1
|
Ding Y, Fan B, Zhu C, Chen Z. Shared and Related Molecular Targets and Actions of Salicylic Acid in Plants and Humans. Cells 2023; 12:219. [PMID: 36672154 PMCID: PMC9856608 DOI: 10.3390/cells12020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Salicylic acid (SA) is a phenolic compound produced by all plants that has an important role in diverse processes of plant growth and stress responses. SA is also the principal metabolite of aspirin and is responsible for many of the anti-inflammatory, cardioprotective and antitumor activities of aspirin. As a result, the number of identified SA targets in both plants and humans is large and continues to increase. These SA targets include catalases/peroxidases, metabolic enzymes, protein kinases and phosphatases, nucleosomal and ribosomal proteins and regulatory and signaling proteins, which mediate the diverse actions of SA in plants and humans. While some of these SA targets and actions are unique to plants or humans, many others are conserved or share striking similarities in the two types of organisms, which underlie a host of common biological processes that are regulated or impacted by SA. In this review, we compare shared and related SA targets and activities to highlight the common nature of actions by SA as a hormone in plants versus a therapeutic agent in humans. The cross examination of SA targets and activities can help identify new actions of SA and better explain their underlying mechanisms in plants and humans.
Collapse
Affiliation(s)
- Yuanyuan Ding
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
2
|
Janoniene A, Mazutis L, Matulis D, Petrikaite V. Inhibition of Carbonic Anhydrase IX Suppresses Breast Cancer Cell Motility at the Single-Cell Level. Int J Mol Sci 2021; 22:11571. [PMID: 34769000 PMCID: PMC8584155 DOI: 10.3390/ijms222111571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
Protein Carbonic Anhydrase IX (CA IX), which is expressed in various hypoxic solid tumors in order to maintain proper pH, is also related to cancer cell adhesion, invasion, and metastasis processes. Here, we investigated whether CA IX inhibition by a highly CA IX selective agent benzenesulfonamide VD11-4-2 triggers changes in individual cell motility. We seeded breast cancer cells on an extracellular matrix-coated glass-bottomed dish and in a microfluidic device with a gradient flow of epidermal growth factor (EGF), tracked individual cell movement, calculated their migration speeds, and/or followed movement direction. Our results showed that the inhibitor VD11-4-2 decreased the speed of CA IX positive breast cancer cells by 20-26% while not affecting non-cancerous cell migration. The inhibitor suppressed the cell migration velocity increment and hindered cells from reaching their maximum speed. VD11-4-2 also reduced CA IX, expressing cell movement towards the growth factor as a chemoattractant. Such a single cell-based migration assay enabled the comprehensive investigation of the cell motility and revealed that VD11-4-2 shows the ability to suppress breast cancer cell migration at a lower concentration than previously tested CA IX inhibitors.
Collapse
Affiliation(s)
| | | | | | - Vilma Petrikaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (A.J.); (L.M.); (D.M.)
| |
Collapse
|
3
|
Mokhtari RB, Qorri B, Baluch N, Sparaneo A, Fabrizio FP, Muscarella LA, Tyker A, Kumar S, Cheng HLM, Szewczuk MR, Das B, Yeger H. Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/mTOR survival pathway and inducing apoptosis. Oncotarget 2021; 12:1470-1489. [PMID: 34316328 PMCID: PMC8310668 DOI: 10.18632/oncotarget.28011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Aberrations in the PI3K/AKT/mTOR survival pathway in many cancers are the most common genomic abnormalities. The phytochemical and bioactive agent sulforaphane (SFN) has nutrigenomic potential in activating the expression of several cellular protective genes via the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is primarily related to mechanisms of endogenous cellular defense and survival. The efficacy of SFN in combination with acetazolamide (AZ) was investigated in reducing typical H727 and atypical H720 BC survival, migration potential, and apoptosis in vitro and in vivo preclinical xenograft tissues. MATERIALS AND METHODS Microscopic imaging, immunocytochemistry, wound healing assay, caspase-cleaved cytokeratin 18 (M30, CCK18) CytoDeath ELISA assay, immunofluorescence labeling assays for apoptosis, hypoxia, Western Blotting, Tunnel assay, measurement of 5-HT secretion by carbon fiber amperometry assay, quantitative methylation-specific PCR (qMSP), morphologic changes, cell viability, apoptosis activity and the expression levels of phospho-Akt1, Akt1, HIF-1α, PI3K, p21, CAIX, 5-HT, phospho-mTOR, and mTOR in xenografts derived from typical H727 and atypical H720 BC cell lines. RESULTS Combining AZ+SFN reduced tumor cell survival compared to each agent alone, both in vitro and in vivo xenograft tissues. AZ+SFN targeted multiple pathways involved in cell cycle, serotonin secretion, survival, and growth pathways, highlighting its therapeutic approach. Both H727 and H720 cells were associated with induction of apoptosis, upregulation of the p21 cell cycle inhibitor, and downregulation of the PI3K/Akt/mTOR pathway, suggesting that the PI3K/Akt/mTOR pathway is a primary target of the AZ+SFN combination therapy. CONCLUSIONS Combining SFN+AZ significantly inhibits the PI3K/Akt/mTOR pathway and significantly reducing 5-HT secretion in carcinoid syndrome.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, USA.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angelo Sparaneo
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo FG, Italy
| | - Federico Pio Fabrizio
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo FG, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo FG, Italy
| | - Albina Tyker
- Department of Internal Medicine, University of Chicago, Chicago, IL, USA
| | - Sushil Kumar
- Q.P.S. Holdings LLC, Pencader Corporate Center, Newark, DE, USA
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Canada
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, USA.,Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India.,Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, USA
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Kazokaitė-Adomaitienė J, Becker HM, Smirnovienė J, Dubois LJ, Matulis D. Experimental Approaches to Identify Selective Picomolar Inhibitors for Carbonic Anhydrase IX. Curr Med Chem 2021; 28:3361-3384. [PMID: 33138744 DOI: 10.2174/0929867327666201102112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Carbonic anhydrases (CAs) regulate pH homeostasis via the reversible hydration of CO2, thereby emerging as essential enzymes for many vital functions. Among 12 catalytically active CA isoforms in humans, CA IX has become a relevant therapeutic target because of its role in cancer progression. Only two CA IX inhibitors have entered clinical trials, mostly due to low affinity and selectivity properties. OBJECTIVE The current review presents the design, development, and identification of the selective nano- to picomolar CA IX inhibitors VD11-4-2, VR16-09, and VD12-09. METHODS AND RESULTS Compounds were selected from our database, composed of over 400 benzensulfonamides, synthesized at our laboratory, and tested for their binding to 12 human CAs. Here we discuss the CA CO2 hydratase activity/inhibition assay and several biophysical techniques, such as fluorescent thermal shift assay and isothermal titration calorimetry, highlighting their contribution to the analysis of compound affinity and structure- activity relationships. To obtain sufficient amounts of recombinant CAs for inhibitor screening, several gene cloning and protein purification strategies are presented, including site-directed CA mutants, heterologous CAs from Xenopus oocytes, and native endogenous CAs. The cancer cell-based methods, such as clonogenicity, extracellular acidification, and mass spectrometric gas-analysis are reviewed, confirming nanomolar activities of lead inhibitors in intact cancer cells. CONCLUSIONS Novel CA IX inhibitors are promising derivatives for in vivo explorations. Furthermore, the simultaneous targeting of several proteins involved in proton flux upon tumor acidosis and the disruption of transport metabolons might improve cancer management.
Collapse
Affiliation(s)
- Justina Kazokaitė-Adomaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Joana Smirnovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Netherlands
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Petersen LK, Christensen AB, Andersen J, Folkesson CG, Kristensen O, Andersen C, Alzu A, Sløk FA, Blakskjær P, Madsen D, Azevedo C, Micco I, Hansen NJV. Screening of DNA-Encoded Small Molecule Libraries inside a Living Cell. J Am Chem Soc 2021; 143:2751-2756. [DOI: 10.1021/jacs.0c09213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lars K. Petersen
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | | | - Jacob Andersen
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | | | - Ole Kristensen
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | | | - Amaya Alzu
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Frank A. Sløk
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Peter Blakskjær
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Daniel Madsen
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Carlos Azevedo
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Iolanda Micco
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | | |
Collapse
|
6
|
Xu J, Zhang J, Shan F, Wen J, Wang Y. SSTR5‑AS1 functions as a ceRNA to regulate CA2 by sponging miR‑15b‑5p for the development and prognosis of HBV‑related hepatocellular carcinoma. Mol Med Rep 2019; 20:5021-5031. [PMID: 31638225 PMCID: PMC6854603 DOI: 10.3892/mmr.2019.10736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in the development and progression of cancer. However, the mechanisms of lncRNAs in hepatitis B virus (HBV) infection-induced hepatocellular carcinoma (HCC) remain unclear. The study aimed to reveal the roles of lncRNAs for HBV-HCC based on the hypothesis of competing endogenous RNA (ceRNA). The lncRNA (GSE27462), miRNA (GSE76903) and mRNA (GSE121248) expression profiles were collected from the Gene Expression Omnibus database. Differentially expressed lncRNAs (DELs), genes (DEGs) and miRNAs (DEMs) were identified using the LIMMA or EdgeR package, respectively. The ceRNA network was constructed based on interaction pairs between miRNAs and mRNAs/lncRNAs. The functions of DEGs in the ceRNA network were predicted using the DAVID database, which was overlapped with the known HCC pathways of Comparative Toxicogenomics Database (CTD) to construct the HCC-related ceRNA network. The prognosis values [overall survival, (OS); recurrence-free survival (RFS)] of genes were validated using the Cancer Genome Atlas (TCGA) data with Cox regression analysis. The present study screened 38 DELs, 127 DEMs and 721 DEGs. A ceRNA network was constructed among 17 DELs, 12 DEMs and 173 DEGs, including the FAM138B-hsa-miR-30c-CCNE2/RRM2 and SSTR5-AS1-hsa-miR-15b-5p-CA2 ceRNA axes. Function enrichment analysis revealed the genes in the ceRNA network that participated in the p53 signaling pathway [cyclin E2 (CCNE2), ribonucleotide reductase M2 subunit (RRM2)] and nitrogen metabolism [carbonic anhydrase 2 (CA2)], which were also included in the pathways of the CTD. Univariate Cox regression analysis revealed that six RNAs (2 DELs: FAM138B, SSTR5-AS1; 2 DEMs: hsa-miR-149, hsa-miR-7; 2 DEGs: CCNE2, RRM2) were significantly associated with OS; while seven RNAs (1 DEL: LINC00284; 3 DEMs: hsa-miR-7, hsa-miR-15b, hsa-miR-30c-2; and 3 DEGs: RRM2, CCNE2, CA2) were significantly associated with RFS. In conclusion, FAM138B-hsa-miR-30c-CCNE2/RRM2 and the SSTR5-AS1-hsa-miR-15b-5p-CA2 ceRNA axes may be important mechanisms for HBV-related HCC.
Collapse
Affiliation(s)
- Jing Xu
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Fenglian Shan
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Jie Wen
- Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Yue Wang
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
7
|
Aspatwar A, Becker HM, Parvathaneni NK, Hammaren M, Svorjova A, Barker H, Supuran CT, Dubois L, Lambin P, Parikka M, Parkkila S, Winum JY. Nitroimidazole-based inhibitors DTP338 and DTP348 are safe for zebrafish embryos and efficiently inhibit the activity of human CA IX in Xenopus oocytes. J Enzyme Inhib Med Chem 2018; 33:1064-1073. [PMID: 29909747 PMCID: PMC6009478 DOI: 10.1080/14756366.2018.1482285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Carbonic anhydrase (CA) IX is a hypoxia inducible enzyme that is highly expressed in solid tumours. Therefore, it has been considered as an anticancer target using specific chemical inhibitors. The nitroimidazoles DTP338 and DTP348 have been shown to inhibit CA IX in nanomolar range in vitro and reduce extracellular acidification in hypoxia, and impair tumour growth. We screened these compounds for toxicity using zebrafish embryos and measured their in vivo effects on human CA IX in Xenopus oocytes. In the toxicity screening, the LD50 for both compounds was 3.5 mM. Neither compound showed apparent toxicity below 300 µM concentration. Above this concentration, both compounds altered the movement of zebrafish larvae. The IC50 was 0.14 ± 0.02 µM for DTP338 and 19.26 ± 1.97 µM for DTP348, suggesting that these compounds efficiently inhibit CA IX in vivo. Our results suggest that these compounds can be developed as drugs for cancer therapy.
Collapse
Affiliation(s)
- Ashok Aspatwar
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Holger M Becker
- b Department of Physiological Chemistry , University of Veterinary Medicine Hannover , Hannover , Germany
| | - Nanda Kumar Parvathaneni
- c Department of Radiotherapy, The M-Lab Group, GROW - School for Oncology and Developmental Biology , Maastricht University Medical Centre , Maastricht , The Netherlands.,d Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM , Université de Montpellier , Montpellier Cedex 05 , France
| | - Milka Hammaren
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Aleksandra Svorjova
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Harlan Barker
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Claudiu T Supuran
- e NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , Polo Scientifico , Firenze , Italy
| | - Ludwig Dubois
- c Department of Radiotherapy, The M-Lab Group, GROW - School for Oncology and Developmental Biology , Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Philippe Lambin
- c Department of Radiotherapy, The M-Lab Group, GROW - School for Oncology and Developmental Biology , Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Mataleena Parikka
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Seppo Parkkila
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland.,f Fimlab Ltd. and Tampere University Hospital , Tampere , Finland
| | - Jean-Yves Winum
- d Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM , Université de Montpellier , Montpellier Cedex 05 , France
| |
Collapse
|
8
|
Kazokaitė J, Aspatwar A, Parkkila S, Matulis D. An update on anticancer drug development and delivery targeting carbonic anhydrase IX. PeerJ 2017; 5:e4068. [PMID: 29181278 PMCID: PMC5702504 DOI: 10.7717/peerj.4068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022] Open
Abstract
The expression of carbonic anhydrase (CA) IX is up-regulated in many types of solid tumors in humans under hypoxic and acidic microenvironment. Inhibition of CA IX enzymatic activity with selective inhibitors, antibodies or labeled probes has been shown to reverse the acidic environment of solid tumors and reduce the tumor growth establishing the significant role of CA IX in tumorigenesis. Thus, the development of potent antitumor drugs targeting CA IX with minimal toxic effects is important for the target-specific tumor therapy. Recently, several promising antitumor agents against CA IX have been developed to treat certain types of cancers in combination with radiation and chemotherapy. Here we review the inhibition of CA IX by small molecule compounds and monoclonal antibodies. The methods of enzymatic assays, biophysical methods, animal models including zebrafish and Xenopus oocytes, and techniques of diagnostic imaging to detect hypoxic tumors using CA IX-targeted conjugates are discussed with the aim to overview the recent progress related to novel therapeutic agents that target CA IX in hypoxic tumors.
Collapse
Affiliation(s)
- Justina Kazokaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Ashok Aspatwar
- Faculty of Medicine and Life sciences, University of Tampere, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Life sciences, University of Tampere, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Picomolar inhibitors of carbonic anhydrase: Importance of inhibition and binding assays. Anal Biochem 2017; 522:61-72. [PMID: 28153585 DOI: 10.1016/j.ab.2017.01.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
The Ki of carbonic anhydrase (CA) inhibitors is often determined by the stopped- flow CO2 hydration assay, the method that directly follows the inhibition of CA enzymatic activity. However, the assay has limitations, such as largely unknown concentration of CO2 and the inability to determine the Ki below several nM. The widely used direct binding assay, isothermal titration calorimetry, also does not determine the Kd below several nM. In contrast, the thermal shift assay can accurately determine picomolar affinities. New equations estimating CO2 concentration were developed for the determination of kcat and KM of CA I and CA II. The inhibitor dose-response curves were analyzed using Hill and Morrison equations demonstrating that only the Morrison model is applicable for the determination of tight-binding inhibitor Ki. The measurements of interactions between ten inhibitors and seven CA isoforms showed the limitations and advantages of all three techniques. Inhibitor 6 exhibited the Kd of 50 pM and was highly selective towards human CA IX, an isoform which is nearly absent in healthy human, but highly overexpressed in numerous cancers. Combination of inhibition and binding techniques was necessary for precise determination of CA-high-affinity inhibitor interactions and future drug design.
Collapse
|