1
|
An C, Cai H, Ren Z, Fu X, Quan S, Jia L. Biofluid biomarkers for Alzheimer's disease: past, present, and future. MEDICAL REVIEW (2021) 2024; 4:467-491. [PMID: 39664082 PMCID: PMC11629312 DOI: 10.1515/mr-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/04/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease with tremendous social and economic burden. Therefore, early and accurate diagnosis is imperative for effective treatment or prevention of the disease. Cerebrospinal fluid and blood biomarkers emerge as favorable diagnostic tools due to their relative accessibility and potential for widespread clinical use. This review focuses on the AT(N) biomarker system, which includes biomarkers reflecting AD core pathologies, amyloid deposition, and pathological tau, as well as neurodegeneration. Novel biomarkers associated with inflammation/immunity, synaptic dysfunction, vascular pathology, and α-synucleinopathy, which might contribute to either the pathogenesis or the clinical progression of AD, have also been discussed. Other emerging candidates including non-coding RNAs, metabolites, and extracellular vesicle-based markers have also enriched the biofluid biomarker landscape for AD. Moreover, the review discusses the current challenges of biofluid biomarkers in AD diagnosis and offers insights into the prospective future development.
Collapse
Affiliation(s)
- Chengyu An
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
2
|
Cheng YW, Lin YJ, Lin YS, Hong WP, Kuan YC, Wu KY, Hsu JL, Wang PN, Pai MC, Chen CS, Fuh JL, Hu CJ, Chiu MJ. Application of blood-based biomarkers of Alzheimer's disease in clinical practice: Recommendations from Taiwan Dementia Society. J Formos Med Assoc 2024; 123:1210-1217. [PMID: 38296698 DOI: 10.1016/j.jfma.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Blood-based biomarkers (BBM) are potentially powerful tools that assist in the biological diagnosis of Alzheimer's disease (AD) in vivo with minimal invasiveness, relatively low cost, and good accessibility. This review summarizes current evidence for using BBMs in AD, focusing on amyloid, tau, and biomarkers for neurodegeneration. Blood-based phosphorylated tau and the Aβ42/Aβ40 ratio showed consistent concordance with brain pathology measured by CSF or PET in the research setting. In addition, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are neurodegenerative biomarkers that show the potential to assist in the differential diagnosis of AD. Other pathology-specific biomarkers, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), can potentially detect AD concurrent pathology. Based on current evidence, the working group from the Taiwan Dementia Society (TDS) achieved consensus recommendations on the appropriate use of BBMs for AD in clinical practice. BBMs may assist clinical diagnosis and prognosis in AD subjects with cognitive symptoms; however, the results should be interpreted by dementia specialists and combining biochemical, neuropsychological, and neuroimaging information. Further studies are needed to evaluate BBMs' real-world performance and potential impact on clinical decision-making.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ju Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Pin Hong
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan; Brain & Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Francucci B, Angeloni S, Dal Ben D, Lambertucci C, Ricciutelli M, Spinaci A, Smirnov A, Volpini R, Buccioni M, Marucci G. Dual Anta-Inhibitors Targeting Protein Kinase CK1δ and A 2A Adenosine Receptor Useful in Neurodegenerative Disorders. Molecules 2023; 28:4762. [PMID: 37375315 DOI: 10.3390/molecules28124762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, the number of patients with neurodegenerative pathologies is estimated at over one million, with consequences also on the economic level. Several factors contribute to their development, including overexpression of A2A adenosine receptors (A2AAR) in microglial cells and up-regulation and post-translational alterations of some casein kinases (CK), among them, CK-1δ. The aim of the work was to study the activity of A2AAR and CK1δ in neurodegeneration using in-house synthesized A2A/CK1δ dual anta-inhibitors and to evaluate their intestinal absorption. Experiments were performed on N13 microglial cells, which were treated with a proinflammatory CK cocktail to simulate an inflammatory state typical of neurodegenerative diseases. Results showed that the dual anta-inhibitors have the ability to counteract the inflammatory state, even if compound 2 is more active than compound 1. In addition, compound 2 displayed an important antioxidant effect similar to the reference compound ZM241385. Since many known kinase inhibitors are very often unable to cross lipid bilayer membranes, the ability of A2A/CK1δ double anta-inhibitors to cross the intestinal barrier was investigated by an everted gut sac assay. HPLC analysis revealed that both compounds are able to cross the intestinal barrier, making them promising candidates for oral therapy.
Collapse
Affiliation(s)
- Beatrice Francucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Simone Angeloni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Massimo Ricciutelli
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Aleksei Smirnov
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Michela Buccioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
4
|
Monge-García S, García-Ayllón MS, Sánchez-Payá J, Gasparini-Berenguer R, Cortés-Gómez MÁ, Sáez-Valero J, Monge-Argilés JA. Validity of CSF alpha-synuclein to predict psychosis in prodromal Alzheimer's disease. Front Neurol 2023; 14:1124145. [PMID: 37292130 PMCID: PMC10244520 DOI: 10.3389/fneur.2023.1124145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/18/2023] [Indexed: 06/10/2023] Open
Abstract
Background Alzheimer's disease (AD) accompanied by psychotic symptoms (PS) has a poor prognosis and may be associated with imbalances in key neural proteins such as alpha-synuclein (AS). Aim The aim of the study was to evaluate the diagnostic validity of AS levels in the cerebrospinal fluid (CSF) as a predictor of the emergence of PS in patients with prodromal AD. Materials and methods Patients with mild cognitive impairment were recruited between 2010 and 2018. Core AD biomarkers and AS levels were measured in CSF obtained during the prodromal phase of the illness. All patients who met the NIA-AA 2018 criteria for AD biomarkers received treatment with anticholinesterasic drugs. Follow-up evaluations were conducted to assess patients for the presence of psychosis using current criteria; the use of neuroleptic drugs was required for inclusion in the psychosis group. Several comparisons were made, taking into account the timing of the emergence of PS. Results A total of 130 patients with prodromal AD were included in this study. Of these, 50 (38.4%) met the criteria for PS within an 8-year follow-up period. AS was found to be a valuable CSF biomarker to differentiate between the psychotic and non-psychotic groups in every comparison made, depending on the onset of PS. Using an AS level of 1,257 pg/mL as the cutoff, this predictor achieved at least 80% sensitivity. Conclusion To our knowledge, this study represents the first time that a CSF biomarker has shown diagnostic validity for prediction of the emergence of PS in patients with prodromal AD.
Collapse
Affiliation(s)
- Sonia Monge-García
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - María-Salud García-Ayllón
- Hospital General Universitario de Elche, FISABIO,Unidad de Investigación, Valencia, Spain
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
- Unidad de Investigación, Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Elche, Spain
| | - José Sánchez-Payá
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Servicio de Medicina Preventiva, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | | | - María-Ángeles Cortés-Gómez
- Hospital General Universitario de Elche, FISABIO,Unidad de Investigación, Valencia, Spain
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
- Unidad de Investigación, Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Elche, Spain
| | - Javier Sáez-Valero
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
- Unidad de Investigación, Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Elche, Spain
| | - José-Antonio Monge-Argilés
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Servicio de Neurología, Hospital General Universitario Dr. Balmis, Alicante, Spain
| |
Collapse
|
5
|
Dodel R. [Parkinson's disease and Alzheimer type dementia-Pathophysiology and drug treatment approaches]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023; 64:113-120. [PMID: 36645435 DOI: 10.1007/s00108-022-01463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
Symptomatically effective forms of treatment for neurodegenerative diseases have been developed in the last 50 years based on the knowledge about the pathophysiological and neurochemical context in the central nervous system. These so far represent the basis of available treatment options. Knowledge of the pathophysiological and neurochemical context, however, is not only necessary for the development of treatment but also enables a meaningful implementation of currently available substances. The most important neuropathological and neurochemical alterations that characterize Parkinson's disease and Alzheimer type dementia are briefly presented. In recent years, new substances ranging from symptomatic to disease-modifying treatment options have been developed, the latter mostly based on the neuropathologically detectable alterations. Recent results from clinical studies raise hopes that disease-modifying treatment options for neurodegenerative diseases will become available in the foreseeable future.
Collapse
Affiliation(s)
- Richard Dodel
- Lehrstuhl für Geriatrie, Universität Duisburg-Essen, Virchowstr. 171, 45147, Essen, Deutschland.
| |
Collapse
|