1
|
Angeli A. Bacterial γ-carbonic anhydrases. Enzymes 2024; 55:93-120. [PMID: 39223000 DOI: 10.1016/bs.enz.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases (CAs) are a ubiquitous family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate and protons, playing pivotal roles in a variety of biological processes including respiration, calcification, acid-base balance, and CO2 fixation. Recent studies have expanded the understanding of CAs, particularly the γ-class from diverse biological sources such as pathogenic bacteria, extremophiles, and halophiles, revealing their unique structural adaptations and functional mechanisms that enable operation under extreme environmental conditions. This chapter discusses the comprehensive catalytic mechanism and structural insights from X-ray crystallography studies, highlighting the molecular adaptations that confer stability and activity to these enzymes in harsh environments. It also explores the modulation mechanism of these enzymes, detailing how different modulators interact with the active site of γ-CAs. Comparative analyzes with other CA classes elucidate the evolutionary trajectories and functional diversifications of these enzymes. The synthesis of this knowledge not only sheds light on the fundamental aspects of CA biology but also opens new avenues for therapeutic and industrial applications, particularly in designing targeted inhibitors for pathogenic bacteria and developing biocatalysts for industrial processes under extreme conditions. The continuous advancement in structural biology promises further insights into this enzyme family, potentially leading to novel applications in medical and environmental biotechnology.
Collapse
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
2
|
Karimou R, Salami HA, Agossou E, Boya B, Assouma FF, Bouko BOMB, Attakpa ES, Baba-Moussa L, Sina H. Assessment of antimicrobial and anti-biofilm activities of lemongrass and bay leaf extracts on microorganisms from fermented cereal-based porridges in northern Benin. SCIENTIFIC AFRICAN 2024; 24:e02241. [DOI: 10.1016/j.sciaf.2024.e02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
3
|
Liang H, Shen H, Zheng M, Shi Y, Li X. Systematical mutational analysis of teriparatide on anti-osteoporosis activity by alanine scanning. Bioorg Med Chem Lett 2024; 104:129732. [PMID: 38583785 DOI: 10.1016/j.bmcl.2024.129732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Osteoporosis is a progressive systemic skeletal disease that decreases bone density and bone quality, making them fragile and easy to break. In spite of effective anti-osteoporosis potency, teriparatide, the first anabolic medications approved for the treatment of osteoporosis, was proven to exhibit various side effects. And the relevant structure-activity relationship (SAR) of teriparatide was in need. In this work, we performed a systematical alanine scanning against teriparatide and synthesized 34 teriparatide derivatives. Their biological activities were evaluated and the importance of each residue for anti-osteoporosis activity was also revealed. A remarkable decrease in activity was observed for alanine replacement of the residue Gly12, His14, Ser17, Arg20 and Leu24, showcasing the important role of these residues in teriparatide on anti-osteoporosis activity. On contrary, when Gly13 and Gln30 were mutated to Ala, the peptide derivatives exhibited the significantly increased activities, demonstrating that these two residues could be readily replaced. Our research expanded the peptide library of teriparatide analogues and presented a potential opportunity for designing the more powerful anti-osteoporosis peptide agents.
Collapse
Affiliation(s)
- Haiyan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Huaxing Shen
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China
| | - Mengjun Zheng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Yejiao Shi
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China.
| | - Xiang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
4
|
Angeli A, Petrou A, Kartsev V, Lichitsky B, Komogortsev A, Capasso C, Geronikaki A, Supuran CT. Synthesis, Biological and In Silico Studies of Griseofulvin and Usnic Acid Sulfonamide Derivatives as Fungal, Bacterial and Human Carbonic Anhydrase Inhibitors. Int J Mol Sci 2023; 24:ijms24032802. [PMID: 36769114 PMCID: PMC9917406 DOI: 10.3390/ijms24032802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho-/physiological conditions. A series of griseofulvin and usnic acid sulfonamides were synthesized and tested as possible CA inhibitors. Since β- and γ- classes are expressed in microorganisms in addition to the α- class, showing substantial structural differences to the human isoforms they are also interesting as new antiinfective targets with a different mechanism of action for fighting the emerging problem of extensive drug resistance afflicting most countries worldwide. Griseofulvin and usnic acid sulfonamides were synthesized using methods of organic chemistry. Their inhibitory activity, assessed against the cytosolic human isoforms hCA I and hCA II, the transmembrane hCA IX as well as β- and γ-CAs from different bacterial and fungal strains, was evaluated by a stopped-flow CO2 hydrase assay. Several of the investigated derivatives showed interesting inhibition activity towards the cytosolic associate isoforms hCA I and hCA II, as well as the three γ-CAs and Malassezia globosa (MgCA) enzyme. Six compounds (1b-1d, 1h, 1i and 1j) were more potent than AAZ against hCA I while five (1d, 1h, 1i, 1j and 4a) showed better activity than AAZ against the hCA II isoform. Moreover, all compounds appeared to be very potent against MgCA with a Ki lower than that of the reference drug. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds within the active site of human CAs.
Collapse
Affiliation(s)
- Andrea Angeli
- NeuroFarba Department, Sezione di ScienzeFarmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
- Istituto di Bioscienze e Biorisorse, CNR (National Research Council), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Boris Lichitsky
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, Moscow 119991, Russia
| | - Andrey Komogortsev
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, Moscow 119991, Russia
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR (National Research Council), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (A.G.); (C.T.S.)
| | - Claudiu T. Supuran
- NeuroFarba Department, Sezione di ScienzeFarmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
- Correspondence: (A.G.); (C.T.S.)
| |
Collapse
|
5
|
Angeli A, Urbański LJ, Capasso C, Parkkila S, Supuran CT. Activation studies with amino acids and amines of a β-carbonic anhydrase from Mammaliicoccus (Staphylococcus) sciuri previously annotated as Staphylococcus aureus (SauBCA) carbonic anhydrase. J Enzyme Inhib Med Chem 2022; 37:2786-2792. [PMID: 36210544 PMCID: PMC9553136 DOI: 10.1080/14756366.2022.2131780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A β-carbonic anhydrase (CA, EC 4.2.1.1) previously annotated to be present in the genome of Staphylococcus aureus, SauBCA, has been shown to belong to another pathogenic bacterium, Mammaliicoccus (Staphylococcus) sciuri. This enzyme, MscCA, has been investigated for its activation with a series of natural and synthetic amino acid and amines, comparing the results with those obtained for the ortholog enzyme from Escherichia coli, EcoCAβ. The best MscCA activators were D-His, L- and D-DOPA, 4-(2-aminoethyl)-morpholine and L-Asn, which showed KAs of 0.12 - 0.89 µM. The least efficient activators were D-Tyr and L-Gln (KAs of 13.9 - 28.6 µM). The enzyme was also also inhibited by anions and sulphonamides, as described earlier. Endogenous CA activators may play a role in bacterial virulence and colonisation of the host which makes this research topic of great interest.
Collapse
Affiliation(s)
- Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Linda J Urbański
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland,CONTACT Seppo Parkkila Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy,Claudiu T. Supuran Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
6
|
Angeli A, Kartsev V, Petrou A, Lichitsky B, Komogortsev A, Pinteala M, Geronikaki A, Supuran CT. Pyrazolo[4,3-c]pyridine Sulfonamides as Carbonic Anhydrase Inhibitors: Synthesis, Biological and In Silico Studies. Pharmaceuticals (Basel) 2022; 15:316. [PMID: 35337114 PMCID: PMC8955975 DOI: 10.3390/ph15030316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho-/physiological conditions. A series of chromene-based sulfonamides were synthesized and tested as possible CA inhibitors. On the other hand, in microorganisms, the β- and γ- classes are expressed in addition to the α- class, showing substantial structural differences to the human isoforms. In this scenario, not only human but also bacterial CAs are of particular interest as new antibacterial agents with an alternative mechanism of action for fighting the emerging problem of extensive drug resistance afflicting most countries worldwide. Pyrazolo[4,3-c]pyridine sulfonamides were synthesized using methods of organic chemistry. Their inhibitory activity, assessed against the cytosolic human isoforms hCA I and hCA II, the transmembrane hCA IX and XII, and β- and γ-CAs from three different bacterial strains, was evaluated by a stopped-flow CO2 hydrase assay. Several of the investigated derivatives showed interesting inhibition activity towards the cytosolic associate isoforms hCA I and hCA II, as well as the 3β- and 3γ-CAs. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds within the active site of hCA IX. Four compounds (1f, 1g, 1h and 1k) were more potent than AAZ against hCA I. Furthermore, compound 1f also showed better activity than AAZ against the hCA II isoform. Moreover, ten compounds out of eleven appeared to be very potent against the γ-CA from E.coli, with a Ki much lower than that of the reference drug. Most of the compounds showed better activity than AAZ against hCA I as well as the γ-CA from E.coli and the β-CA from Burkholderia pseudomallei (BpsCAβ). Compounds 1f and 1k showed a good selectivity index against hCA I and hCA XII, while 1b was selective against all 3β-CA isoforms from E.coli, BpsCA, and VhCA and all 3γ-CA isoforms from E.coli, BpsCA and PgiCA.
Collapse
Affiliation(s)
- Andrea Angeli
- Sezione di Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, no. 41A, 700487 Iasi, Romania;
| | | | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Boris Lichitsky
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia; (B.L.); (A.K.)
| | - Andrey Komogortsev
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia; (B.L.); (A.K.)
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, no. 41A, 700487 Iasi, Romania;
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Claudiu T. Supuran
- Sezione di Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
7
|
An Update on Synthesis of Coumarin Sulfonamides as Enzyme Inhibitors and Anticancer Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051604. [PMID: 35268704 PMCID: PMC8911621 DOI: 10.3390/molecules27051604] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022]
Abstract
Coumarin is an important six-membered aromatic heterocyclic pharmacophore, widely distributed in natural products and synthetic molecules. The versatile and unique features of coumarin nucleus, in combination with privileged sulfonamide moiety, have enhanced the broad spectrum of biological activities. The research and development of coumarin, sulfonamide-based pharmacology, and medicinal chemistry have become active topics, and attracted the attention of medicinal chemists, pharmacists, and synthetic chemists. Coumarin sulfonamide compounds and analogs as clinical drugs have been used to cure various diseases with high therapeutic potency, which have shown their enormous development value. The diversified and wide array of biological activities such as anticancer, antibacterial, anti-fungal, antioxidant and anti-viral, etc. were displayed by diversified coumarin sulfonamides. The present systematic and comprehensive review in the current developments of synthesis and the medicinal chemistry of coumarin sulfonamide-based scaffolds give a whole range of therapeutics, especially in the field of oncology and carbonic anhydrase inhibitors. In the present review, various synthetic approaches, strategies, and methodologies involving effect of catalysts, the change of substrates, and the employment of various synthetic reaction conditions to obtain high yields is cited.
Collapse
|
8
|
Amine- and Amino Acid-Based Compounds as Carbonic Anhydrase Activators. Molecules 2021; 26:molecules26237331. [PMID: 34885917 PMCID: PMC8659172 DOI: 10.3390/molecules26237331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 02/01/2023] Open
Abstract
After being rather neglected as a research field in the past, carbonic anhydrase activators (CAAs) were undoubtedly demonstrated to be useful in diverse pharmaceutical and industrial applications. They also improved the knowledge of the requirements to selectively interact with a CA isoform over the others and confirmed the catalytic mechanism of this class of compounds. Amino acid and amine derivatives were the most explored in in vitro, in vivo and crystallographic studies as CAAs. Most of them were able to activate human or non-human CA isoforms in the nanomolar range, being proposed as therapeutic and industrial tools. Some isoforms are better activated by amino acids than amines derivatives and the stereochemistry may exert a role. Finally, non-human CAs have been very recently tested for activation studies, paving the way to innovative industrial and environmental applications.
Collapse
|
9
|
De Luca V, Petreni A, Carginale V, Scaloni A, Supuran CT, Capasso C. Effect of amino acids and amines on the activity of the recombinant ι-carbonic anhydrase from the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2021; 36:1000-1006. [PMID: 33980103 PMCID: PMC8128165 DOI: 10.1080/14756366.2021.1919891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
We here report a study on the activation of the ι-class bacterial CA from Burkholderia territorii (BteCAι). This protein was recently characterised as a zinc-dependent enzyme that shows a significant catalytic activity (kcat 3.0 × 105 s-1) for the physiological reaction of CO2 hydration to bicarbonate and protons. Some amino acids and amines, among which some proteinogenic derivatives as well as histamine, dopamine and serotonin, showed efficient activating properties towards BteCAι, with activation constants in the range 3.9-13.3 µM. L-Phe, L-Asn, L-Glu, and some pyridyl-alkylamines, showed a weaker activating effect towards BteCAι, with KA values ranging between 18.4 µM and 45.6 µM. Nowadays, no information is available on active site architecture, metal ion coordination and catalytic mechanism of members of the ι-group of CAs, and this study represents another contribution towards a better understanding of this still uncharacterised class of enzymes.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Polo Scientifico, Florence, Italy
- Proteomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, CNR, Naples, Italy
| | - Andrea Petreni
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Vincenzo Carginale
- Department of Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Polo Scientifico, Florence, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, CNR, Naples, Italy
| | - Claudiu T. Supuran
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Clemente Capasso
- Department of Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Polo Scientifico, Florence, Italy
| |
Collapse
|
10
|
New Sulfanilamide Derivatives Incorporating Heterocyclic Carboxamide Moieties as Carbonic Anhydrase Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14080828. [PMID: 34451924 PMCID: PMC8398262 DOI: 10.3390/ph14080828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/12/2023] Open
Abstract
Carbonic Anhydrases (CAs) are ubiquitous metalloenzymes involved in several disease conditions. There are 15 human CA (hCA) isoforms and their high homology represents a challenge for the discovery of potential drugs devoid of off-target side effects. For this reason, many synthetic and pharmacologic research efforts are underway to achieve the full pharmacological potential of CA modulators of activity. We report here a novel series of sulfanilamide derivatives containing heterocyclic carboxamide moieties which were evaluated as CA inhibitors against the physiological relevant isoforms hCA I, II, IX, and XII. Some of them showed selectivity toward isoform hCA II and hCA XII. Molecular docking was performed for some of these compounds on isoforms hCA II and XII to understand the possible interaction with the active site amino acid residues, which rationalized the reported inhibitory activity.
Collapse
|
11
|
Kumar A, Agarwal P, Rathi E, Kini SG. Computer-aided identification of human carbonic anhydrase isoenzyme VII inhibitors as potential antiepileptic agents. J Biomol Struct Dyn 2020; 40:4850-4865. [PMID: 33345714 DOI: 10.1080/07391102.2020.1862706] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human carbonic anhydrase (hCA) belongs to a superfamily of metalloenzymes that reversibly catalyse the hydration of carbon dioxide to give bicarbonate (HCO3-) and proton (H+). As HCO3- ions play an important role in neuronal signalling hence, hCA enzymes are an attractive target for antiepileptic drugs. Out of all the isoforms, hCA VII is predominantly expressed in the brain cortex and hippocampus region, which are the most affected area during seizure activity. Hence, we have identified some hCA VII inhibitors employing computational tools like atom-based 3D quantitative structure-activity relationship (QSAR), auto-QSAR, pharmacophore-based virtual screening, molecular docking, and molecular dynamics (MD) simulations. Atom-based 3D QSAR modelling outperformed auto-QSAR with an R2 and Q2 value of 0.9634 and 0.9646, respectively. A four-feature pharmacophore model (AADR_1) was developed and a focussed library of around 3,00,000 compounds was screened. Compounds with a phase screen score >2.40 were selected for docking studies. The activity of the selected hits was predicted employing the developed 3D QSAR model. Finally, three compounds were taken up for the MD simulation studies which also suggest that the identified hits might form a stable complex with hCA VII enzyme. A comparative docking study was also done with other hCA isoforms like I, II, IV, IX, and XII to examine the selectivity of the identified hits towards hCA VII. Based on these studies, three hits have been identified as potential hCA VII inhibitor which is drug-like molecules. Further, in vitro studies are required to develop leads from these identified hits.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Paridhi Agarwal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
12
|
Hryniewicka A, Niemirowicz-Laskowska K, Wielgat P, Car H, Hauschild T, Morzycki JW. Dehydroepiandrosterone derived imidazolium salts and their antimicrobial efficacy. Bioorg Chem 2020; 108:104550. [PMID: 33353805 DOI: 10.1016/j.bioorg.2020.104550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Hybrid molecules consisting of steroid-imidazolium salts reveal interesting biological properties, especially regarding antimicrobial activities. Novel dehydroepiandrosterone derived imidazolium salts (11 salts) with side chains of different lengths were obtained in an efficient and straightforward synthetic route. Antimicrobial properties of new salts were examined by determining their minimum inhibitory concentrations (MICs). They were studied against several strains of bacteria, including clinical isolates of MRSA, and fungi. New compounds showed high activity against Gram-positive bacteria and Candida albicans as well as good compatibility with the representatives of the host cells when applied at concentrations corresponding to MIC value. The studies indicated high antimicrobial efficacy of imidazolium salts against the above-mentioned microorganisms with low hemolytic activity at a concentration that restricts the growth of the microorganisms. The interference of salts with the immune defense system, the influence on the biological activity of monocytes/macrophages measured by their viability and metabolic activity was also studied. The new compounds have shown immunoprotective properties.
Collapse
Affiliation(s)
- Agnieszka Hryniewicka
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Białystok, Poland.
| | | | - Przemysław Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Białystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland; Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Białystok, Poland
| | - Tomasz Hauschild
- Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Jacek W Morzycki
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| |
Collapse
|
13
|
Angeli A, Prete SD, Ghobril C, Hitce J, Clavaud C, Marrat X, Donald WA, Capasso C, Supuran CT. Activation studies of the β-carbonic anhydrases from Malassezia restricta with amines and amino acids. J Enzyme Inhib Med Chem 2020; 35:824-830. [PMID: 32216477 PMCID: PMC7170391 DOI: 10.1080/14756366.2020.1743284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
The β-carbonic anhydrase (CA, EC 4.2.1.1) from the genome of the opportunistic pathogen Malassezia restricta (MreCA), which was recently cloned and characterised, herein has been investigated for enzymatic activation by a panel of amines and amino acids. Of the 24 compounds tested in this study, the most effective MreCA activators were L-adrenaline (KA of 15 nM), 2-aminoethyl-piperazine/morpholine (KAs of 0.25-0.33 µM), histamine, L-4-amino-phenylalanine, D-Phe, L-/D-DOPA, and L-/D-Trp (KAs of 0.32 - 0.90 µM). The least effective activators were L-/D-Tyr, L-Asp, L-/D-Glu, and L-His, with activation constants ranging between 4.04 and 12.8 µM. As MreCA is involved in dandruff and seborrhoeic dermatitis, these results are of interest to identify modulators of the activity of enzymes involved in the metabolic processes of such fungi.
Collapse
Affiliation(s)
- Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | | | - Julien Hitce
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Cécile Clavaud
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Xavier Marrat
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Abstract
Metalloenzymes such as the carbonic anhydrases (CAs, EC 4.2.1.1) possess highly specialized active sites that promote fast reaction rates and high substrate selectivity for the physiologic reaction that they catalyze, hydration of CO2 to bicarbonate and a proton. Among the eight genetic CA macrofamilies, α-CAs possess rather spacious active sites and show catalytic promiscuity, being esterases with many types of esters, but also acting on diverse small molecules such as cyanamide, carbonyl sulfide (COS), CS2, etc. Although artificial CAs have been developed with the intent to efficiently catalyse non-biologically related chemical transformations with high control of stereoselectivity, the activities of these enzymes were much lower when compared to natural CAs. Here, we report an overview on the catalytic activities of α-CAs as well as of enzymes which were mutated or artificially designed by incorporation of transition metal ions. In particular, the distinct catalytic mechanisms of the reductase, oxidase and metatheses-ase such as de novo designed CAs are discussed.
Collapse
|
15
|
Angeli A, Ferraroni M, Pinteala M, Maier SS, Simionescu BC, Carta F, Del Prete S, Capasso C, Supuran CT. Crystal Structure of a Tetrameric Type II β-Carbonic Anhydrase from the Pathogenic Bacterium Burkholderia pseudomallei. Molecules 2020; 25:molecules25102269. [PMID: 32408533 PMCID: PMC7287614 DOI: 10.3390/molecules25102269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
Carbonic anhydrase (CA) is a zinc enzyme that catalyzes the reversible conversion of carbon dioxide to bicarbonate and proton. Currently, CA inhibitors are widely used as antiglaucoma, anticancer, and anti-obesity drugs and for the treatment of neurological disorders. Recently, the potential use of CA inhibitors to fight infections caused by protozoa, fungi, and bacteria has emerged as a new research line. In this article, the X-ray crystal structure of β-CA from Burkholderia pseudomallei was reported. The X-ray crystal structure of this new enzyme was solved at 2.7 Å resolution, revealing a tetrameric type II β-CA with a “closed” active site in which the zinc is tetrahedrally coordinated to Cys46, Asp48, His102, and Cys105. B. pseudomallei is known to encode at least two CAs, a β-CA, and a γ-CA. These proteins, playing a pivotal role in its life cycle and pathogenicity, offer a novel therapeutic opportunity to obtain antibiotics with a different mechanism of action. Furthermore, the new structure can provide a clear view of the β-CA mechanism of action and the possibility to find selective inhibitors for this class of CAs.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Marta Ferraroni
- Department of Chemistry “Ugo Schiff”, Via della Lastruccia 13, Università degli Studi di Firenze, I-50019 Sesto Fiorentino (Florence), Italy
- Correspondence: (M.F.); (C.T.S.)
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
- Polymers Research Center, Polymeric Release Systems Research Group, “Gheorghe Asachi” Technical University of Iasi, 700487 Iasi, Romania
| | - Bogdan C. Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.)
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (C.C.)
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (C.C.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.)
- Correspondence: (M.F.); (C.T.S.)
| |
Collapse
|
16
|
Angeli A, Etxebeste-Mitxeltorena M, Sanmartín C, Espuelas S, Moreno E, Azqueta A, Parkkila S, Carta F, Supuran CT. Tellurides Bearing Sulfonamides as Novel Inhibitors of Leishmanial Carbonic Anhydrase with Potent Antileishmanial Activity. J Med Chem 2020; 63:4306-4314. [PMID: 32223141 DOI: 10.1021/acs.jmedchem.0c00211] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report for the first time a novel series of tellurides bearing sulfonamide as selective and potent inhibitors of the β-class carbonic anhydrase (CA; EC 4.2.1.1) enzyme expressed in Leishmania donovani protozoa. Such derivatives showed high activity against axenic amastigotes, and among them, compound 5g (4-(((3,4,5-trimethoxyphenyl)tellanyl)methyl)benzenesulfonamide) showed an IC50 of 0.02 μM being highly selective for the parasites over THP-1 cells with a selectivity index of 300. The in vitro and in vivo toxicity experiments showed compound 5g to possess a safe profile and thus paving the way for tellurium-containing compounds as novel drug entities.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.,Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Mikel Etxebeste-Mitxeltorena
- School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Socorro Espuelas
- School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Esther Moreno
- School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Amaya Azqueta
- School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Seppo Parkkila
- Faculty of Medicine and Life Sciences, University of Tampere and Fimlab Ltd, Tampere University Hospital, 33100 Tampere, Finland
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
17
|
Rami M, Winum JY, Supuran CT, Melnyk P, Yous S. (Hetero)aryl substituted thiazol-2,4-yl scaffold as human carbonic anhydrase I, II, VII and XIV activators. J Enzyme Inhib Med Chem 2019; 34:224-229. [PMID: 30734616 PMCID: PMC6327990 DOI: 10.1080/14756366.2018.1543292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Using histamine as lead molecule, a library of (hetero)aryl substituted thiazol-2,4-yl derivatives incorporating pyridine as proton shuttling moiety were obtained and investigated as activators of human carbonic anhydrase (CA, EC 4.2.1.1) isoforms I, II, VII and XIV. Some derivatives displayed good activating and selectivity profiles. This study provides an interesting opportunity to study the thiazole scaffold for the design of CA activators (CAAs), possibly acting on the central nervous system and targeting pathologies involving memory and learning impairments.
Collapse
Affiliation(s)
- Marouan Rami
- Université de Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille59000, France
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 240 avenue du Professeur Emile Jeanbrau, Montpellier Cedex34296, France
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, Florence50019, Italy
| | - Patricia Melnyk
- Université de Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille59000, France
| | - Saïd Yous
- Université de Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille59000, France
| |
Collapse
|
18
|
Angeli A, Del Prete S, Pinteala M, Maier SS, Donald WA, Simionescu BC, Capasso C, Supuran CT. The first activation study of the β-carbonic anhydrases from the pathogenic bacteria Brucella suis and Francisella tularensis with amines and amino acids. J Enzyme Inhib Med Chem 2019; 34:1178-1185. [PMID: 31282230 PMCID: PMC6691884 DOI: 10.1080/14756366.2019.1630617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The activation of the β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacteria Brucella suis and Francisella tularensis with amine and amino acids was investigated. BsuCA 1 was sensitive to activation with amino acids and amines, whereas FtuCA was not. The most effective BsuCA 1 activators were L-adrenaline and D-Tyr (KAs of 0.70–0.95 µM). L-His, L-/D-Phe, L-/D-DOPA, L-Trp, L-Tyr, 4-amino-L-Phe, dopamine, 2-pyridyl-methylamine, D-Glu and L-Gln showed activation constants in the range of 0.70–3.21 µM. FtuCA was sensitive to activation with L-Glu (KA of 9.13 µM). Most of the investigated compounds showed a weak activating effect against FtuCA (KAs of 30.5–78.3 µM). Many of the investigated amino acid and amines are present in high concentrations in many tissues in vertebrates, and their role in the pathogenicity of the two bacteria is poorly understood. Our study may bring insights in processes connected with invasion and pathogenic effects of intracellular bacteria.
Collapse
Affiliation(s)
- Andrea Angeli
- a Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Sonia Del Prete
- b Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Mariana Pinteala
- c Centre of Advanced Research in Bionanoconjugates and Biopolymers Department , "Petru Poni" Institute of Macromolecular Chemistry , Iasi , Romania
| | - Stelian S Maier
- c Centre of Advanced Research in Bionanoconjugates and Biopolymers Department , "Petru Poni" Institute of Macromolecular Chemistry , Iasi , Romania.,d Polymers Research Center, Polymeric Release Systems Research Group , "Gheorghe Asachi" Technical University of Iasi , Iasi , Romania
| | - William A Donald
- e School of Chemistry , University of New South Wales , Sydney , Australia
| | - Bogdan C Simionescu
- c Centre of Advanced Research in Bionanoconjugates and Biopolymers Department , "Petru Poni" Institute of Macromolecular Chemistry , Iasi , Romania
| | | | - Claudiu T Supuran
- a Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy.,e School of Chemistry , University of New South Wales , Sydney , Australia
| |
Collapse
|
19
|
Akocak S, Lolak N, Bua S, Nocentini A, Supuran CT. Activation of human α-carbonic anhydrase isoforms I, II, IV and VII with bis-histamine schiff bases and bis-spinaceamine substituted derivatives. J Enzyme Inhib Med Chem 2019; 34:1193-1198. [PMID: 31237157 PMCID: PMC6598482 DOI: 10.1080/14756366.2019.1630616] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A series of histamine bis-Schiff bases and bis-spinaceamine derivatives were synthesised and investigated as activators of four human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic hCA I, II and VII, and the membrane-associated hCA IV. All isoforms were effectively activated by the new derivatives, with activation constants in the range of 4.73–10.2 µM for hCA I, 6.15–42.1 µM for hCA II, 2.37–32.7 µM for hCA IV and 32 nM–18.7 µM for hCA VII, respectively. The nature of the spacer between the two histamine/spinaceamine units of these molecules was the main contributor to the diverse activating efficacy, with a very different fine tuning for the diverse isoforms. As CA activators recently emerged as interesting agents for enhancing cognition, in the management of CA deficiencies, or for therapy memory and artificial tissues engineering, our compounds may be considered as candidates for such applications.
Collapse
Affiliation(s)
- Suleyman Akocak
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Adiyaman University , Adiyaman , Turkey
| | - Nabih Lolak
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Adiyaman University , Adiyaman , Turkey
| | - Silvia Bua
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Alessio Nocentini
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| |
Collapse
|
20
|
Sulfur, selenium and tellurium containing amines act as effective carbonic anhydrase activators. Bioorg Chem 2019; 87:516-522. [DOI: 10.1016/j.bioorg.2019.03.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/11/2022]
|
21
|
Angeli A, Del Prete S, Osman SM, AlOthman Z, Donald WA, Capasso C, Supuran CT. Activation Studies of the γ-Carbonic Anhydrases from the Antarctic Marine Bacteria Pseudoalteromonas haloplanktis and Colwellia psychrerythraea with Amino Acids and Amines. Mar Drugs 2019; 17:md17040238. [PMID: 31013612 PMCID: PMC6520686 DOI: 10.3390/md17040238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022] Open
Abstract
The γ-carbonic anhydrases (CAs, EC 4.2.1.1) present in the Antarctic marine bacteria Pseudoalteromonas haloplanktis and Colwellia psychrerythraea, herein referred to as PhaCA and CpsCA, respectively, were investigated for their activation with a panel of 24 amino acids and amines. Both bacteria are considered Antarctic models for the investigation of photosynthetic and metabolic pathways in organisms adapted to live in cold seawater. PhaCA was much more sensitive to activation by these compounds compared to the genetically related enzyme CpsCA. The most effective PhaCA activators were d-Phe, l-/d-DOPA, l-Tyr and 2-pyridyl-methylamine, with the activation constant KA values of 0.72–3.27 µM. d-His, l-Trp, d-Tyr, histamine, dopamine, serotonin anddicarboxylic amino acids were also effective activators of PhaCA, with KA values of 6.48–9.85 µM. CpsCA was activated by d-Phe, d-DOPA, l-Trp, l-/d-Tyr, 4-amino-l-Phe, histamine, 2-pyridyl-methylamine and l-/d-Glu with KA values of 11.2–24.4 µM. The most effective CpsCA activator was l-DOPA (KA of 4.79 µM). Given that modulators of CAs from Antarctic bacteria have not been identified and investigated in detail for their metabolic roles to date, this research sheds some light on these poorly understood processes.
Collapse
Affiliation(s)
- Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - William A Donald
- School of Chemistry, University of New South Wales, Dalton Building, Sydney, New South Wales 2052, Australia.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
- School of Chemistry, University of New South Wales, Dalton Building, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
22
|
Hou J, Li X, Kaczmarek MB, Chen P, Li K, Jin P, Liang Y, Daroch M. Accelerated CO₂ Hydration with Thermostable Sulfurihydrogenibium azorense Carbonic Anhydrase-Chitin Binding Domain Fusion Protein Immobilised on Chitin Support. Int J Mol Sci 2019; 20:ijms20061494. [PMID: 30934614 PMCID: PMC6471549 DOI: 10.3390/ijms20061494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Carbonic anhydrases (CAs) represent a group of enzymes that catalyse important reactions of carbon dioxide hydration and dehydration, a reaction crucial to many biological processes and environmental biotechnology. In this study we successfully constructed a thermostable fusion enzyme composed of the Sulfurihydrogenibium azorense carbonic anhydrase (Saz_CA), the fastest CA discovered to date, and the chitin binding domain (ChBD) of chitinase from Bacillus circulans. Introduction of ChBD to the Saz_CA had no major impact on the effect of ions or inhibitors on the enzymatic activity. The fusion protein exhibited no negative effects up to 60 °C, whilst the fusion partner appears to protect the enzyme from negative effects of magnesium. The prepared biocatalyst appears to be thermally activated at 60 °C and could be partially purified with heat treatment. Immobilisation attempts on different kinds of chitin-based support results have shown that the fusion enzyme preferentially binds to a cheap, untreated chitin with a large crystallinity index over more processed forms of chitin. It suggests significant potential economic benefits for large-scale deployment of immobilised CA technologies such as CO2 utilisation or mineralisation.
Collapse
Affiliation(s)
- Juan Hou
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Michal B Kaczmarek
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Institute of Technical Biochemistry, Lodz University of Technology, 90-924 Lodz, Poland.
| | - Pengyu Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kai Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Peng Jin
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
23
|
Kurt BZ, Dag A, Doğan B, Durdagi S, Angeli A, Nocentini A, Supuran CT, Sonmez F. Synthesis, biological activity and multiscale molecular modeling studies of bis-coumarins as selective carbonic anhydrase IX and XII inhibitors with effective cytotoxicity against hepatocellular carcinoma. Bioorg Chem 2019; 87:838-850. [PMID: 31003041 DOI: 10.1016/j.bioorg.2019.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/14/2019] [Accepted: 03/02/2019] [Indexed: 10/27/2022]
Abstract
A series of novel bis-coumarin derivatives containing triazole moiety as a linker between the alkyl chains was synthesized and their inhibitory activity against the human carbonic anhydrase (hCA) isoforms I, II, IX and XII were evaluated. In addition, cytotoxic effects of the synthesized compounds on renal adenocarcinoma (769P), hepatocellular carcinoma (HepG2) and breast adeno carcinoma (MDA-MB-231) cell lines were examined. While the hCA I and II isoforms were inhibited in the micromolar range, the tumor-associated isoform hCA IX and XII were inhibited in the high nanomolar range. 4-methyl-7-((1-(12-((2-oxo-2H-chromen-7-yl)oxy)dodecyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (5p) showed the strongest inhibitory activity against hCA IX with the Ki of 144.6 nM and 4-methyl-7-((1-(10-((2-oxo-2H-chromen-7-yl)oxy)decyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (5n) exhibited the highest hCA XII inhibition with the Ki of 71.5 nM. In order to better understand the inhibitory profiles of studied molecules, multiscale molecular modelling approaches were applied. Low energy docking poses of studied molecules at the binding sites of targets have been predicted. In addition, electrostatic potential surfaces (ESP) for binding sites were also generated to understand interactions between proteins and active ligands.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Istanbul, Turkey.
| | - Aydan Dag
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Istanbul, Turkey
| | - Berna Doğan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| | - Andrea Angeli
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Fatih Sonmez
- Sakarya University of Applied Sciences, Pamukova Vocational Highschool, Pamukova, Turkey
| |
Collapse
|
24
|
Bua S, Haapanen S, Kuuslahti M, Parkkila S, Supuran CT. Activation Studies of the β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica with Amino Acids and Amines. Metabolites 2019; 9:metabo9020026. [PMID: 30717275 PMCID: PMC6409850 DOI: 10.3390/metabo9020026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
The β-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic protozoan Entamoeba histolytica, EhiCA, was investigated for its activation with a panel of natural and non-natural amino acids and amines. EhiCA was potently activated by D-His, D-Phe, D-DOPA, L- and D-Trp, L- and D-Tyr, 4-amino-L-Tyr, histamine and serotonin, with KAs ranging between 1.07 and 10.1 µM. The best activator was D-Tyr (KA of 1.07 µM). L-Phe, L-DOPA, L-adrenaline, L-Asn, L-Asp, L-Glu and L-Gln showed medium potency activation, with KAs of 16.5–25.6 µM. Some heterocyclic- alkyl amines, such as 2-pyridyl-methyl/ethyl-amine and 4-(2-aminoethyl)-morpholine, were devoid of EhiCA activating properties with KAs > 100 µM. As CA activators have poorly been investigated for their interaction with protozoan CAs, our study may be relevant for an improved understanding of the role of this enzyme in the life cycle of E. histolytica.
Collapse
Affiliation(s)
- Silvia Bua
- Sezione di Scienze Farmaceutiche e Nutraceutiche, Dipartimento Neurofarba, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, 50019 Florence, Italy.
| | - Susanna Haapanen
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland.
| | - Marianne Kuuslahti
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland.
- Fimlab Ltd., Tampere University Hospital, 33100 Tampere, Finland.
| | - Claudiu T Supuran
- Sezione di Scienze Farmaceutiche e Nutraceutiche, Dipartimento Neurofarba, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
25
|
Akocak S, Lolak N, Bua S, Nocentini A, Karakoc G, Supuran CT. α-Carbonic anhydrases are strongly activated by spinaceamine derivatives. Bioorg Med Chem 2019; 27:800-804. [PMID: 30683554 DOI: 10.1016/j.bmc.2019.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
A series of 4-substituted-spinaceamine (4,5,6,7-tetrahydro-imidazolo[4,5-c]pyridine) were prepared from histamine and aromatic aldehydes Schiff bases, and investigated as activators of four human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic hCA I, II and VII, and the membrane-associated hCA IV. All isoforms were effectively activated by the new derivatives, and the nature of the moiety in position 4 of the bicyclic system was the factor influencing activation properties against all isoforms. For hCA I, these compounds showed KAs in the range of 2.52-21.5 µM, the most effective activator being 4-(2-hydroxyphenyl)-spinaceamine. For hCA II the activation constants ranged between 0.60 and 17.2 µM, with 4-(2,3,5,6-tetrafluorophenyl)- spinaceamine the best activator. Affinity for hCA IV was in the range of 0.52-63.8 µM, and the same compound as for hCA II was the most effective activator. The most sensitive isoform for activation was the brain-associated hCA VII, for which KAs in the range of 82 nM-4.26 µM were observed. Effective hCA VII activators were the (2-bromophenyl)-, 2,3,5,6-tetrafluorophenyl- and furyl-substituted spineaceamines (KAs of 82-95 nM). As CA activators may have pharmacologic applications in various fields, this work provides interesting derivatives for further studies.
Collapse
Affiliation(s)
- Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, 02040 Adiyaman, Turkey.
| | - Nabih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, 02040 Adiyaman, Turkey
| | - Silvia Bua
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Gulcin Karakoc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, 02040 Adiyaman, Turkey
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
26
|
Stefanucci A, Dimmito MP, Zengin G, Luisi G, Mirzaie S, Novellino E, Mollica A. Discovery of novel amide tripeptides as pancreatic lipase inhibitors by virtual screening. NEW J CHEM 2019. [DOI: 10.1039/c8nj05884a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A virtual screening workflow for the discovery of pancreatic lipase inhibitors.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento di Farmacia
- Università di Chieti-Pescara “G. d’Annunzio”
- 66100 Chieti
- Italy
| | - Marilisa Pia Dimmito
- Dipartimento di Farmacia
- Università di Chieti-Pescara “G. d’Annunzio”
- 66100 Chieti
- Italy
| | - Gokhan Zengin
- Department of Biology
- Science Faculty
- Selcuk University
- Konya
- Turkey
| | - Grazia Luisi
- Dipartimento di Farmacia
- Università di Chieti-Pescara “G. d’Annunzio”
- 66100 Chieti
- Italy
| | - Sako Mirzaie
- Department of Biochemistry
- Islamic Azad University
- Sanandaj
- Iran
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli “Federico II”
- 80131 Naples
- Italy
| | - Adriano Mollica
- Dipartimento di Farmacia
- Università di Chieti-Pescara “G. d’Annunzio”
- 66100 Chieti
- Italy
| |
Collapse
|
27
|
Angeli A, Kuuslahti M, Parkkila S, Supuran CT. Activation studies with amines and amino acids of the α-carbonic anhydrase from the pathogenic protozoan Trypanosoma cruzi. Bioorg Med Chem 2018; 26:4187-4190. [DOI: 10.1016/j.bmc.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 01/09/2023]
|