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Véronique J. Moulin
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Stéphanie Proulx
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain Chemtob
- Département d’Ophtalmologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Lucie Germain
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Miao N, Cai W, Ding S, Liu Y, Chen W, Sun T. Characterization of plasma exosomal microRNAs in responding to radiotherapy of human esophageal squamous cell carcinoma. Mol Med Rep 2022; 26:287. [PMID: 35894132 PMCID: PMC9366155 DOI: 10.3892/mmr.2022.12803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Radiotherapy is one of the main treatment methods for esophageal squamous cell carcinoma (ESCC). Previous research has shown that plasma exosomal microRNAs (miRNAs) can predict therapeutic outcome. In the present study, to identify potential exosomal miRNAs that respond to radiotherapy, plasma exosomal miRNAs from ESCC patients undergoing radiotherapy were isolated and sequenced. Upregulated and downregulated miRNAs were detected from patients pre- and post-radiotherapy, and it was found that they play distinct roles in DNA damage process and endosomal mediated transport. Based on wound healing and Cell Counting Kit-8 assays in TE-1 human esophageal cancer cells, it was identified that representative miRNA miR-652 and miR-30a alter migration but not proliferation. The present findings identified differentially expressed miRNAs in responding to radiotherapy, and added a reference to explore non-invasive plasma biomarkers to evaluate therapeutic effects in ESCC.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Sijia Ding
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Yajuan Liu
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| |
Collapse
|
12
|
Dhar R, Mallik S, Devi A. Exosomal microRNAs (exoMIRs): micromolecules with macro impact in oral cancer. 3 Biotech 2022; 12:155. [DOI: 10.1007/s13205-022-03217-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
|
13
|
Chen XM, Yao DN, Wang MJ, Wu XD, Deng JW, Deng H, Huang RY, Lu CJ. Deep Sequencing of Plasma Exosomal microRNA Level in Psoriasis Vulgaris Patients. Front Med (Lausanne) 2022; 9:895564. [PMID: 35665333 PMCID: PMC9160332 DOI: 10.3389/fmed.2022.895564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022] Open
Abstract
Psoriasis is a chronic skin disease affecting 1% to 3% of the world population. Psoriasis vulgaris (PV) is the most common form of psoriasis. PV patients suffer from inflamed, pruritic and painful lesions for years (even a lifetime). However, conventional drugs for PV are costly. Considering the need for long-term treatment of PV, it is urgent to discover novel biomarkers and therapeutic targets. Plasma exosomal miRNAs have been identified as the reliable biomarkers and therapy targets of human diseases. Here, we described the levels of serum exosomal miRNAs in PV patients and analyzed the functional features of differently expressed miRNAs and their potential target genes for the first time. We identified 1182 miRNAs including 336 novel miRNAs and 246 differently expressed miRNAs in serum exosomes of healthy people and PV patients. Furthermore, the functional analysis found differently expressed miRNA-regulated target genes enriched for specific GO terms including primary metabolic process, cellular metabolic process, metabolic process, organic substance metabolic process, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway containing cellular processes, human diseases, metabolic pathways, metabolism and organismal systems. In addition, we found that some predicted target genes of differentially expressed miRNAs, such as CREB1, RUNX2, EGFR, are both involved in inflammatory response and metabolism. In summary, our study identifies many candidate miRNAs involved in PV, which could provide potential biomarkers for diagnosis of PV and targets for clinical therapies against PV.
Collapse
Affiliation(s)
- Xiu-Min Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan-Ni Yao
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Mao-Jie Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Dong Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jing-Wen Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Hao Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Run-Yue Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan-Jian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
miRNA-seq and clinical evaluation in multiple myeloma: miR-181a overexpression predicts short-term disease progression and poor post-treatment outcome. Br J Cancer 2022; 126:79-90. [PMID: 34718359 PMCID: PMC8727627 DOI: 10.1038/s41416-021-01602-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/10/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Despite significant advances in multiple myeloma (MM) therapy, disease relapse and treatment resistance remain major obstacles in clinical management. Herein, we have studied the clinical utility of miRNAs in improving patients' risk-stratification and prognosis. METHODS miRNA-seq was performed in CD138+ plasma cells of MM, smoldering multiple myeloma (sMM) and monoclonal gammopathy of undetermined significance (MGUS) patients. The screening MM cohort consisted of 138 patients. miRNA levels of CD138+ plasma cells were quantified by RT-qPCR following 3'-end RNA polyadenylation. Disease progression and patients' death were used as clinical end-point events. Internal validation was conducted by bootstrap analysis. Clinical net benefit on disease prognosis was assessed by decision curve analysis. Kruykov et al. 2016 served as validation cohort (n = 151). RESULTS miRNA-seq highlighted miR-181a to be upregulated in MM vs. sMM/MGUS, and R-ISS III vs. I patients. Screening and validation cohorts confirmed the significantly higher risk for short-term progression and worse survival of the patients overexpressing miR-181a. Multivariate models integrating miR-181a with disease established markers led to superior risk-stratification and clinical benefit for MM prognosis. CONCLUSIONS CD138+ overexpression of miR-181a was strongly correlated with inferior disease outcome and contributed to superior prediction of MM patients early progression, supporting personalised prognosis and treatment decisions.
Collapse
|
15
|
Deng Y, Tong J, Shi W, Tian Z, Yu B, Tang J. Thromboangiitis obliterans plasma-derived exosomal miR-223-5p inhibits cell viability and promotes cell apoptosis of human vascular smooth muscle cells by targeting VCAM1. Ann Med 2021; 53:1129-1141. [PMID: 34259105 PMCID: PMC8281010 DOI: 10.1080/07853890.2021.1949487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Exosomes-encapsulated microRNAs (miRNAs) have been established to be implicated in the pathogenesis of different diseases. Nevertheless, circulating exosomal miRNAs of thromboangiitis obliterans (TAO) remains poorly understood. This study aimed to explore the effects of exosomal miRNAs associated with TAO on human vascular smooth muscle cells (HVSMCs).Methods: The exosomes were isolated from the plasma of TAO patients and normal controls and then were sent for small RNA sequencing. Differentially expressed miRNAs (DE-miRNAs) were identified by bioinformatics analysis and were confirmed by RT-qPCR. After that, PKH67 staining was used to label exosomes and co-cultured with HVSMCs. Cell viability and apoptosis were, respectively, tested by CCK-8 assay and flow cytometry. Finally, dual-luciferase reporter assay was used to confirm the downstream targets of miR-223-5p.Results: A total of 39 DE-miRNAs were identified between TAO patients and normal controls, of which, miR-223-5p was one of the most significantly up-regulated miRNAs. TAO plasma-derived exosomes or miR-223-5p mimics inhibited cell viability of HVSMCs and promoted cell apoptosis. The pro-apoptotic effect of TAO plasma-derived exosomes was alleviated by miR-223-5p inhibitor. Additionally, the expressions of VCAM1 and IGF1R were down-regulated by exosomes and miR-223-5p mimics, and were abrogated by miR-223-5p inhibitor. Dual-luciferase report showed that VCAM1 was the target of miR-223-5p.Conclusions: Our findings imply that circulating exosomal miR-223-5p may play an essential role in the pathogenesis of TAO, and provide a basis for miR-6515-5p/VCAM1 as novel therapeutic targets and pathways for TAO treatment.
Collapse
Affiliation(s)
- Ying Deng
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jindong Tong
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| | - Weijun Shi
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhongyi Tian
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jingdong Tang
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
16
|
Circulating exosomal miRNAs and cancer early diagnosis. Clin Transl Oncol 2021; 24:393-406. [PMID: 34524618 DOI: 10.1007/s12094-021-02706-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Microribonucleic acids (miRNAs) are small non-coding ribonucleic acids (ncRNAs), which can affect recognition of homologous sequences and interfere with transcription. It plays key roles in the initiation, development, resistance, metastasis or recurrence of cancers. Identifying circulatory indicators will positively improve the prognosis and quality of life of patients with early cancer. Previous studies have shown that miRNA is highly involved in cancer. In addition, miRNA derived from cancers can be encapsulated as exosomes and further extracted into circulatory systems to realize malignant functions. It indicates that circulating exosome-derived miRNAs have the potential to replace conventional biomarkers as cancer derived exosomes carrying miRNAs can be identified by specific markers and might be more stable and accurate for early diagnosis.
Collapse
|
17
|
Wang D, Wei G, Ma J, Cheng S, Jia L, Song X, Zhang M, Ju M, Wang L, Zhao L, Xin S. Identification of the prognostic value of ferroptosis-related gene signature in breast cancer patients. BMC Cancer 2021; 21:645. [PMID: 34059009 PMCID: PMC8165796 DOI: 10.1186/s12885-021-08341-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer (BRCA) is a malignant tumor with high morbidity and mortality, which is a threat to women’s health worldwide. Ferroptosis is closely related to the occurrence and development of breast cancer. Here, we aimed to establish a ferroptosis-related prognostic gene signature for predicting patients’ survival. Methods Gene expression profile and corresponding clinical information of patients from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. The Least absolute shrinkage and selection operator (LASSO)-penalized Cox regression analysis model was utilized to construct a multigene signature. The Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) curves were plotted to validate the predictive effect of the prognostic signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes, Genomes (KEGG) pathway and single-sample gene set enrichment analysis (ssGSEA) were performed for patients between the high-risk and low-risk groups divided by the median value of risk score. Results We constructed a prognostic signature consisted of nine ferroptosis-related genes (ALOX15, CISD1, CS, GCLC, GPX4, SLC7A11, EMC2, G6PD and ACSF2). The Kaplan-Meier curves validated the fine predictive accuracy of the prognostic signature (p < 0.001). The area under the curve (AUC) of the ROC curves manifested that the ferroptosis-related signature had moderate predictive power. GO and KEGG functional analysis revealed that immune-related responses were largely enriched, and immune cells, including activated dendritic cells (aDCs), dendritic cells (DCs), T-helper 1 (Th1), were higher in high-risk groups (p < 0.001). Oppositely, type I IFN response and type II IFN response were lower in high-risk groups (p < 0.001). Conclusion Our study indicated that the ferroptosis-related prognostic signature gene could serve as a novel biomarker for predicting breast cancer patients’ prognosis. Furthermore, we found that immunotherapy might play a vital role in therapeutic schedule based on the level and difference of immune-related cells and pathways in different risk groups for breast cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08341-2.
Collapse
Affiliation(s)
- Ding Wang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Guodong Wei
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ju Ma
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shuai Cheng
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Longyuan Jia
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Ming Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
18
|
Avgeris M, Marmarinos A, Gourgiotis D, Scorilas A. Jagged Ends of Cell-Free DNA: Rebranding Fragmentomics in Modern Liquid Biopsy Diagnostics. Clin Chem 2021; 67:576-578. [PMID: 33693633 DOI: 10.1093/clinchem/hvab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/13/2022]
Affiliation(s)
- Margaritis Avgeris
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.,Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Marmarinos
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Dimitrios Gourgiotis
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Prudowsky ZD, Yustein JT. Recent Insights into Therapy Resistance in Osteosarcoma. Cancers (Basel) 2020; 13:E83. [PMID: 33396725 PMCID: PMC7795058 DOI: 10.3390/cancers13010083] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma, the most common bone malignancy of childhood, has been a challenge to treat and cure. Standard chemotherapy regimens work well for many patients, but there remain minimal options for patients with progressive or resistant disease, as clinical trials over recent decades have failed to significantly improve survival. A better understanding of therapy resistance is necessary to improve current treatments and design new strategies for future treatment options. In this review, we discuss known mechanisms and recent scientific advancements regarding osteosarcoma and its patterns of resistance against chemotherapy, radiation, and other newly-introduced therapeutics.
Collapse
Affiliation(s)
- Zachary D. Prudowsky
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Panoutsopoulou K, Avgeris M, Magkou P, Mavridis K, Dreyer T, Dorn J, Obermayr E, Reinthaller A, Michaelidou K, Mahner S, Vergote I, Loverix L, Braicu I, Sehouli J, Zeillinger R, Magdolen V, Scorilas A. miR-181a overexpression predicts the poor treatment response and early-progression of serous ovarian cancer patients. Int J Cancer 2020; 147:3560-3573. [PMID: 32621752 DOI: 10.1002/ijc.33182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023]
Abstract
Ovarian cancer (OC) remains a leading cause of gynecological cancer-related death worldwide, characterized by poor 5-year survival. Molecular markers could serve as crucial tools of personalized prognosis and therapy. Herein, we present miR-181a as novel predictor of OC prognosis, using five independent OC cohorts. In particular, a screening (n = 81) and an institutionally independent validation (n = 100, OVCAD multicenter study) serous OC (SOC) cohorts were analyzed. Bagnoli et al (2016) OC179 (n = 124) to OC133 (n = 100) and TCGA (n = 489) served as external validation cohorts. Patients' survival and disease progression were assessed as clinical endpoint events. Bootstrap analysis was performed for internal validation and decision curve analysis was utilized to evaluate clinical benefit. miR-181a overexpression was unveiled as powerful and independent molecular predictor of patients' poor survival and higher risk for disease progression after debulking surgery and platinum-based chemotherapy. Analysis of the OVCAD institutionally independent cohort, as well as of Bagnoli et al. and TCGA external cohorts further confirmed the unfavorable prognostic nature of miR-181a overexpression in SOC. Strikingly, multivariate prognostic models incorporating miR-181a with established disease markers clearly improved patients' risk-stratification and offered superior clinical benefit in OC prognostication. Conclusively, miR-181a evaluation could augment prognostic accuracy and support precision medicine decisions in OC.
Collapse
Affiliation(s)
- Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Magkou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Mavridis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Alexander Reinthaller
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Kleita Michaelidou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ignace Vergote
- Department of Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Liselore Loverix
- Department of Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Ioana Braicu
- Department of Gynecology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
tRNA-Derived Fragments (tRFs) in Bladder Cancer: Increased 5'-tRF-LysCTT Results in Disease Early Progression and Patients' Poor Treatment Outcome. Cancers (Basel) 2020; 12:cancers12123661. [PMID: 33291319 PMCID: PMC7762106 DOI: 10.3390/cancers12123661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Bladder cancer (BlCa) management relies on lifelong surveillance strategies with invasive interventions that adversely affect patients’ quality-of-life and lead to a high economic burden for healthcare systems. Exploitation of bladder tumors’ molecular background could lead to modern precision medicine. tRNA-derived fragments (tRFs), rather than degradation debris, are novel functional small ncRNAs that have emerged as key regulators of cellular homeostasis. This is the first study of the clinical utility of tRFs in BlCa. Using in silico analysis of the TCGA-BLCA project, we identified 5′-tRF-LysCTT (5′-tRF of tRNALysCTT) to be significantly deregulated in BlCa, and we have studied its clinical value in our cohort of 230 BlCa patients. Elevated 5′-tRF-LysCTT levels were significantly associated with aggressive tumor phenotype as well as early disease progression and poor treatment outcome. Integration of 5′-tRF-LysCTT with established disease markers resulted in superior prediction of patients’ prognosis, supporting personalized treatment and monitoring decisions. Abstract The heterogeneity of bladder cancer (BlCa) prognosis and treatment outcome requires the elucidation of tumors’ molecular background towards personalized patients’ management. tRNA-derived fragments (tRFs), although originally considered as degradation debris, represent a novel class of powerful regulatory non-coding RNAs. In silico analysis of the TCGA-BLCA project highlighted 5′-tRF-LysCTT to be significantly deregulated in bladder tumors, and 5′-tRF-LysCTT levels were further quantified in our screening cohort of 230 BlCa patients. Recurrence and progression for non-muscle invasive (NMIBC) patients, as well as progression and patient’s death for muscle-invasive (MIBC) patients, were used as clinical endpoint events. TCGA-BLCA were used as validation cohort. Bootstrap analysis was performed for internal validation and the clinical net benefit of 5′-tRF-LysCTT on disease prognosis was assessed by decision curve analysis. Elevated 5′-tRF-LysCTT was associated with unfavorable disease features, and significant higher risk for early progression (multivariate Cox: HR = 2.368; p = 0.033) and poor survival (multivariate Cox: HR = 2.151; p = 0.032) of NMIBC and MIBC patients, respectively. Multivariate models integrating 5′-tRF-LysCTT with disease established markers resulted in superior risk-stratification specificity and positive prediction of patients’ progression. In conclusion, increased 5′-tRF-LysCTT levels were strongly associated with adverse disease outcome and improved BlCa patients’ prognostication.
Collapse
|
22
|
Tumor-Derived Exosomes in Immunosuppression and Immunotherapy. J Immunol Res 2020; 2020:6272498. [PMID: 32537468 PMCID: PMC7261328 DOI: 10.1155/2020/6272498] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-derived exosomes (TEX) are involved in cancer development, metastasis, and disease progression. They can modulate angiogenesis to elevate the malignant degree of tumor cells. TEX carry immunosuppressive factors affecting the antitumor activities of immune cells. Tumor cells as well as immune cells secrete immunologically active exosomes which affect intercellular communication, antigen presentation, activation of immune cells, and immune surveillance. Cell proliferation and immune response suppression create a favorable microenvironment for tumor. TEX can inhibit immune cell proliferation, induce apoptosis of activated CD8+ Teffs, suppress NK cell activity, interfere with monocyte differentiation, and promote Treg as well as MDSC expansion. Exosomes of microenvironment cells may also contribute to the development of drug resistance in cancer therapy. An important role of TEX in modulating the sensitivity of tumor cells to immunotherapy is a promising area of research to make the cancer therapy more successful.
Collapse
|
23
|
miR-6869-5p Inhibits Glioma Cell Proliferation and Invasion via Targeting PGK1. Mediators Inflamm 2020; 2020:9752372. [PMID: 32565733 PMCID: PMC7260655 DOI: 10.1155/2020/9752372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating studies have suggested the dysregulated microRNAs (miRNAs) play important roles in brain tumors, including glioma. miR-6869-5p has been documented to be aberrantly expressed in diverse cancers. However, the precise role of miR-6869-5p in glioma remains poorly understood. This study is aimed at evaluating its modifying effects on glioma. Significantly decreased expression of miR-6869-5p was found in glioma tissues and cells. Negative association was documented between miR-6869-5p and PGK1 in glioma cells, and PGK1 was demonstrated to be a targeted gene of this miRNA by luciferase reporter assay. miR-6869-5p regulated glioma cell proliferation and invasion via targeting PGK1. In addition, the survival analysis had suggested that low miR-6869-5p expression predicted poor prognosis of glioma patients. This study has suggested that miR-6869-5p is a useful tumor suppressor and prognostic marker in glioma.
Collapse
|
24
|
Matboli M, Labib ME, Nasser HET, El-Tawdi AH, Habib EK, Ali-Labib R. Exosomal miR-1298 and lncRNA-RP11-583F2.2 Expression in Hepato-cellular Carcinoma. Curr Genomics 2020; 21:46-55. [PMID: 32655298 PMCID: PMC7324892 DOI: 10.2174/1389202920666191210111849] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
AIM The aim of this study was to explore the expression of exosomal non-coding RNAs (ncRNAs) in the sera of patients with HCC versus control. METHODS Firstly, Bioinformatics analysis was conducted to retrieve ncRNAs specific to HCC (hsa-miRNA-1298 and lncRNA-RP11-583F2.2). Afterwards, extraction and characterization of exosomes were performed. We measured the expression of the chosen exosomal RNAs by reverse transcriptase quantitative real-time PCR in sera of 60 patients with HCC, 42 patients with chronic hepatitis C (CHC) infection and 18 healthy normal volunteers. RESULTS The exosomal ncRNAs [hsa-miRNA-1298, lncRNA-RP11-583F2.2] had better sensitivity and specificity than alpha-fetoprotein (AFP) in HCC diagnosis. CONCLUSION The exosomal hsa-miRNA-1298, lncRNA-RP11-583F2.2 can be potential biomarkers for HCC diagnosis.
Collapse
Affiliation(s)
- Marwa Matboli
- Address correspondence to this author at the Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, 11381, Cairo, Egypt; Tel: 01005824962; E-mail:
| | | | | | | | | | | |
Collapse
|
25
|
Carpi S, Polini B, Fogli S, Podestà A, Ylösmäki E, Cerullo V, Romanini A, Nieri P. Circulating microRNAs as biomarkers for early diagnosis of cutaneous melanoma. Expert Rev Mol Diagn 2019; 20:19-30. [PMID: 31747311 DOI: 10.1080/14737159.2020.1696194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cutaneous melanoma is the deadliest form of skin cancer, with a dramatic increase in the incidence rate worldwide over the past decade. Early detection has been shown to improve the outcome of melanoma patients. The identification of noninvasive biomarkers able to identify melanoma at an early stage remains an unmet clinical need. Circulating miRNAs (c-miRNAs), small non-coding RNAs, appear as potential ideal candidate biomarkers due to their stability in biological fluids and easy detectability. Moreover, c-miRNAs are reported to be heavily deregulated in cancer patients.Areas covered: This review examines evidence of the specific c-miRNAs or panels of c-miRNAs reported to be useful in discriminating melanoma from benign cutaneous lesions.Expert opinion: Although the interesting reported by published studies, the non-homogeneity of detection and normalization methods prevents the individuation of single c-miRNA or panel of c-miRNAs that are specific for early detection of cutaneous melanoma. In the future, prospective wide and well-designed clinical trials will be needed to validate the diagnostic potential of some of the c-miRNA candidates in clinical practice.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Stefano Fogli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Adriano Podestà
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - Erkko Ylösmäki
- Drug Research program and IVTLab, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research program and IVTLab, University of Helsinki, Helsinki, Finland
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|