1
|
Saravanan V, Palani SP, Chagaleti BK, Gao QZ, Valsaladevi AG, Kumaradoss KM. Molecular dynamics simulation reveals structural insights into isozyme selectivity of carbonic anhydrase XII inhibitors in hypoxic tumor microenvironment. Biochem Biophys Res Commun 2025; 753:151471. [PMID: 39965264 DOI: 10.1016/j.bbrc.2025.151471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/23/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
Human carbonic anhydrase (CA) isoenzymes IX and XII are overexpressed in cancer cells, contributing to tumor microenvironment acidification and representing important targets for cancer therapy. In this study, we identified compound V35 (ZINC09419065) as a selective inhibitor of CA IX and CA XII with enhanced binding stability and selectivity compared to standard inhibitors. We analyzed conserved regions in CA I, CA II, CA IX, and CA XII to investigate their isozyme selectivity, revealing critical selectivity determinants at positions 95, 141, and 203. Molecular docking results indicated that V35 interacts robustly with CA XII, forming a metal ion coordination complex with Zn via HIS94, HIS96, HIS119, and THR199, similar to the interaction pattern of standard inhibitor SLC-0111. Molecular dynamics (MD) simulations conducted over 500 ns under hypoxic conditions showed that V35 has high binding stability, with root mean square deviation (RMSD) and fluctuation (RMSF) values comparable to SLC-0111, demonstrating its conformational stability in CA XII. Binding free energy calculations using the MMGBSA method showed that V35 achieves binding free energy of -44.17 kcal/mol with CA XII, closely matching SLC-0111 (-49.41 kcal/mol). Density functional theory (DFT) calculations further highlighted V35's electrostatic potential distribution, supporting its isozyme selectivity. Post-dynamics analysis indicated that the ester functional groups and the inward movement of HIS64 stabilize V35's interactions in CA XII, a feature absent in CA I.
Collapse
Affiliation(s)
- Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Sathiya Priya Palani
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Quan-Ze Gao
- National Applied Research Laboratories, National Centre for High-Performance Computing, Hsinchu City, 30076, Taiwan
| | - Anjana Gopi Valsaladevi
- Dr APJ Abdul Kalam Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India.
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India.
| |
Collapse
|
2
|
Jaitak A, Kumari K, Kounder S, Monga V. Carbonic anhydrases: Moiety appended derivatives, medicinal and pharmacological implications. Bioorg Med Chem 2024; 114:117933. [PMID: 39378610 DOI: 10.1016/j.bmc.2024.117933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
In the realm of enzymology, Carbonic anhydrase (CA) emerges as a pivotal protagonist orchestrating the rapid conversion of carbon dioxide and water into bicarbonate ions and hydrogen ions, respectively. Carbonic anhydrase inhibitors (CAIs) are the class of drugs that target various isoforms of the enzyme, and these inhibitors play a crucial role in the treatment and management of multiple diseases such as cancer, glaucoma, high altitude sickness, rheumatoid arthritis, obesity, epilepsy, and sleep apnea. Several structural classes of CAIs developed till date possess unique architects of the pharmacophoric requirements around the central core moiety for the selective targeting of various isoforms of the CA. Recent advancements in drug design and development, along with technologies that aid in structure determination, have led to the development of several isoform-selective inhibitors of CA enzymes. However, their clinical development was hampered by the lack of desired therapeutic efficacy, isoform selectivity and safety profile. This review covers the most recent approaches used by different researchers concerned with the development of isoform-selective carbonic anhydrase inhibitors belonging to distinct structural classes like sulphonamides, carbazoles, selenols, coumarin, organotelluride, topiramate, thiophene, triazole, uracil-modified benzylic amines, and thiourea etc. In addition, their structure-activity relationships, biological evaluation, and in silico studies inlcuding the forthcoming avenues of advancements have been discussed. This review serves as a valuable resource for developing potent and efficacious CAIs with remarkable therapeutic implications; offering insights into their potency, specificity, and potential clinical applications.
Collapse
Affiliation(s)
- Aashish Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Khushi Kumari
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Sanjay Kounder
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
3
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
4
|
Packiapalavesam SD, Saravanan V, Mahajan AA, Almutairi MH, Almutairi BO, Arockiaraj J, Kathiravan MK, Karthick Raja Namasivayam S. Identification of novel CA IX inhibitor: Pharmacophore modeling, docking, DFT, and dynamic simulation. Comput Biol Chem 2024; 110:108073. [PMID: 38678727 DOI: 10.1016/j.compbiolchem.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Human Carbonic anhydrase IX (hCA IX) is found to be an essential biomarker for the treatment of hypoxic tumors in both the early and metastatic stages of cancer. Due to its active function in maintaining pH levels and overexpression in hypoxic conditions, hCA IX inhibitors can be a potential candidate specifically designed to target cancer development at various stages. In search of selective hCA IX inhibitors, we developed a pharmacophore model from the existing natural product inhibitors with IC50 values less than 50 nm. The identified hit molecules were then investigated on protein-ligand interactions using molecular docking experiments followed by molecular dynamics simulations. Among the zinc database 186 hits with an RMSD value less than 1 were obtained, indicating good contact with key residues HIS94, HIS96, HIS119, THR199, and ZN301 required for optimum activity. The top three compounds were subjected to molecular dynamics simulations for 100 ns to know the protein-ligand complex stability. Based on the obtained MD simulation results, binding free energies are calculated. Density Functional Theory (DFT) studies confirmed the energy variation between the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO). The current study has led to the discovery of lead compounds that show considerable promise as hCA IX inhibitors and suggests that three compounds with special molecular features are more likely to be better-inhibiting hCA IX. Compound S35, characterized by a higher stability margin and a smaller energy gap in quantum studies, is an ideal candidate for selective inhibition of CA IX.
Collapse
Affiliation(s)
- Shakthi Devi Packiapalavesam
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Anand A Mahajan
- Department of Pharmaceutical Analysis, Goa College of Pharmacy, Panaji, Goa 403001, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Muthu Kumaradoss Kathiravan
- Dr APJ Kalam Laboratory, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India.
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India.
| |
Collapse
|
5
|
García-Llorca A, Carta F, Supuran CT, Eysteinsson T. Carbonic anhydrase, its inhibitors and vascular function. Front Mol Biosci 2024; 11:1338528. [PMID: 38348465 PMCID: PMC10859760 DOI: 10.3389/fmolb.2024.1338528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
It has been known for some time that Carbonic Anhydrase (CA, EC 4.2.1.1) plays a complex role in vascular function, and in the regulation of vascular tone. Clinically employed CA inhibitors (CAIs) are used primarily to lower intraocular pressure in glaucoma, and also to affect retinal blood flow and oxygen saturation. CAIs have been shown to dilate vessels and increase blood flow in both the cerebral and ocular vasculature. Similar effects of CAIs on vascular function have been observed in the liver, brain and kidney, while vessels in abdominal muscle and the stomach are unaffected. Most of the studies on the vascular effects of CAIs have been focused on the cerebral and ocular vasculatures, and in particular the retinal vasculature, where vasodilation of its vessels, after intravenous infusion of sulfonamide-based CAIs can be easily observed and measured from the fundus of the eye. The mechanism by which CAIs exert their effects on the vasculature is still unclear, but the classic sulfonamide-based inhibitors have been found to directly dilate isolated vessel segments when applied to the extracellular fluid. Modification of the structure of CAI compounds affects their efficacy and potency as vasodilators. CAIs of the coumarin type, which generally are less effective in inhibiting the catalytically dominant isoform hCA II and unable to accept NO, have comparable vasodilatory effects as the primary sulfonamides on pre-contracted retinal arteriolar vessel segments, providing insights into which CA isoforms are involved. Alterations of the lipophilicity of CAI compounds affect their potency as vasodilators, and CAIs that are membrane impermeant do not act as vasodilators of isolated vessel segments. Experiments with CAIs, that shed light on the role of CA in the regulation of vascular tone of vessels, will be discussed in this review. The role of CA in vascular function will be discussed, with specific emphasis on findings with the effects of CA inhibitors (CAI).
Collapse
Affiliation(s)
- Andrea García-Llorca
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Fabrizio Carta
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Thor Eysteinsson
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Ophthalmology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
6
|
Saravanan V, Chagaleti BK, Packiapalavesam SD, Kathiravan M. Ligand based pharmacophore modelling and integrated computational approaches in the quest for small molecule inhibitors against hCA IX. RSC Adv 2024; 14:3346-3358. [PMID: 38259989 PMCID: PMC10801456 DOI: 10.1039/d3ra08618f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Carbonic anhydrase IX is an important biomarker to fight hypoxic tumours in both initial and metastatic stages of many forms of cancer. Overexpression of hCA IX in the hypoxic environment, has an active role in pH maintenance and makes the hCA IX a better target for the inhibitors targeting specific types of cancer stages. Being a member of the carbonic anhydrase family and having sixteen isoforms, it is important to have a selective inhibition of hCA IX to limit the disruption in the biological and metabolic pathways where other isoforms of hCA are localised and to avoid the other toxicity and adverse effects we try to find selective hCA IX inhibitors from a natural derivative. In the process of finding selective hCA inhibitors we developed a pharmacophore model based on existing inhibitors with IC50 values of less than 50 nm, which is then validated with the external decoy set and used for database searching followed by virtual screening to identify the hits based on the pharmacophore fit score and RMSD. Molecular docking studies were performed to identify protein ligand interaction and molecular dynamics simulation studies to analyse the stability of the complex and DFT studies were carried out. The initial screening yielded 43 hits with the RMSD value less than 1, which when subjected to docking exhibited very good interaction with key residues ZN301, HIS94, HIS96 and HIS119. The top 4 compounds in the molecular dynamics simulation studies for 100 ns provided useful insights on the stability of the complex and the DFT studies confirmed the energy variation between HOMO and LUMO is within an acceptable range. An average binding score of -7.8 Kcal mol-1 for the lead compounds and high stability margin in the dynamics study concludes that these lead compounds demonstrated outstanding potential for hCA IX inhibitory action theoretically and that further experimental studies for selective inhibition are inevitable.
Collapse
Affiliation(s)
- Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur Chengalpattu 603203 India
| | - Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur Chengalpattu 603203 India
| | - Shakthi Devi Packiapalavesam
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur Chengalpattu 603203 India
| | - Muthukumaradoss Kathiravan
- Dr A. P. J. Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur, Chengalpattu Chennai 603 203 India
| |
Collapse
|
7
|
Kumar V, Bala R, Dhawan S, Singh P, Karpoormath R. The Multi‐Biological Targeted Role of Dehydrozingerone and its Analogues. ChemistrySelect 2022. [DOI: 10.1002/slct.202201938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vishal Kumar
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| | - Renu Bala
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| | - Parvesh Singh
- School of Chemistry and Physics University of KwaZulu-Natal (Westville campus) Private Bag X01, Scottsville Durban South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| |
Collapse
|
8
|
Synthesis, Crystal Structure, Inhibitory Activity and Molecular Docking of Coumarins/Sulfonamides Containing Triazolyl Pyridine Moiety as Potent Selective Carbonic Anhydrase IX and XII Inhibitors. CRYSTALS 2021. [DOI: 10.3390/cryst11091076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, two classes of Carbonic Anhydrase (CA) inhibitors, sulfonamide and coumarin derivatives linked to pyta moiety (2a-b) and their corresponding rhenium complexes (3a-b), were designed. These compounds were synthesized and fully characterized by classical analytical methods and X-ray diffraction. All the synthesized compounds were evaluated for their inhibitory activity against the hCA isoforms I, II, IX and XII. They exhibited high inhibitory activities in the range of nanomolar for both hCA IX and hCA XII isoforms. The sulfonamide compound 2a showed the strongest inhibition against the tumour-associated hCA IX isoform with a Ki of 11.7 nM. The tumour-associated isoforms hCA IX and hCA XII were selectively inhibited by all the coumarin derivatives, with inhibition constants ranging from 12.7 nM (2b) to 44.5 nM (3b), while the hCA I and II isoforms were slightly inhibited (in the micromolar range), as expected. In terms of selectivity, compared to previously published rhenium complex-based CA inhibitors, complex 3b showed one of the highest selectivities against hCA IX and hCA XII compared to the off-target isoforms hCA I and hCA II, making it a potential anti-cancer drug candidate. Molecular docking calculations were performed to investigate the inhibition profiles of the investigated compounds at the tumour-associated hCA IX active site and to rationalize our results.
Collapse
|
9
|
Hanbazazh M, Barrantes PC, DeVience E, Rana BA, Jadhav N, Gyure K, Grossniklaus HE, Thuro BA, Henneberry J, Milman T, Eagle RC, Shields CL, Shields JA, Dryja TP. Overlapping Immunohistochemical Features of Adenocarcinoma of the Nonpigmented Ciliary Body Epithelium and Renal Cell Carcinoma. Am J Ophthalmol 2021; 226:191-200. [PMID: 33529584 DOI: 10.1016/j.ajo.2021.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To find immunohistochemical markers that distinguish adenocarcinoma of the nonpigmented ciliary epithelium (NPCE) from metastatic carcinoma, especially metastatic renal cell carcinoma. DESIGN Retrospective case series. METHODS Three cases of adenocarcinoma of the NPCE were examined histologically with hematoxylin-eosin stain and immunohistochemical stains including vimentin, AE1/AE3, Cam 5.2, CK7, PAX2, PAX8, AMACR, and CAIX. We also reviewed previously reported cases of this tumor. RESULTS We found that the immunohistochemical profile of adenocarcinoma of the NPCE can overlap with renal cell carcinoma. Both tumors can express vimentin, cytokeratin AE1/AE3, Cam 5.2, PAX2, PAX8, and AMACR. One of the adenocarcinomas of the NPCE in our series also expressed CD10 and the renal cell carcinoma marker (RCC Ma). Carbonic anhydrase IX (CAIX) was not detected in any of the 3 tumors. CONCLUSIONS Adenocarcinomas arising in phthisic eyes can be diagnostically challenging. We have found it particularly difficult to distinguish adenocarcinoma of the NPCE from metastatic carcinoma, especially metastatic clear cell renal cell carcinoma and papillary renal cell carcinoma. Because of the immunophenotypic overlap, most patients will require systemic workup including imaging of the kidneys to be certain of the diagnosis.
Collapse
|
10
|
Singh P, Purnachander Yadav P, Swain B, Thacker PS, Angeli A, Supuran CT, Arifuddin M. Discovery of a novel series of indolylchalcone-benzenesulfonamide hybrids acting as selective carbonic anhydrase II inhibitors. Bioorg Chem 2021; 108:104647. [PMID: 33530019 DOI: 10.1016/j.bioorg.2021.104647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 01/12/2023]
Abstract
The primary sulfonamide group is one of the most efficient zinc binding group (ZBG) for designing carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. In the present study primary sulfonamide linked with indolylchalcone were designed. The newly synthesized molecules (5a-r) were examined against four human (h) CA isoforms (hCA I, hCA II, hCA IX and hCA XIII). These sulfonamides showed good inhibition activity against isoforms hCA I, hCA II and hCA XIII. Compound 5i (2.3 nM), 5m (2.4 nM), 5o (3.6 nM) and 5q (7.0 nM) were more potent than standard drug AAZ (12.1 nM) against isoform hCA II, respectively. Most of the other compounds in the present series inhibited hCA XIII and hCA IX in the range of 50 nM - 100 nM.
Collapse
Affiliation(s)
- Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Parvatha Purnachander Yadav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Pavitra S Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- UniversitàdegliStudi di Firenze, Neurofarba Dept, Sezione di ScienzeFarmaceutiche e, Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- UniversitàdegliStudi di Firenze, Neurofarba Dept, Sezione di ScienzeFarmaceutiche e, Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; Department of Chemistry, Anwarul Uloom College, 11-3-918, New Malleypally, Hyderabad-500001, T. S, India.
| |
Collapse
|
11
|
Irfan A, Batool F, Zahra Naqvi SA, Islam A, Osman SM, Nocentini A, Alissa SA, Supuran CT. Benzothiazole derivatives as anticancer agents. J Enzyme Inhib Med Chem 2020; 35:265-279. [PMID: 31790602 PMCID: PMC6896476 DOI: 10.1080/14756366.2019.1698036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Benzothiazole (BTA) belongs to the heterocyclic class of bicyclic compounds. BTA derivatives possesses broad spectrum biological activities such as anticancer, antioxidant, anti-inflammatory, anti-tumour, antiviral, antibacterial, anti-proliferative, anti-diabetic, anti-convulsant, analgesic, anti-tubercular, antimalarial, anti-leishmanial, anti-histaminic and anti-fungal among others. The BTA scaffolds showed a crucial role in the inhibition of the metalloenzyme carbonic anhydrase (CA). In this review an extensive literature survey over the last decade discloses the role of BTA derivatives mainly as anticancer agents. Such compounds are effective against various types of cancer cell lines through a multitude of mechanisms, some of which are poorly studied or understood. The inhibition of tumour associated CAs by BTA derivatives is on the other hand better investigated and such compounds may serve as anticancer leads for the development of agents effective against hypoxic tumours.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, University of Lahore, Sargodha, Pakistan
| | - Fozia Batool
- Department of Chemistry, University of Lahore, Sargodha, Pakistan
| | | | - Amjad Islam
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Sameh M. Osman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alessio Nocentini
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino (Firenze), Italy
| | - Siham A. Alissa
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
12
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
13
|
Singh P, Swain B, Thacker PS, Sigalapalli DK, Purnachander Yadav P, Angeli A, Supuran CT, Arifuddin M. Synthesis and carbonic anhydrase inhibition studies of sulfonamide based indole-1,2,3-triazole chalcone hybrids. Bioorg Chem 2020; 99:103839. [DOI: 10.1016/j.bioorg.2020.103839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
|
14
|
Zahran RF, Geba ZM, Tabll AA, Mashaly MM. Therapeutic potential of a novel combination of Curcumin with Sulfamethoxazole against carbon tetrachloride-induced acute liver injury in Swiss albino mice. J Genet Eng Biotechnol 2020; 18:13. [PMID: 32363509 PMCID: PMC7196577 DOI: 10.1186/s43141-020-00027-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND In the current study, we have investigated the effect of each of curcumin (CUR) and sulfamethoxazole (SMX) either separate or mixed together (CUR + SMX) on biochemical, hematological and histological alternations associated with carbon tetrachloride (CCl4)-induced liver fibrosis in mice. RESULTS CCl4, caused changes of several biomarkers, proving its hepatotoxic effects, such as an increase in aminotransferases liver enzymes alanine and aspartate transaminases (ALT, AST), malondialdehyde (MDA), and nitric oxide (NO) formation, with a decrease in superoxide dismutase (SOD), glutathione reductase (GSSG), total antioxidant capacity (TAO), glutathione (GSH), total protein, and albumin, compared to a negative control mice group. Compared to the CCl4 group of mice, the CUR and SMX separate and/or together (CUR + SMX) treatments showed significance in (p < 0.001), ameliorated liver injury (characterized by an elevation of (ALT, AST) and a decrease (p < 0.001) in serum albumin and total protein), antioxidant (characterized by a decrease in (p < 0.001) MDA, NO; an increase (p < 0.001) SOD, GSSG, TAO; and reducing GSH), hematological changes (characterized by a decrease (p < 0.001) in white blood cells count and an increase (p < 0.001) in platelets count, hematocrit levels, hemoglobin concentration, and (p < 0.05) red blood cells count), SDS-PAGE electrophoresis with a decrease in protein synthesis and changes in histological examinations. CONCLUSIONS CUR and SMX either separate or together (SUR + SMX) may be considered promising candidates in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Rasha Fekry Zahran
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Zeinab M. Geba
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ashraf A. Tabll
- Department of Microbial Biotechnology, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, 12622 Egypt
| | - Mohammad M. Mashaly
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
15
|
Zahran RF, Geba ZM, Tabll AA, Mashaly MM. Therapeutic potential of a novel combination of Curcumin with Sulfamethoxazole against carbon tetrachloride-induced acute liver injury in Swiss albino mice. J Genet Eng Biotechnol 2020. [PMID: 32363509 DOI: 10.1186/s43141-020-00027-9.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the current study, we have investigated the effect of each of curcumin (CUR) and sulfamethoxazole (SMX) either separate or mixed together (CUR + SMX) on biochemical, hematological and histological alternations associated with carbon tetrachloride (CCl4)-induced liver fibrosis in mice. RESULTS CCl4, caused changes of several biomarkers, proving its hepatotoxic effects, such as an increase in aminotransferases liver enzymes alanine and aspartate transaminases (ALT, AST), malondialdehyde (MDA), and nitric oxide (NO) formation, with a decrease in superoxide dismutase (SOD), glutathione reductase (GSSG), total antioxidant capacity (TAO), glutathione (GSH), total protein, and albumin, compared to a negative control mice group. Compared to the CCl4 group of mice, the CUR and SMX separate and/or together (CUR + SMX) treatments showed significance in (p < 0.001), ameliorated liver injury (characterized by an elevation of (ALT, AST) and a decrease (p < 0.001) in serum albumin and total protein), antioxidant (characterized by a decrease in (p < 0.001) MDA, NO; an increase (p < 0.001) SOD, GSSG, TAO; and reducing GSH), hematological changes (characterized by a decrease (p < 0.001) in white blood cells count and an increase (p < 0.001) in platelets count, hematocrit levels, hemoglobin concentration, and (p < 0.05) red blood cells count), SDS-PAGE electrophoresis with a decrease in protein synthesis and changes in histological examinations. CONCLUSIONS CUR and SMX either separate or together (SUR + SMX) may be considered promising candidates in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Rasha Fekry Zahran
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt.
| | - Zeinab M Geba
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ashraf A Tabll
- Department of Microbial Biotechnology, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, 12622, Egypt
| | - Mohammad M Mashaly
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
16
|
Jiang C, Shi J, Liao L, Zhang L, Liu J, Wang Y, Lao Y, Zhang J. 5‐[2‐(N‐(Substituted phenyl)acetamide)]amino‐1,3,4‐thiadiazole‐2‐sulfonamides as Selective Carbonic Anhydrase II Inhibitors with Neuroprotective Effects. ChemMedChem 2020; 15:705-715. [DOI: 10.1002/cmdc.201900703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Caibao Jiang
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Jinguo Shi
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Liping Liao
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Liantao Zhang
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Jiayong Liu
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Yang Wang
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Yaoqiang Lao
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Jingxia Zhang
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
17
|
Zhang L, Chen Q, Hou G, Zhao W, Hou Y. Hydroxyl-substituted double Schiff-base condensed 4-piperidone/cyclohexanones as potential anticancer agents with biological evaluation. J Enzyme Inhib Med Chem 2019; 34:264-271. [PMID: 30734613 PMCID: PMC6327999 DOI: 10.1080/14756366.2018.1501042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
Novel hydroxyl-substituted double Schiff-base 4-piperidone/cyclohexanone derivatives, 3a-e, 4a-e, 5a-d, and 6a-c, were synthesized and fully characterized by 1H NMR, IR and elemental analysis. The cytotoxicity against human carcinoma cell lines A549, SGC7901, HePG2, HeLa, K562, THP-1 and non-malignant LO2 cell lines were evaluated. The results showed 4-piperidinone derivatives displayed better cytotoxicity than cyclohexanone derivatives, especially for 3,4,5-trihydroxyphenyl-substituted BAP 5c. The western blot and flow cytometry results proved 5c can effectively promote cell apoptosis through up-regulating Bax protein and down-regulating Bcl-2 protein expression. Molecular docking modes showed that 5c could reasonably bind to the active site of Bcl-2 protein through strong intermolecular hydrogen bonds and significant hydrophobic effect. In vivo, 5c can effectively suppress the growth of HepG2 xenografts without apparent body weight changes. This study indicates that 5c can be a potential anticancer agent for early treatment of liver cancers.
Collapse
Affiliation(s)
- Lianshuang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, P. R. China
| | - Qin Chen
- Department of Pharmacy, Taihe County People’s Hospital, Taihe, P. R. China
| | - Guige Hou
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, P. R. China
| | - Wei Zhao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, P. R. China
| | - Yun Hou
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, P. R. China
| |
Collapse
|
18
|
Al-Sanea MM, Elkamhawy A, Paik S, Bua S, Ha Lee S, Abdelgawad MA, Roh EJ, Eldehna WM, Supuran CT. Synthesis and biological evaluation of novel 3-(quinolin-4-ylamino)benzenesulfonamidesAQ3 as carbonic anhydrase isoforms I and II inhibitors. J Enzyme Inhib Med Chem 2019; 34:1457-1464. [PMID: 31411080 PMCID: PMC6713088 DOI: 10.1080/14756366.2019.1652282] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are crucial metalloenzymes that are involved in diverse bioprocesses. We report the synthesis and biological evaluation of novel series of benzenesulfonamides incorporating un/substituted ethyl quinoline-3-carboxylate moieties. The newly synthesised compounds were in vitro evaluated as inhibitors of the cytosolic human (h) isoforms hCA I and II. Both isoforms hCA I and II were inhibited by the quinolines reported here in variable degrees: hCA I was inhibited with KIs in the range of 0.966-9.091 μM, whereas hCA II in the range of 0.083-3.594 μM. The primary 7-chloro-6-flouro substituted sulphfonamide derivative 6e (KI = 0.083 μM) proved to be the most active quinoline in inhibiting hCA II, whereas, its secondary sulfonamide analog failed to inhibit the hCA II up to 10 μM, confirming the crucial role of the primary sulphfonamide group, as a zinc-binding group for CA inhibitory activity.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - So Ha Lee
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
19
|
Swain B, Angeli A, Angapelly S, Thacker PS, Singh P, Supuran CT, Arifuddin M. Synthesis of a new series of 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides as carbonic anhydrase I, II, IV and IX inhibitors. J Enzyme Inhib Med Chem 2019; 34:1199-1209. [PMID: 31237458 PMCID: PMC6598542 DOI: 10.1080/14756366.2019.1629432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023] Open
Abstract
The synthesis of a novel series of 3-functionalised benzenesulfonamides incorporating phenyl-1,2,3-triazole with an amide linker was achieved by using the "click-tail" approach. The new compounds, including the intermediates, were assayed as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isoforms) and also for hCA IV and IX (transmembrane isoforms) taking acetazolamide as standard drug. Most of these compounds exhibited excellent activity against all these isoforms. hCA I was inhibited with Kis in the range of 50.8-966.8 nM, while the glaucoma associated hCA II was inhibited with Kis in the range of 6.5-760.0 nM. Isoform hCA IV was inhibited with Kis in the range of 65.3-957.5 nM, whereas the tumor associated hypoxia induced hCA IX was inhibited with Kis in the range of 30.8-815.9 nM. The structure activity relationship study for the 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides against these isoforms was also inferred from the results.
Collapse
Affiliation(s)
- Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Srinivas Angapelly
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Pavitra S. Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
20
|
Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur J Med Chem 2019; 182:111631. [DOI: 10.1016/j.ejmech.2019.111631] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
|
21
|
Insights on the synthesis of asymmetric curcumin derivatives and their biological activities. Eur J Med Chem 2019; 183:111704. [PMID: 31557608 DOI: 10.1016/j.ejmech.2019.111704] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023]
Abstract
Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine.
Collapse
|
22
|
Arora I, Sharma M, Tollefsbol TO. Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy. Int J Mol Sci 2019; 20:ijms20184567. [PMID: 31540128 PMCID: PMC6769666 DOI: 10.3390/ijms20184567] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Polyphenols are potent micronutrients that can be found in large quantities in various food sources and spices. These compounds, also known as phenolics due to their phenolic structure, play a vital nutrient-based role in the prevention of various diseases such as diabetes, cardiovascular diseases, neurodegenerative diseases, liver disease, and cancers. However, the function of polyphenols in disease prevention and therapy depends on their dietary consumption and biological properties. According to American Cancer Society statistics, there will be an expected rise of 23.6 million new cancer cases by 2030. Due to the severity of the increased risk, it is important to evaluate various preventive measures associated with cancer. Relatively recently, numerous studies have indicated that various dietary polyphenols and phytochemicals possess properties of modifying epigenetic mechanisms that modulate gene expression resulting in regulation of cancer. These polyphenols and phytochemicals, when administrated in a dose-dependent and combinatorial-based manner, can have an enhanced effect on epigenetic changes, which play a crucial role in cancer prevention and therapy. Hence, this review will focus on the mechanisms of combined polyphenols and phytochemicals that can impact various epigenetic modifications such as DNA methylation and histone modifications as well as regulation of non-coding miRNAs expression for treatment and prevention of various types of cancer.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
23
|
Rotondi G, Guglielmi P, Carradori S, Secci D, De Monte C, De Filippis B, Maccallini C, Amoroso R, Cirilli R, Akdemir A, Angeli A, Supuran CT. Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold. J Enzyme Inhib Med Chem 2019; 34:1400-1413. [PMID: 31401897 PMCID: PMC6713143 DOI: 10.1080/14756366.2019.1651315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A large library of derivatives based on the scaffold of 2-(benzylsulfinyl)benzoic acid were synthesised and tested as atypical inhibitors against four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). The exploration of the chemical space around the main functional groups led to the discovery of selective hCA IX inhibitors in the micromolar/nanomolar range, thus establishing robust structure-activity relationships within this versatile scaffold. HPLC separation of some selected chiral compounds and biological evaluation of the corresponding enantiomers was performed along with molecular modelling studies on the most active derivatives.
Collapse
Affiliation(s)
- Giulia Rotondi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Paolo Guglielmi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Simone Carradori
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Daniela Secci
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Celeste De Monte
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Barbara De Filippis
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Cristina Maccallini
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Rosa Amoroso
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Roberto Cirilli
- c Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità , Rome , Italy
| | - Atilla Akdemir
- d Computer-aided Drug Discovery Laboratory, Faculty of Pharmacy, Department of Pharmacology, Bezmialem Vakif University , Fatih, Istanbul , Turkey
| | - Andrea Angeli
- e Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Claudiu T Supuran
- e Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
24
|
Thacker PS, Shaikh P, Angeli A, Arifuddin M, Supuran CT. Synthesis and biological evaluation of novel 8-substituted quinoline-2-carboxamides as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2019; 34:1172-1177. [PMID: 31218888 PMCID: PMC6586119 DOI: 10.1080/14756366.2019.1626376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of novel 8-substituted-N-(4-sulfamoylphenyl)quinoline-2-carboxamides was synthesised by the reaction of 8-hydroxy-N-(4-sulfamoylphenyl) quinoline-2-carboxamide with alkyl and benzyl halides. The compounds were assayed for carbonic anhydrase (CA) inhibitory activity against four hCA isoforms, hCA I, hCA II, hCA IV, and hCA IX. Barring hCA IX, all the isoforms were inhibited from low to high nanomolar range. hCA I was inhibited in the range of 61.9–8126 nM, with compound 5h having an inhibition constant of KI = 61.9 nM. hCA II was inhibited in the range of 33.0–8759 nM, with compound 5h having an inhibition constant of 33.0 nM and compounds 5a and 5b having inhibition constants of 88.4 and 85.7 nM, respectively. hCA IV was inhibited in the range of 657.2–6757 nM. Hence, compound 5h, possessing low nanomolar hCA I and II inhibition, can be selected as a lead for the design of novel CA I and II inhibitors.
Collapse
Affiliation(s)
- Pavitra S Thacker
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad , India
| | - Pirpasha Shaikh
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad , India
| | - Andrea Angeli
- b Neurofarba Department, Section of Pharmaceutical Chemistry, University of Florence, Florence , Italy
| | - Mohammed Arifuddin
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad , India
| | - Claudiu T Supuran
- b Neurofarba Department, Section of Pharmaceutical Chemistry, University of Florence, Florence , Italy
| |
Collapse
|
25
|
Saghafi T, Taheri RA, Parkkila S, Emameh RZ. Phytochemicals as Modulators of Long Non-Coding RNAs and Inhibitors of Cancer-Related Carbonic Anhydrases. Int J Mol Sci 2019; 20:E2939. [PMID: 31208095 PMCID: PMC6627131 DOI: 10.3390/ijms20122939] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as a group of transcripts which regulate various biological processes, such as RNA processing, epigenetic control, and signaling pathways. According to recent studies, lncRNAs are dysregulated in cancer and play an important role in cancer incidence and spreading. There is also an association between lncRNAs and the overexpression of some tumor-associated proteins, including carbonic anhydrases II, IX, and XII (CA II, CA IX, and CA XII). Therefore, not only CA inhibition, but also lncRNA modulation, could represent an attractive strategy for cancer prevention and therapy. Experimental studies have suggested that herbal compounds regulate the expression of many lncRNAs involved in cancer, such as HOTAIR (HOX transcript antisense RNA), H19, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), PCGEM1 (Prostate cancer gene expression marker 1), PVT1, etc. These plant-derived drugs or phytochemicals include resveratrol, curcumin, genistein, quercetin, epigallocatechin-3-galate, camptothcin, and 3,3'-diindolylmethane. More comprehensive information about lncRNA modulation via phytochemicals would be helpful for the administration of new herbal derivatives in cancer therapy. In this review, we describe the state-of-the-art and potential of phytochemicals as modulators of lncRNAs in different types of cancers.
Collapse
Affiliation(s)
- Tayebeh Saghafi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 14965/161 Tehran, Iran.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland.
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| |
Collapse
|
26
|
Ammazzalorso A, Carradori S, Angeli A, Akdemir A, De Filippis B, Fantacuzzi M, Giampietro L, Maccallini C, Amoroso R, Supuran CT. Fibrate-based N-acylsulphonamides targeting carbonic anhydrases: synthesis, biochemical evaluation, and docking studies. J Enzyme Inhib Med Chem 2019; 34:1051-1061. [PMID: 31074307 PMCID: PMC6522927 DOI: 10.1080/14756366.2019.1611801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A large library of fibrate-based N-acylsulphonamides was designed, synthesised, and fully characterised in order to propose them as zinc binders for the inhibition of human carbonic anhydrase (hCA) enzymatic activity. Synthesised compounds were tested against four hCAs (I, II, IX, and XII) revealing a promising submicromolar inhibitory activity characterised by an isozyme selectivity pattern. Structural modifications explored within this scaffold are: presence of an aryl ring on the sulphonamide, p-substitution of this aryl ring, benzothiazole or benzophenone as core nuclei, and an n-propyl chain or a geminal dimethyl at Cα carbon. Biological results fitted well with molecular modelling analyses, revealing a putative direct interaction with the zinc ion in the active site of hCA I, II and IX. These findings supported the exploration of less investigated secondary sulphonamides as potential hCA inhibitors.
Collapse
Affiliation(s)
| | - Simone Carradori
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Andrea Angeli
- b Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy
| | - Atilla Akdemir
- c Department of Pharmacology, Faculty of Pharmacy, Computer-Aided Drug Discovery Laboratory , Bezmialem Vakif University , Istanbul , Turkey
| | - Barbara De Filippis
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Marialuigia Fantacuzzi
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Letizia Giampietro
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Cristina Maccallini
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Rosa Amoroso
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Claudiu T Supuran
- b Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy.,d Neurofarba Department , Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze , Florence , Italy
| |
Collapse
|
27
|
Jiang Z, You Q, Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur J Med Chem 2019; 165:172-197. [PMID: 30684796 DOI: 10.1016/j.ejmech.2019.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Numerous metal-containing enzymes (metalloenzymes) have been considered as drug targets related to diseases such as cancers, diabetes, anemia, AIDS, malaria, bacterial infection, fibrosis, and neurodegenerative diseases. Inhibitors of the metalloenzymes have been developed independently, most of which are mimics of substrates of the corresponding enzymes. However, little attention has been paid to the interactions between inhibitors and active site metal ions. This review is focused on different metal binding fragments and their chelating properties in the metal-containing active binding pockets of metalloenzymes. We have enumerated over one hundred of inhibitors targeting various metalloenzymes and identified over ten kinds of fragments with different binding patterns. Furthermore, we have investigated the inhibitors that are undergoing clinical evaluation in order to help looking for more potential scaffolds bearing metal binding fragments. This review will provide deep insights for the rational design of novel inhibitors targeting the metal-containing binding sites of specific proteins.
Collapse
Affiliation(s)
- Zhensheng Jiang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
28
|
Supuran CT, Alterio V, Di Fiore A, D' Ambrosio K, Carta F, Monti SM, De Simone G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Med Res Rev 2018; 38:1799-1836. [PMID: 29635752 DOI: 10.1002/med.21497] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
Human carbonic anhydrase (CA) IX is a tumor-associated protein, since it is scarcely present in normal tissues, but highly overexpressed in a large number of solid tumors, where it actively contributes to survival and metastatic spread of tumor cells. Due to these features, the characterization of its biochemical, structural, and functional features for drug design purposes has been extensively carried out, with consequent development of several highly selective small molecule inhibitors and monoclonal antibodies to be used for different purposes. Aim of this review is to provide a comprehensive state-of-the-art of studies performed on this enzyme, regarding structural, functional, and biomedical aspects, as well as the development of molecules with diagnostic and therapeutic applications for cancer treatment. A brief description of additional pharmacologic applications for CA IX inhibition in other diseases, such as arthritis and ischemia, is also provided.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, Naples, Italy
| | | | - Fabrizio Carta
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | | |
Collapse
|
29
|
Ramya PVS, Thatikonda S, Angapelly S, Babu BN, Naidu VGM, Kamal A. Synthesis and Biological Evaluation of Thieno[2, 3-d
]pyrimidine-amides as Potential Anticancer Agents. ChemistrySelect 2018. [DOI: 10.1002/slct.201703061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Posa Venkata Sri Ramya
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
| | - Sowjanya Thatikonda
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
| | - Srinivas Angapelly
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
| | - Bathini Nagendra Babu
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
| | - Vegi Ganga Modi Naidu
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
| | - Ahmed Kamal
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
- School of Pharmaceutical Education and Research (SPER); Jamia Hamdard University; New Delhi-110062 India
| |
Collapse
|
30
|
Ramya PS, Guntuku L, Angapelly S, Digwal CS, Lakshmi UJ, Sigalapalli DK, Babu BN, Naidu V, Kamal A. Synthesis and biological evaluation of curcumin inspired imidazo[1,2-a]pyridine analogues as tubulin polymerization inhibitors. Eur J Med Chem 2018; 143:216-231. [DOI: 10.1016/j.ejmech.2017.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
|