1
|
Yang Y, Su S, Sun Z, Long Z, Fu X, Meng J, Zhou X, Liu L, Yang S. Discovery of new 1,2,3,4-tetrahydro-β-carboline derivatives decorated with 3-N-substituted propionyl moiety flexibly bridged-chain as reactive oxygen species inducer for efficient antibacterial treatment. Bioorg Chem 2025; 160:108473. [PMID: 40239403 DOI: 10.1016/j.bioorg.2025.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/23/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
The widespread prevalence of bacterial plant diseases imposes a severe constraint on global food production and crop security. To address the growing challenge of bacterial resistance, there is an urgent demand to develop novel agrochemicals that combine high efficacy with low toxicity. In this study, a natural product modification strategy was employed to design new bactericidal candidates with an innovative cation mechanism. Tryptamine was employed as a precursor to synthesize 1,2,3,4-tetrahydro-β-carboline (THC) intermediates via the Pictet-Spengler reaction. Subsequent acylation enabled the introduction of 3-N-substituted propionyl group as flexible bridge chain through an aza-Michael reaction. The resulting racemic THC derivatives were then evaluated for their antimicrobial activity. Notably, molecule B3 demonstrated exceptional inhibitory effects against Xanthomonas oryzae pv. oryzae (Xoo, EC50 = 1.32 μg/mL) and Xanthomonas axonopodis pv. citri (Xac, EC50 = 2.80 μg/mL), significantly outperforming commercial agents such as bismerthiazol (BT; EC50 = 40.3 μg/mL for Xoo and 89.6 μg/mL for Xac) and thiodiazole copper (TC; EC50 = 58.2 μg/mL for Xoo and 37.3 μg/mL for Xac). Moreover, molecule B3 exhibited considerably higher activity than its parent molecule B (EC50 = 7.27 μg/mL for Xoo and 4.89 μg/mL for Xac). In vivo assays at 200 μg/mL, B3 provided protective effects of 53.87 % against Xoo and 91.2 % against Xac, exceeding those of TC. Mechanistic investigations revealed that molecule B3 disrupted the intracellular redox balance, and result in the accumulation of reactive oxygen species (ROS) and subsequent induction of apoptosis. These findings not only identify B3 as a promising ROS inducer for bactericide development but also offer novel insights into the role of ROS in combating bacterial diseases.
Collapse
Affiliation(s)
- Yike Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Shanshan Su
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhouqing Long
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xichun Fu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Turk H, Temiz E, Koyuncu I. Metabolic reprogramming in sepsis-associated acute kidney injury: insights from lipopolysaccharide-induced oxidative stress and amino acid dysregulation. Mol Biol Rep 2024; 52:52. [PMID: 39680269 DOI: 10.1007/s11033-024-10175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) stands out as a critical health issue due to its high mortality and morbidity rates. This study aimed to comprehensively investigate the biochemical and metabolic alterations induced by lipopolysaccharide (LPS) in human embryonic kidney cells (HEK-293) using an in vitro model. METHODS AND RESULTS The study investigated the impact of LPS on HEK-293 cells by evaluating cytotoxicity using the MTT assay, analyzing apoptosis, cell cycle progression, and oxidative stress via flow cytometry, measuring TNF-α levels through ELISA, and assessing amino acid metabolism with LC-MS/MS. The findings demonstrated that LPS significantly reduced cell viability in a dose-dependent manner, increased apoptotic cell populations, induced DNA damage by arresting the cell cycle in the Sub-G1 phase, and activated oxidative stress pathways. Notably, elevated reactive oxygen species (ROS) production and increased secretion of the pro-inflammatory cytokine TNF-α highlighted LPS's inflammatory and cytotoxic effects. Furthermore, systematic analysis revealed LPS-induced disruptions in amino acid metabolism, including marked reductions in alanine, arginine, and aspartic acid levels. KEGG pathway analysis identified significant metabolic alterations in pathways such as the urea cycle, TCA cycle, and glutathione metabolism. Interestingly, elevated citrulline levels suggested a potential adaptive mechanism to counteract LPS-induced inflammation and oxidative stress. Additionally, ROC analysis identified cystine as a highly reliable biomarker, with an AUC value of 1.00, emphasizing its critical role in metabolic reprogramming associated with SA-AKI. CONCLUSIONS This study provides critical insights into the molecular pathophysiology of SA-AKI and emphasizes the promise of metabolomic approaches in the early diagnosis of sepsis-related complications and the development of targeted therapies.
Collapse
Affiliation(s)
- Hakan Turk
- Department of Urology, Usak Private Oztan Hospital, Usak, Turkey.
| | - Ebru Temiz
- Departments of Endocrinology, Diabetes and Nutrition Center, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Medical Promotion and Marketing Program, Vocational School of Health Services, Harran University, Sanliurfa, Turkey
| | - Ismail Koyuncu
- Departments of Medical Biochemistry, Faculty of Medicine; Science and Technology Application and Research Center, Harran University, Sanliurfa, Turkey
| |
Collapse
|
3
|
Albelwi FF, Nafie MS, Albujuq NR, Hourani W, Aljuhani A, Darwish KM, Tawfik MM, Rezki N, Aouad MR. Design and synthesis of chromene-1,2,3-triazole benzene sulfonamide hybrids as potent carbonic anhydrase-IX inhibitors against prostate cancer. RSC Med Chem 2024; 15:2440-2461. [PMID: 39026656 PMCID: PMC11253856 DOI: 10.1039/d4md00302k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Considering the promising effects of molecular hybridization on drug discovery in recent years and the ongoing endeavors to develop bioactive scaffolds tethering the 1,2,3-triazole core, the present study sought to investigate whether the 1,2,3-triazole-linked chromene and benzene sulfonamide nucleus could exhibit activity against the human breast cancer cell line MCF-7 and prostate cancer cell line PC-3. To this end, three focused bioactive series of mono- and -bis-1,2,3-triazoles were effectively synthesized via copper-assisted cycloaddition of mono- and/or di-alkyne chromenone derivatives 2a and b and 9 with several sulfa drug azides 4a-d and 6. The resulting molecular derivatives were tested for cytotoxicity against prostate and breast cancer cells. Among the derivatives, 10a, 10c, and 10e exhibited potent cytotoxicity against PC-3 cells with IC50 values of 2.08, 7.57, and 5.52 μM compared to doxorubicin (IC50 = 2.31 μM) with potent inhibition of CA IX with IC50 values of 0.113, 0.134, and 0.214 μM. The most active compound, 10a, was tested for apoptosis-induction; it induced apoptosis by 31.9-fold cell cycle arrest at the G1-phase. Further, the molecular modeling approach highlighted the relevant binding affinity for the top-active compound 10a against CA IX as one of the most prominent PC-3 prostate cancer-associated biotargets.
Collapse
Affiliation(s)
- Fawzia F Albelwi
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University P.O. 41522 Ismailia Egypt
| | - Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan Amman 11942 Jordan
| | - Wafa Hourani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University Amman 19392 Jordan
| | - Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed M Tawfik
- Zoology Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| |
Collapse
|
4
|
Koyuncu I, Temiz E, Güler EM, Durgun M, Yuksekdag O, Giovannuzzi S, Supuran CT. Effective Anticancer Potential of a New Sulfonamide as a Carbonic Anhydrase IX Inhibitor Against Aggressive Tumors. ChemMedChem 2024; 19:e202300680. [PMID: 38323458 DOI: 10.1002/cmdc.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
This study examines efficiency of a newly synthesized sulfonamide derivative 2-bromo-N-(4-sulfamoylphenyl)propanamide (MMH-1) on the inhibition of Carbonic Anhydrase IX (CA IX), which is overexpressed in many solid tumors including breast cancer. The inhibitory potential of MMH-1 compound against its four major isoforms, including cytosolic isoforms hCA I and II, as well as tumor-associated membrane-bound isoforms hCA IX and XII, was evaluated. To this context, the cytotoxic effect of MMH-1 on cancer and normal cells was tested and found to selectively affect MDA-MB-231 cells. MMH-1 reduced cell proliferation by holding cells in the G0/G1 phase (72 %) and slowed the cells' wound healing capacity. MMH-1 inhibited CA IX under both hypoxic and normoxic conditions and altered the morphology of triple negative breast cancer cells. In MDA-MB-231 cells, inhibition of CA IX was accompanied by a decrease in extracellular pH acidity (7.2), disruption of mitochondrial membrane integrity (80 %), an increase in reactive oxygen levels (25 %), and the triggering of apoptosis (40 %). In addition, the caspase cascade (CASP-3, -8, -9) was activated in MDA-MB-231 cells, triggering both the extrinsic and intrinsic apoptotic pathways. The expression of pro-apoptotic regulatory proteins (Bad, Bax, Bid, Bim, Cyt-c, Fas, FasL, TNF-a, TNF-R1, HTRA, SMAC, Casp-3, -8, P21, P27, and P53) was increased, while the expression of anti-apoptotic proteins, apoptosis inhibitor proteins (IAPs), and heat shock proteins (HSPs) (Bcl-2, Bcl-w, cIAP-2, HSP27, HSP60, HSP70, Survivin, Livin, and XIAP) was decreased. These results propose that the MMH-1 compound could triggers apoptosis in MDA-MB-231 cells via the pH/MMP/ROS pathway through the inhibition of CA IX. This compound is thought to have high potential and promising anticancer properties in the treatment of aggressive tumors.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey Tel
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Eray Metin Güler
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Sanliurfa, Turkey Tel
| | - Ozgür Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey Tel
| | - Simone Giovannuzzi
- Department of Neurofarba, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy Tel
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy Tel
| |
Collapse
|
5
|
Hefny SM, El-Moselhy TF, El-Din N, Giovannuzzi S, Bin Traiki T, Vaali-Mohammed MA, El-Dessouki AM, Yamaguchi K, Sugiura M, Shaldam MA, Supuran CT, Abdulla MH, Eldehna WM, Tawfik HO. Discovery and Mechanistic Studies of Dual-Target Hits for Carbonic Anhydrase IX and VEGFR-2 as Potential Agents for Solid Tumors: X-ray, In Vitro, In Vivo, and In Silico Investigations of Coumarin-Based Thiazoles. J Med Chem 2024. [PMID: 38642371 DOI: 10.1021/acs.jmedchem.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
A dual-targeting approach is predicted to yield better cancer therapy outcomes. Consequently, a series of coumarin-based thiazoles (5a-h, 6, and 7a-e) were designed and constructed as potential carbonic anhydrase (CA) and VEGFR-2 suppressors. The inhibitory actions of the target compounds were assessed against CA isoforms IX and VEGFR-2. The assay results showed that coumarin-based thiazoles 5a, 5d, and 5e can effectively inhibit both targets. 5a, 5d, and 5e cytotoxic effects were tested on pancreatic, breast, and prostate cancer cells (PANC1, MCF7, and PC3). Further mechanistic investigation disclosed the ability of 5e to interrupt the PANC1 cell progression in the S stage by triggering the apoptotic cascade, as seen by increased levels of caspases 3, 9, and BAX, alongside the Bcl-2 decline. Moreover, the in vivo efficacy of compound 5e as an antitumor agent was evaluated. Also, molecular docking and dynamics displayed distinctive interactions between 5e and CA IX and VEGFR-2 binding pockets.
Collapse
Affiliation(s)
- Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nabaweya El-Din
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Thamer Bin Traiki
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | | | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October City, Giza 12566, Egypt
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
6
|
Koyuncu I, Temiz E, Seker F, Balos MM, Akkafa F, Yuksekdag O, Yılmaz MA, Zengin G. A mixed-apoptotic effect of Jurinea mesopotamica extract on prostate cancer cells: a promising source for natural chemotherapeutics. Chem Biodivers 2024; 21:e202301747. [PMID: 38161146 DOI: 10.1002/cbdv.202301747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/03/2024]
Abstract
This research investigates the potential use of Jurinea mesopotamica Hand.-Mazz. (Asteraceae) in cancer treatment. In this study, a plant extract was prepared using all parts of J. mesopotamica, and its effect on the proliferation of cancer and normal cells was tested using the MTT method. It was found to have a selective cytotoxic effect on prostate cancer cells, with the lowest IC50 (half-maximal inhibitory concentration) of 10μg/mL found in the butanol extract (JMBE). The extract suppressed the proliferation of prostate cancer cells (67 %), disrupted organelle integrity (49 %), increased reactive oxidative stress (66 %), and triggered cell death (51 %). In addition, apoptotic gene expressions and protein levels increased, and the profile of amino acids related to energy metabolism was elevated. Based on LC-MS/MS results, the plant contained higher levels of flavonoids, including isoquercitrin, cosmosiin, astragalin, nicotiflorin, luteolin, and apigenin. These results suggest that J. mesopotamica has a selective effect on prostate cancer due to its high flavonoid content and might be a promising natural alternative for cancer treatment.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Fatma Seker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Harran University, Sanliurfa, Turkey
| | - M Maruf Balos
- Sanliurfa Provincial Directorate of National Education, Sanliurfa, Turkey
| | - Feridun Akkafa
- Department of Medical Biology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ozgür Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - M Abdullah Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
7
|
Challenging breast cancer through novel sulfonamide-pyridine hybrids: design, synthesis, carbonic anhydrase IX inhibition and induction of apoptosis. Future Med Chem 2023; 15:147-166. [PMID: 36762576 DOI: 10.4155/fmc-2022-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Background: Among the important key modulators of the tumor microenvironment and hypoxia is a family of enzymes named carbonic anhydrases. Herein, 11 novel sulfonamide-pyridine hybrids (2-12) were designed, synthesized and biologically evaluated for their potential use in targeting breast cancer. Methods & results: The para chloro derivative 7 reported the highest cytotoxic activity against the three breast cancer cell lines used. In addition, compound 7 was found to induce cell cycle arrest and autophagy as well as delaying wound healing. The IC50 of compound 7 against carbonic anhydrase IX was 253 ± 12 nM using dorzolamide HCl as control. Conclusion: This study encourages us to expand the designed library, where more sulfonamide derivatives would be synthesized and studied for their structure-activity relationships.
Collapse
|
8
|
Koyuncu I, Temiz E, Durgun M, Kocyigit A, Yuksekdag O, Supuran CT. Intracellular pH-mediated induction of apoptosis in HeLa cells by a sulfonamide carbonic anhydrase inhibitor. Int J Biol Macromol 2022; 201:37-46. [PMID: 34999037 DOI: 10.1016/j.ijbiomac.2021.12.190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 01/26/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a hypoxia-associated transmembrane protein that is critical in the survival of cells. Because CAIX has a key role in pH regulation, its therapeutic effects have been heavily studied by different research laboratories. This study aims to investigate how a synthetic CAIX inhibitor triggers apoptosis in a cancer cell line, HeLa. In this regard, we investigated the effects of the compound I, synthesized as a CAIX inhibitor, on the survival of cancer cells. The compound I inhibited the proliferation of the CAIX+ HeLa cells, kept the cells in G0/G1 phase (74.7%) and altered the cells morphologies (AO/EtBr staining) and the nuclear structure (γ-H2AX staining). CAIX inhibition triggered apoptosis in HeLa cells with a rate of 47.4%. According to the expression of mediator genes (CASP-3, -8, -9, BAX, BCL-2, BECLIN, LC3), the both death pathways were activated in HeLa cells with the inhibition of CAIX with the compound I. The compound I was also determined to affect the genes and proteins that have a critical role in the regulation of apoptotic pathways (pro casp-3, cleaved casp-3, -8, -9, cleaved PARP and CAIX). Furthermore, CAIX inhibition caused changes in pH balance, disruption in organelle integrity of mitochondria, and increase intracellular reactive oxygen level of HeLa cells. Taken together, our findings suggest that CAIX inhibition has a potential in cancer treatment, and the compound I, a CAIX inhibitor, could be a promising therapeutic strategy in the treatment of aggressive tumours.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey.
| | - Ebru Temiz
- Program of Medical Promo and Marketing, Health Services Vocational School, Harran University, Sanliurfa 63300, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Sanliurfa 63290, Turkey.
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Turkey.
| | - Ozgur Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Claudiu T Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence 50019, Italy.
| |
Collapse
|
9
|
Aref M, Ranjbari E, García-Guzmán JJ, Hu K, Lork A, Crespo GA, Ewing AG, Cuartero M. Potentiometric pH Nanosensor for Intracellular Measurements: Real-Time and Continuous Assessment of Local Gradients. Anal Chem 2021; 93:15744-15751. [PMID: 34783529 PMCID: PMC8637545 DOI: 10.1021/acs.analchem.1c03874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
We present a pH nanosensor
conceived for single intracellular measurements.
The sensing architecture consisted of a two-electrode system evaluated
in the potentiometric mode. We used solid-contact carbon nanopipette
electrodes tailored to produce both the indicator (pH nanosensor)
and reference electrodes. The indicator electrode was a membrane-based
ion-selective electrode containing a receptor for hydrogen ions that
provided a favorable selectivity for intracellular measurements. The
analytical features of the pH nanosensor revealed a Nernstian response
(slope of −59.5 mV/pH unit) with appropriate repeatability
and reproducibility (variation coefficients of <2% for the calibration
parameters), a fast response time (<5 s), adequate medium-term
drift (0.7 mV h–1), and a linear range of response
including physiological and abnormal cell pH levels (6.0–8.5).
In addition, the position and configuration of the reference electrode
were investigated in cell-based experiments to provide unbiased pH
measurements, in which both the indicator and reference electrodes
were located inside the same cell, each of them inside two neighboring
cells, or the indicator electrode inside the cell and the reference
electrode outside of (but nearby) the studied cell. Finally, the pH
nanosensor was applied to two cases: (i) the tracing of the pH gradient
from extra-to intracellular media over insertion into a single PC12
cell and (ii) the monitoring of variations in intracellular pH in
response to exogenous administration of pharmaceuticals. It is anticipated
that the developed pH nanosensor, which is a label-free analytical
tool, has high potential to aid in the investigation of pathological
states that manifest in cell pH misregulation, with no restriction
in the type of targeted cells.
Collapse
Affiliation(s)
- Mohaddeseh Aref
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Elias Ranjbari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Juan José García-Guzmán
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Alicia Lork
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Gaston A Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| |
Collapse
|
10
|
Yang L, Liu X, Yin B, Deng X, Lin X, Song J, Wu S. High-Throughput and Real-Time Monitoring of Single-Cell Extracellular pH Based on Polyaniline Microarrays. Anal Chem 2021; 93:13852-13860. [PMID: 34612621 DOI: 10.1021/acs.analchem.1c02560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Real-time monitoring of extracellular pH (pHe) at the single-cell level is critical for elucidating the mechanisms of disease development and investigating drug effects, with particular importance in cancer cells. However, there are still some challenges for analyzing and measuring pHe due to the strong heterogeneity of cancer cells. Thus, it is necessary to develop a reliable method with good selectivity, reproducibility, and stability for achieving the pHe heterogeneity of cancer cells. In this paper, we report a high-throughput, real-time measuring technique based on polyaniline (PANI) microelectrode arrays for monitoring single-cell pHe. The PANI microelectrode array not only has a high sensitivity (57.22 mV/pH) ranging from pH 6.0 to 7.6 but also exhibits a high reliability (after washing, the PANI film was still smooth, dense, and with a sensitivity of 55.9 mV/pH). Our results demonstrated that the pHe of the cancer cell region is lower than that of the surrounding blank region, and pHe changes of different cancer cells exhibit significant cellular heterogeneity during cellular respiration and drug stimulation processes.
Collapse
Affiliation(s)
- Lihui Yang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Xiaobo Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Bing Yin
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Xunxun Deng
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Xiaotong Lin
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Jie Song
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Shuo Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| |
Collapse
|
11
|
Dar'in D, Kantin G, Kalinin S, Sharonova T, Bunev A, Ostapenko GI, Nocentini A, Sharoyko V, Supuran CT, Krasavin M. Investigation of 3-sulfamoyl coumarins against cancer-related IX and XII isoforms of human carbonic anhydrase as well as cancer cells leads to the discovery of 2-oxo-2H-benzo[h]chromene-3-sulfonamide - A new caspase-activating proapoptotic agent. Eur J Med Chem 2021; 222:113589. [PMID: 34147910 DOI: 10.1016/j.ejmech.2021.113589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
Abstract
Herein we report the synthesis of a set of seventeen 3-sulfonamide substituted coumarin derivatives. Prepared compounds were tested in vitro for inhibition of four physiologically relevant isoforms of the metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1). Several coumarin sulfonamides displayed low nanomolar KI values against therapeutically relevant hCA II, IX, and XII, whereas they did not potently inhibit hCA I. Some of these compounds exerted a concentration-dependent antiproliferative action toward RT4 human bladder cancer and especially A431 human epidermoid carcinoma cell lines. In the meantime, the viability of non-tumorigenic hTERT immortalized human foreskin fibroblast cell line Bj-5ta was not significantly affected by the obtained derivatives. Interestingly, compound 10q (2-oxo-2H-benzo [h]chromene-3-sulfonamide) showed a profound and selective dose-dependent inhibition of A431 cell growth with low nanomolar IC50 values. We demonstrated that 10q possessed a concentration-dependent apoptosis induction activity associated with caspase 3/7 activation in cancer cells. As carbonic anhydrase isoforms in question were not potently inhibited by this compound, its antiproliferative effects likely involve other mechanisms, such as DNA intercalation. Compound 10q clearly represents a viable lead for further development of new-generation anticancer agents.
Collapse
Affiliation(s)
- Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Grigory Kantin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Tatiana Sharonova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russian Federation
| | - Gennady I Ostapenko
- Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russian Federation
| | - Alessio Nocentini
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, 50019, Italy
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, 50019, Italy.
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
12
|
Temiz E, Koyuncu I, Durgun M, Caglayan M, Gonel A, Güler EM, Kocyigit A, Supuran CT. Inhibition of Carbonic Anhydrase IX Promotes Apoptosis through Intracellular pH Level Alterations in Cervical Cancer Cells. Int J Mol Sci 2021; 22:6098. [PMID: 34198834 PMCID: PMC8201173 DOI: 10.3390/ijms22116098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Carbonic anhydrase IX (CAIX) is a hypoxia-related protein that plays a role in proliferation in solid tumours. However, how CAIX increases proliferation and metastasis in solid tumours is unclear. The objective of this study was to investigate how a synthetic CAIX inhibitor triggers apoptosis in the HeLa cell line. The intracellular effects of CAIX inhibition were determined with AO/EB, AnnexinV-PI, and γ-H2AX staining; measurements of intracellular pH (pHi), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP); and analyses of cell cycle, apoptotic, and autophagic modulator gene expression (Bax, Bcl-2, caspase-3, caspase-8, caspase-9, caspase-12, Beclin, and LC3), caspase protein level (pro-caspase 3 and cleaved caspase-3, -8, -9), cleaved PARP activation, and CAIX protein level. Sulphonamide CAIX inhibitor E showed the lowest IC50 and the highest selectivity index in CAIX-positive HeLa cells. CAIX inhibition changed the morphology of HeLa cells and increased the ratio of apoptotic cells, dramatically disturbing the homeostasis of intracellular pHi, MMP and ROS levels. All these phenomena consequent to CA IX inhibition triggered apoptosis and autophagy in HeLa cells. Taken together, these results further endorse the previous findings that CAIX inhibitors represent an important therapeutic strategy, which is worth pursuing in different cancer types, considering that presently only one sulphonamide inhibitor, SLC-0111, has arrived in Phase Ib/II clinical trials as an antitumour/antimetastatic drug.
Collapse
Affiliation(s)
- Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa 63300, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey; (I.K.); (A.G.)
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Sanliurfa 63290, Turkey
| | - Murat Caglayan
- Department of Medical Biochemistry, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey;
| | - Ataman Gonel
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey; (I.K.); (A.G.)
| | - Eray Metin Güler
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Sciences Turkey, Istanbul 34668, Turkey;
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Turkey;
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
13
|
Gornowicz A, Szymanowska A, Mojzych M, Czarnomysy R, Bielawski K, Bielawska A. The Anticancer Action of a Novel 1,2,4-Triazine Sulfonamide Derivative in Colon Cancer Cells. Molecules 2021; 26:molecules26072045. [PMID: 33918514 PMCID: PMC8038278 DOI: 10.3390/molecules26072045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer therapy is one of the most important challenges of modern medical and chemical sciences. Among the many methods of combating cancer, chemotherapy plays a special role. Imperfect modern chemotherapy justifies continuing the search for new, more effective, and safe drugs. Sulfonamides are the classic group of chemotherapeutic drugs with a broad spectrum of pharmacological activity. Recent literature reports show that sulfonamide derivatives have anti-tumor activity in vitro and in vivo. The aim of the study was to synthesize a novel 1,2,4-triazine sulfonamide derivative and check its anticancer potential in DLD-1 and HT-29 colon cancer cells. The biological studies included MTT assay, DNA biosynthesis, cell cycle analysis, Annexin V binding assay, ethidium bromide/acridine orange staining, and caspase-8, -9, and -3/7 activity. The concentrations of important molecules (sICAM-1, mTOR, Beclin-1, cathepsin B) involved in the pathogenesis and poor prognosis of colorectal cancer were also evaluated by ELISA. We demonstrated that the novel compound was able to induce apoptosis through intrinsic and extrinsic pathways and was capable of decreasing sICAM-1, mTOR, cathepsin B concentrations, whereas increased Beclin-1 concentration was detected in both colon cancer cell lines. The novel compound represents promising multi-targeted potential in colorectal cancer, but further in vivo examinations are needed to confirm the claim.
Collapse
Affiliation(s)
- Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.S.); (A.B.)
- Correspondence:
| | - Anna Szymanowska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.S.); (A.B.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland;
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.S.); (A.B.)
| |
Collapse
|
14
|
Krasavin M, Kalinin S, Sharonova T, Supuran CT. Inhibitory activity against carbonic anhydrase IX and XII as a candidate selection criterion in the development of new anticancer agents. J Enzyme Inhib Med Chem 2020; 35:1555-1561. [PMID: 32746643 PMCID: PMC7470080 DOI: 10.1080/14756366.2020.1801674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Analysis of the literature data reveals that while inhibition of cancer-related carbonic anhydrase IX and XII isoforms continues to be an important enrichment factor for designing anticancer agent development libraries, exclusive reliance on the in vitro inhibition of these two recombinant isozymes in nominating candidate compounds for evaluation of their effects on cancer cells may lead not only to identifying numerous compounds devoid of the desired cellular efficacy but also to overlooking many promising candidates which may not display the best potency in biochemical inhibition assay. However, SLC-0111, now in phase Ib/II clinical trials, was developed based on the excellent agreement between the in vitro, in vivo and more recently, in-patient data.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Tatiana Sharonova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
16
|
Swain B, Angeli A, Singh P, Supuran CT, Arifuddin M. New coumarin/sulfocoumarin linked phenylacrylamides as selective transmembrane carbonic anhydrase inhibitors: Synthesis and in-vitro biological evaluation. Bioorg Med Chem 2020; 28:115586. [PMID: 32631564 DOI: 10.1016/j.bmc.2020.115586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 11/28/2022]
Abstract
Two novel series of phenylacrylamide linked coumarins and sulfocoumarins (6a-p, 8a-i, and 14a-g) were synthesized and evaluated against four physiologically relevant human carbonic anhydrases (hCAs, EC 4.2.1.1), isoforms hCA I, hCA II, hCA IX and hCA XII for their inhibitory action. All new compounds when screened for carbonic anhydrase inhibitory activity have shown selective inhibition towards the tumor associated isoforms hCA IX and XII over CA I and II, with inhibition constants in the submicromolar to low nanomolar range. Compound 6b and 14g exhibited significant inhibition with low nanomolar potency against hCA IX, whereas 6k was effective against hCA XII. Compounds 6b, 14g and 6k may be considered as lead molecules for future development of cancer therapeutics based on a novel mechanism of action.
Collapse
Affiliation(s)
- Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto, Fiorentino, Florence, Italy
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto, Fiorentino, Florence, Italy.
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; Department of Chemistry, Anwarul Uloom College, 11-3-918, New Malleypally, Hyderabad 500001, T. S., India.
| |
Collapse
|
17
|
Koyuncu I, Gonel A, Durgun M, Kocyigit A, Yuksekdag O, Supuran CT. Assessment of the antiproliferative and apoptotic roles of sulfonamide carbonic anhydrase IX inhibitors in HeLa cancer cell line. J Enzyme Inhib Med Chem 2019; 34:75-86. [PMID: 30362386 PMCID: PMC6211230 DOI: 10.1080/14756366.2018.1524380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
Carbonic anhydrase IX (CA IX) has recently been validated as an antitumor/antimetastatic drug target. In this study, we examined the underlying molecular mechanisms and the anticancer activity of sulfonamide CA IX inhibitors against cervical cancer cell lines. The effects of several sulfonamides on HeLa, MDA-MB-231, HT-29 cancer cell lines, and normal cell lines (HEK-293, PNT-1A) viability were determined. The compounds showed high cytotoxic and apoptotic activities, mainly against HeLa cells overexpressing CA IX. We were also examined for intracellular reactive oxygen species (ROS) production; intra-/extracellular pH changes, for inhibition of cell proliferation, cellular mitochondrial membrane potential change and for the detection of caspase 3, 8, 9, and CA IX protein levels. Of the investigated sulfonamides, one compound was found to possess high cytotoxic and anti-proliferative effects in HeLa cells. The cytotoxic effect occurred via apoptosis, being accompanied by a return of pHe/pHi towards normal values as for other CA IX inhibitors investigated earlier.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ataman Gonel
- Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Sanliurfa, Turkey
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ozgur Yuksekdag
- Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Claudiu T. Supuran
- Neurofarba Dept., Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
18
|
Canakci D, Koyuncu I, Lolak N, Durgun M, Akocak S, Supuran CT. Synthesis and cytotoxic activities of novel copper and silver complexes of 1,3-diaryltriazene-substituted sulfonamides. J Enzyme Inhib Med Chem 2019; 34:110-116. [PMID: 30362387 PMCID: PMC6211257 DOI: 10.1080/14756366.2018.1530994] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022] Open
Abstract
In this study, a series of 10 novel copper (II) and silver complexes of 1,3-diaryltriazene-substituted sulfonamides was synthesised. All the synthesised ligands and their metal complexes were assessed for in vitro cytotoxicity against human colorectal adenocarcinoma (DLD-1), cervix carcinoma (HeLa), breast adenocarcinoma (MDA-MB-231), colon adenocarcinoma (HT-29), endometrial adenocarcinoma (ECC-1), prostate cancer (DU-145 and PC-3), normal embryonic kidney (HEK-293), normal prostate epithelium (PNT-1A), and normal retinal pigment epithelium (ARPE-19) cells. Most of the metal complexes from the series showed to be more active against all cancerous cells than the uncomplexed 1,3-diaryltriazene-substituted sulfonamides, and lower cytotoxic effects observed on normal cells. Most of the Cu (II) and Ag (I) metal complexes from the presented series showed high cytotoxic activity against HeLa cells with IC50 values ranging from 2.08 to >300 µM. Specifically, compound L3-Ag showed one of the highest cytotoxicity against all cancer cell lines with IC50 values between 3.30 to 16.18 µM among other tested compounds.
Collapse
Affiliation(s)
- Dilek Canakci
- Department of Chemistry, Vocational School of Technical Sciences, Adiyaman University, Adiyaman, Turkey
| | - Ismail Koyuncu
- Faculty of Medicine, Department of Biochemistry, Harran University, Sanliurfa, Turkey
| | - Nabih Lolak
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Adiyaman University, Adiyaman, Turkey
| | - Mustafa Durgun
- Faculty of Arts and Sciences, Deparment of Chemistry, Harran University, Sanliurfa, Turkey
| | - Suleyman Akocak
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Adiyaman University, Adiyaman, Turkey
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
19
|
Zhang J, Wang Q, Wang Q, Guo P, Wang Y, Xing Y, Zhang M, Liu F, Zeng Q. Chrysophanol exhibits anti-cancer activities in lung cancer cell through regulating ROS/HIF-1a/VEGF signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:469-480. [PMID: 31655854 DOI: 10.1007/s00210-019-01746-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
In the present study, we explored the anti-tumor and anti-angiogenesis effects of chrysophanol, and to investigate the underlying mechanism of the chrysophanol on anti-tumor and anti-angiogenesis in human lung cancer. The viability of cells was measured by CCK-8 assay, cell apoptosis was measured by Annexin-FITC/PI staining assay, and the cell migration and invasion were analyzed by wound-healing assay and transwell assay. ROS generation and mitochondrial membrane potential were analyzed by DCFH-DA probe and mitochondrial staining kit. Angiogenesis was analyzed by tube formation assay. The expression of CD31 was analyzed by immunofluorescence. The levels of proteins were measured by western blot assay. The anti-tumor effects of chrysophanol in vivo were detected by established xenograft mice model. In this study, we found that the cell proliferation, migration, invasion, tube formation, the mitochondrial membrane potential, and the expression of CD31 were inhibited by chrysophanol in a dose-dependent manner, but cell apoptotic ratios and ROS levels were increased by chrysophanol in a dose-dependent manner. Furthermore, the effects of chrysophanol on A549, H738, and HUVEC cell apoptotic rates were reversed by the ROS inhibitor NAC. Besides, the effects of chrysophanol on HUVEC cell tube formation were reversed by the HIF-1α inhibitor KC7F2 and the VEGF inhibitor axitinib in vitro. Moreover, tumor growth was reduced by chrysophanol, and the expression of CD31, CD34, and angiogenin was suppressed by chrysophanol in vivo. Our finding demonstrated that chrysophanol is a highly effective and low-toxic drug for inhibition of tumor growth especially in high vascularized lung cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Qian Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China.,Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Qiang Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Peng Guo
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Yong Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Yuqing Xing
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Mengmeng Zhang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Fujun Liu
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Qingyun Zeng
- Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| |
Collapse
|
20
|
Celik M, Şen A, Koyuncu İ, Gönel A. Plasma-Free Amino Acid Profiling of Nasal Polyposis Patients. Comb Chem High Throughput Screen 2019; 22:657-662. [PMID: 31538890 DOI: 10.2174/1386207322666190920110324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
AIM AND OBJECTIVE To determine the mechanisms present in the etiopathogenesis of nasal polyposis. It is not clear whether amino acids contribute in a causal way to the development of the disease. Therefore, the aim of this study was to determine the plasma-free amino acid profile in patients with nasal polyposis and to compare the results with a healthy control group. MATERIALS AND METHODS This was a prospective controlled study that took place in the Otolaryngology Department at the Harran University Faculty of Medicine between April 2017 and April 2018. Plasmafree amino acid profile levels were studied in serum samples taken from a patient group and a healthy control group. Patients who were diagnosed with bilateral diffuse nasal polyposis and were scheduled for surgical interventions were included in this study. Individuals whose age, gender, and body mass index values were compatible with that of the patient group and who did not have any health problems were included in the control group. All the participants whose levels of plasma-free amino acid were thought to be affected by one or more of the following factors were excluded from the study: smoking and alcohol use, allergic rhinitis presence, the presence of acute or chronic sinusitis, a history of endoscopic sinus surgery, unilateral nasal masses, a history of chronic drug use, systemic or topical steroid use in the last three months for any reason, and liver, kidney, hematological, cardiovascular, metabolic, neurological, or psychiatric disorders or malignancies. RESULTS In patients with nasal polyposis, 3-methyl histidine (3-MHIS: nasal polyposis group (ng) = 3.22 (1.92 - 6.07); control group (cg) = 1.21 (0.77 - 1.68); p = 0.001); arginine (arg: ng = 98.95 (70.81 - 117.75); cg = 75.10 (54.49 - 79.88); p = 0.005); asparagine (asn: ng = 79.84 (57.50 - 101.44); cg = 60.66 (46.39 - 74.62); p = 0.021); citrulline (cit: ng = 51.83 (43.81 - 59.78); cg = 38.33 (27.81 - 53.73); p = 0.038); cystine (cys: ng = 4.29 (2.43 - 6.66); cg = 2.41 (1.51 - 4.16); p = 0.019); glutamic acid (glu: ng = 234.86 (128.75 - 286.66); cg = 152.37 (122.51 - 188.34); p = 0.045); histidine (his: ng = 94.19 (79.34 - 113.99); cg = 74.80 (62.76 - 98.91); p = 0.018); lysine (lys: ng = 297.22 (206.55 - 371.25); cg = 179.50 (151.58 - 238.02); p = 0.001); ornithine (ng = 160.62 (128.36 - 189.32); cg = 115.91 (97.03 - 159.91); p = 0.019); serine (ser: ng = 195.15 (151.58 - 253.07); cg = 83.07 (67.44 - 92.44); p = 0.001); taurine (tau: ng = 74.69 (47.00 - 112.13); cg = 53.14 (33.57 - 67.31); p = 0.006); tryptophan (trp: ng = 52.31 (33.81 - 80.11); cg = 34.44 (25.94 - 43.07); p = 0.005), homocitrulline (ng = 1.75 (1.27 - 2.59); cg = 0.00 (0.00 - 0.53); p = 0.001); norvaline (ng = 6.90 (5.61 - 9.18); cg = 4.93 (3.74 - 7.13); p = 0.021); argininosuccinic acid (ng = 14.33 (10.06 - 25.65); cg = 12.22 (5.77 - 16.87) p = 0.046); and plasma concentrations were significantly higher than in the healthy control group (p <0.05). However, the gamma-aminobutyric acid (gaba: ng = 0.16 (0.10 - 0.24); cg = 0.21 (0.19 - 0.29); p = 0.010) plasma concentration was significantly lower in the nasal polyposis group than in the healthy control group. CONCLUSION In this study, plasma levels of 15 free amino acids were significantly higher in the nasal polyposis group than in the healthy control group. A plasma level of 1 free amino acid was found to be significantly lower in the nasal polyposis group compared to the healthy control group. Therefore, it is important to determine the possibility of using the information obtained to prevent the recurrence of the condition and to develop effective treatment strategies. This study may be a milestone for studies of this subject. However, this study needs to be confirmed by further studies conducted in a larger series.
Collapse
Affiliation(s)
- Mustafa Celik
- Department of Otorhinolaryngology, Harran University Medical Faculty, Sanliurfa, Turkey
| | - Alper Şen
- Department of Otorhinolaryngology, Harran University Medical Faculty, Sanliurfa, Turkey
| | - İsmail Koyuncu
- Department of Biochemistry, Harran University Medical Faculty, Sanliurfa, Turkey
| | - Ataman Gönel
- Department of Biochemistry, Harran University Medical Faculty, Sanliurfa, Turkey
| |
Collapse
|
21
|
Rotondi G, Guglielmi P, Carradori S, Secci D, De Monte C, De Filippis B, Maccallini C, Amoroso R, Cirilli R, Akdemir A, Angeli A, Supuran CT. Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold. J Enzyme Inhib Med Chem 2019; 34:1400-1413. [PMID: 31401897 PMCID: PMC6713143 DOI: 10.1080/14756366.2019.1651315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A large library of derivatives based on the scaffold of 2-(benzylsulfinyl)benzoic acid were synthesised and tested as atypical inhibitors against four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). The exploration of the chemical space around the main functional groups led to the discovery of selective hCA IX inhibitors in the micromolar/nanomolar range, thus establishing robust structure-activity relationships within this versatile scaffold. HPLC separation of some selected chiral compounds and biological evaluation of the corresponding enantiomers was performed along with molecular modelling studies on the most active derivatives.
Collapse
Affiliation(s)
- Giulia Rotondi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Paolo Guglielmi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Simone Carradori
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Daniela Secci
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Celeste De Monte
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Barbara De Filippis
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Cristina Maccallini
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Rosa Amoroso
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Roberto Cirilli
- c Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità , Rome , Italy
| | - Atilla Akdemir
- d Computer-aided Drug Discovery Laboratory, Faculty of Pharmacy, Department of Pharmacology, Bezmialem Vakif University , Fatih, Istanbul , Turkey
| | - Andrea Angeli
- e Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Claudiu T Supuran
- e Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
22
|
Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg Med Chem Lett 2019; 29:2042-2050. [DOI: 10.1016/j.bmcl.2019.06.041] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
|
23
|
Koyuncu I, Tülüce Y, Slahaddin Qadir H, Durgun M, Supuran CT. Evaluation of the anticancer potential of a sulphonamide carbonic anhydrase IX inhibitor on cervical cancer cells. J Enzyme Inhib Med Chem 2019; 34:703-711. [PMID: 30810431 PMCID: PMC6394301 DOI: 10.1080/14756366.2019.1579805] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Cervical cancer is a common type of cancer. Carbonic anhydrase IX (CA IX) is an attractive target for tumour therapy, being overexpressed in many cancers. We investigated the anticancer properties of the aromatic sulphonamide S-1 as a CA IX inhibitor on cervical cancer cells (HeLa) positive for CA IX expression and normal prostate epithelial cell line (PNT1-A) negative for CA IX. We examined the cytotoxic, apoptosis, genotoxic, and oxidative stress activity of S-1 on HeLa and PNT1-A cell lines. S-1 induced significant reduction of cell viability, caused apoptosis, and up-regulated ROS production. This decrease in cell survival rate can be attributed to the high level of ROS and apoptosis, which has also been shown to arrest the cell cycle. Our findings indicated that S-1 is more effective on HeLa than PNT1-A. S-1 was able to induce apoptosis of cervical cancer cells and is a possible candidate for future anticancer studies.
Collapse
Affiliation(s)
- Ismail Koyuncu
- a Department of Biochemistry, Faculty of Medicine , Harran University , Sanliurfa , Turkey
| | - Yasin Tülüce
- b Department of Medical Biology, Faculty of Medicine , Van Yuzuncu Yil University , Van , Turkey
| | - Hewa Slahaddin Qadir
- b Department of Medical Biology, Faculty of Medicine , Van Yuzuncu Yil University , Van , Turkey
| | - Mustafa Durgun
- c Department of Chemistry, Faculty of Arts and Sciences , Harran University , Sanliurfa , Turkey
| | - Claudiu T Supuran
- d Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences , Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
24
|
Choudhury H, Pandey M, Yin TH, Kaur T, Jia GW, Tan SQL, Weijie H, Yang EKS, Keat CG, Bhattamishra SK, Kesharwani P, Md S, Molugulu N, Pichika MR, Gorain B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:596-613. [PMID: 31029353 DOI: 10.1016/j.msec.2019.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Tan Hui Yin
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Taasjir Kaur
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Gan Wei Jia
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - S Q Lawrence Tan
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - How Weijie
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Eric Koh Sze Yang
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chin Guan Keat
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagasekhara Molugulu
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia; Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
25
|
Berrino E, Supuran CT. Novel approaches for designing drugs that interfere with pH regulation. Expert Opin Drug Discov 2019; 14:231-248. [PMID: 30681011 DOI: 10.1080/17460441.2019.1567488] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In all living species, pH regulation is a tightly controlled process, with a plethora of proteins involved in its regulation. These include sodium-proton exchangers, carbonic anhydrases, anion exchangers, bicarbonate transporters/cotransporters, H+-ATPases, and monocarboxylate transporters. All of them play crucial roles in acid-base balancing, both in eukaryotic as well as in prokaryotic organisms, making them interesting drug targets for the management of pathological events (in)directly involved in pH regulation. Areas covered: Interfering with pH regulation for the treatment of tumors and microbial infections is the main focus of this review, with particular attention paid to inhibitors targeting the above-mentioned proteins. The latest advances in each field id reviewed. Expert opinion: Interfering with the pH regulation of tumor cells is a validated approach to tackle primary tumors and metastases growth. Carbonic anhydrases are the most investigated proteins of those aforementioned, with several inhibitors in clinical development. Recent advances in the characterization of proteins involved in pH homeostasis of various pathogens evidenced their crucial role in the survival and virulence of bacterial, fungal, and protozoan microorganisms. Some encouraging results shed light on the possibility to target such proteins for obtaining new anti-infectives, overcoming the extensive drug resistance problems of clinically used drugs.
Collapse
Affiliation(s)
- Emanuela Berrino
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| | - Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|