1
|
Aroua LM, Alminderej FM, Almuhaylan HR, Alosaimi AH, Medini F, Mohammed HA, Almahmoud SA, Khan RA, Mekni NH. Benzimidazole(s): synthons, bioactive lead structures, total synthesis, and the profiling of major bioactive categories. RSC Adv 2025; 15:7571-7608. [PMID: 40161353 PMCID: PMC11951861 DOI: 10.1039/d4ra08864f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/15/2025] [Indexed: 04/02/2025] Open
Abstract
Benzimidazole, a fused bicyclic compound with benzene and pentacyclic 1,3-diazole moeities, has a simple aromatic heterocyclic structure. The moiety has become an indispensable anchor for the development of new pharmacologically active products, and has yielded several therapeutic agents with anticancer, antihypertensive, antimicrobial, antifungal and antiulcer effects. Benzimidazoles, as synthetically feasible and pharmacophoric synthons, have been relentlessly pursued for the preparation of new analogues and derivatives, and they have successfully developed into some of the most sought-after and vital pharmacophores for drug discovery. The use of varied substituents and differing patterns around the benzimidazole nucleus has provided a wide spectrum of biological activities. In addition, the benzimidazole moiety constitutes a building block for the production of several drugs, drug candidates, new chemical entities, and lead molecules. The importance of this nucleus for bioactivity, e.g., antibacterial, antitubercular, antidiabetic, anticancer, antifungal, anti-inflammatory, analgesic, antioxidant, antihistaminic, and antimalarial activity, has led us to take note and provide an overview of the synthetic development approaches for various benzimidazole derivatives together with their biological actions. This review is projected to further assist in the design and development of new benzimidazole-based compounds for new and optimized pharmacologically active products towards new drug-development strategies.
Collapse
Affiliation(s)
- Lotfi M Aroua
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Hind R Almuhaylan
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Abdulelah H Alosaimi
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Faten Medini
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cedria, Carthage University 2050 Tunis Tunisia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Nejib H Mekni
- Laboratory of Bio-Organic, Structural and Polymer Chemistry (LR99ES14), Department of Chemistry, Faculty of Sciences, University of Tunis El-Manar El-Manar 2092 Tunis Tunisia
- Department of Fundamental Science, High Institute of Medical Technologies of Tunis, El Manar University Tunis 1006 Tunisia
| |
Collapse
|
2
|
Zainal Abidin A, Norrrahim MNF, Mohamed Shakrin NNS, Ibrahim B, Abdullah N, Abdul Rashid JI, Mohd Kasim NA, Ahmad Shah NA. Amidine containing compounds: Antimicrobial activity and its potential in combating antimicrobial resistance. Heliyon 2024; 10:e32010. [PMID: 39170404 PMCID: PMC11336351 DOI: 10.1016/j.heliyon.2024.e32010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 08/23/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing and concerning threat to global public health, necessitating innovative strategies to combat this crisis. Amidine-containing compounds have emerged as promising agents in the battle against AMR. This review gives a summary of recent advances from the past decade in studies of antimicrobial amidine-containing compounds with the aim to feature their structural diversity and the pharmacological relevance of the moiety to antimicrobial activity and their potential use in combating antimicrobial resistance, to the greatest extent possible. Highlighting is put on chemical structure of such compounds in relation to antimicrobial activities such as antibacterial, antifungal, and antiparasitic activities. Researchers commonly modify molecules containing amidine or incorporate amidine into existing antimicrobial agents to enhance their pharmacological attributes and combat antimicrobial resistance. This comprehensive review consolidates the current knowledge on amidine-containing compounds, elucidating their antimicrobial mechanisms and highlighting their promise in addressing the global AMR crisis. By offering a multidisciplinary perspective, we aim to inspire further research and innovation in this critical area of antimicrobial research.
Collapse
Affiliation(s)
- Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | | | - Baharudin Ibrahim
- Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norli Abdullah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Azilah Mohd Kasim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Aisyah Ahmad Shah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Natarajan R, Kumar P, Subramani A, Siraperuman A, Angamuthu P, Bhandare RR, Shaik AB. A Critical Review on Therapeutic Potential of Benzimidazole Derivatives: A Privileged Scaffold. Med Chem 2024; 20:311-351. [PMID: 37946342 DOI: 10.2174/0115734064253813231025093707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Benzimidazole nucleus is a predominant heterocycle displaying a wide spectrum of pharmacological activities. The privileged nature of the benzimidazole scaffold has been revealed by its presence in most small molecule drugs and in its ability to bind multiple receptors with high affinity. A literature review of the scaffold reveals several instances where structural modifications of the benzimidazole core have resulted in high-affinity lead compounds against a variety of biological targets. Hence, this structural moiety offers opportunities to discover novel, better, safe and highly potent biological agents. The goal of the present review is to compile the medicinal properties of benzimidazole derivatives with a focus on SAR (Structure-Activity Relationships).
Collapse
Affiliation(s)
- Ramalakshmi Natarajan
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Padma Kumar
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Arunkumar Subramani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sathyabama Institute of Science and Technology, Chennai, lndia
| | - Amuthalakshmi Siraperuman
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Prabakaran Angamuthu
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, UAE
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur 522212, Andhra Pradesh, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| |
Collapse
|
4
|
Racané L, Ptiček L, Kostrun S, Raić-Malić S, Taylor MC, Delves M, Alsford S, Olmo F, Francisco AF, Kelly JM. Bis-6-amidino-benzothiazole Derivative that Cures Experimental Stage 1 African Trypanosomiasis with a Single Dose. J Med Chem 2023; 66:13043-13057. [PMID: 37722077 PMCID: PMC10544003 DOI: 10.1021/acs.jmedchem.3c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 09/20/2023]
Abstract
We designed and synthesized a series of symmetric bis-6-amidino-benzothiazole derivatives with aliphatic central units and evaluated their efficacy against bloodstream forms of the African trypanosome Trypanosoma brucei. Of these, a dicationic benzothiazole compound (9a) exhibited sub-nanomolar in vitro potency with remarkable selectivity over mammalian cells (>26,000-fold). Unsubstituted 5-amidine groups and a cyclohexyl spacer were the crucial determinants of trypanocidal activity. In all cases, mice treated with a single dose of 20 mg kg-1 were cured of stage 1 trypanosomiasis. The compound displayed a favorable in vitro ADME profile, with the exception of low membrane permeability. However, we found evidence that uptake by T. brucei is mediated by endocytosis, a process that results in lysosomal sequestration. The compound was also active in low nanomolar concentrations against cultured asexual forms of the malaria parasite Plasmodium falciparum. Therefore, 9a has exquisite cross-species efficacy and represents a lead compound with considerable therapeutic potential.
Collapse
Affiliation(s)
- Livio Racané
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Lucija Ptiček
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Sanja Kostrun
- Chemistry
Department, Selvita Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Silvana Raić-Malić
- Department
of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Martin Craig Taylor
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Michael Delves
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Sam Alsford
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Francisco Olmo
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Amanda Fortes Francisco
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - John M. Kelly
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| |
Collapse
|
5
|
Marinescu M. Benzimidazole-Triazole Hybrids as Antimicrobial and Antiviral Agents: A Systematic Review. Antibiotics (Basel) 2023; 12:1220. [PMID: 37508316 PMCID: PMC10376251 DOI: 10.3390/antibiotics12071220] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial infections have attracted the attention of researchers in recent decades, especially due to the special problems they have faced, such as their increasing diversity and resistance to antibiotic treatment. The emergence and development of the SARS-CoV-2 infection stimulated even more research to find new structures with antimicrobial and antiviral properties. Among the heterocyclic compounds with remarkable therapeutic properties, benzimidazoles, and triazoles stand out, possessing antimicrobial, antiviral, antitumor, anti-Alzheimer, anti-inflammatory, analgesic, antidiabetic, or anti-ulcer activities. In addition, the literature of the last decade reports benzimidazole-triazole hybrids with improved biological properties compared to the properties of simple mono-heterocyclic compounds. This review aims to provide an update on the synthesis methods of these hybrids, along with their antimicrobial and antiviral activities, as well as the structure-activity relationship reported in the literature. It was found that the presence of certain groups grafted onto the benzimidazole and/or triazole nuclei (-F, -Cl, -Br, -CF3, -NO2, -CN, -CHO, -OH, OCH3, COOCH3), as well as the presence of some heterocycles (pyridine, pyrimidine, thiazole, indole, isoxazole, thiadiazole, coumarin) increases the antimicrobial activity of benzimidazole-triazole hybrids. Also, the presence of the oxygen or sulfur atom in the bridge connecting the benzimidazole and triazole rings generally increases the antimicrobial activity of the hybrids. The literature mentions only benzimidazole-1,2,3-triazole hybrids with antiviral properties. Both for antimicrobial and antiviral hybrids, the presence of an additional triazole ring increases their biological activity, which is in agreement with the three-dimensional binding mode of compounds. This review summarizes the advances of benzimidazole triazole derivatives as potential antimicrobial and antiviral agents covering articles published from 2000 to 2023.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018 Bucharest, Romania
| |
Collapse
|
6
|
Discovery of oxazoline-triazole based hybrid molecules as DNA gyrase inhibitors: A new class of potential Anti-tubercular agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Krstulović L, Leventić M, Rastija V, Starčević K, Jirouš M, Janić I, Karnaš M, Lasić K, Bajić M, Glavaš-Obrovac L. Novel 7-Chloro-4-aminoquinoline-benzimidazole Hybrids as Inhibitors of Cancer Cells Growth: Synthesis, Antiproliferative Activity, in Silico ADME Predictions, and Docking. Molecules 2023; 28:540. [PMID: 36677600 PMCID: PMC9866588 DOI: 10.3390/molecules28020540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
In this study, new 7-chloro-4-aminoquinoline-benzimidazole compounds were synthesized and characterized by NMR, MS, and elemental analysis. These novel hybrids differ in the type of linker and in the substituent on the benzimidazole moiety. Their antiproliferative activities were evaluated on one non-tumor (MDCK1) and seven selected tumor (CaCo-2, MCF-7, CCRF-CEM, Hut78, THP-1, and Raji) cell lines by MTT test and flow cytometry analysis. The compounds with different types of linkers and an unsubstituted benzimidazole ring, 5d, 8d, and 12d, showed strong cytotoxic activity (the GI50 ranged from 0.4 to 8 µM) and effectively suppressed the cell cycle progression in the leukemia and lymphoma cells. After 24 h of treatment, compounds 5d and 12d induced the disruption of the mitochondrial membrane potential as well as apoptosis in HuT78 cells. The drug-like properties and bioavailability of the compounds were calculated using the Swiss ADME web tool, and a molecular docking study was performed on tyrosine-protein kinase c-Src (PDB: 3G6H). Compound 12d showed good solubility and permeability and bound to c-Src with an energy of -119.99 kcal/mol, forming hydrogen bonds with Glu310 and Asp404 in the active site and other residues with van der Waals interactions. The results suggest that compound 12d could be a leading compound in the further design of effective antitumor drugs.
Collapse
Affiliation(s)
- Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Marijana Leventić
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Maja Jirouš
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivana Janić
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Maja Karnaš
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Kornelija Lasić
- R&D, Pliva Croatia Ltd., TEVA Group Member, HR-10000 Zagreb, Croatia
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| |
Collapse
|
8
|
Rep V, Štulić R, Koštrun S, Kuridža B, Crnolatac I, Radić Stojković M, Paljetak HČ, Perić M, Matijašić M, Raić-Malić S. Novel tetrahydropyrimidinyl-substituted benzimidazoles and benzothiazoles: synthesis, antibacterial activity, DNA interactions and ADME profiling. RSC Med Chem 2022; 13:1504-1525. [PMID: 36561067 PMCID: PMC9749923 DOI: 10.1039/d2md00143h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/12/2022] [Indexed: 12/25/2022] Open
Abstract
A series of tetrahydropyrimidinyl-substituted benzimidazoles attached to various aliphatic or aromatic residues via phenoxymethylene were synthesised to investigate their antibacterial activities against selected Gram-positive and Gram-negative bacteria. The influence of the type of substituent at the C-3 and C-4 positions of the phenoxymethylene linker on the antibacterial activity was observed, showing that the aromatic moiety improved the antibacterial potency. Of all the evaluated compounds, benzoyl-substituted benzimidazole derivative 15a was the most active compound, particularly against the Gram-negative pathogens E. coli (MIC = 1 μg mL-1) and M. catarrhalis (MIC = 2 μg mL-1). Compound 15a also exhibited the most promising antibacterial activity against sensitive and resistant strains of S. pyogenes (MIC = 2 μg mL-1). Significant stabilization effects and positive induced CD bands strongly support the binding of the most biologically active benzimidazoles inside the minor grooves of AT-rich DNA, in line with docking studies. The predicted physico-chemical and ADME properties lie within drug-like space except for low membrane permeability, which needs further optimization. Our findings encourage further development of novel structurally related 5(6)-tetrahydropyrimidinyl substituted benzimidazoles in order to optimize their antibacterial effect against common respiratory pathogens.
Collapse
Affiliation(s)
- Valentina Rep
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| | - Rebeka Štulić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| | - Sanja Koštrun
- Selvita d.o.oPrilaz baruna Filipovića 2910000 ZagrebCroatia
| | - Bojan Kuridža
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Ivo Crnolatac
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Marijana Radić Stojković
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Hana Čipčić Paljetak
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Mihaela Perić
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Mario Matijašić
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| |
Collapse
|
9
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem 2022; 244:114888. [DOI: 10.1016/j.ejmech.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022]
|
10
|
Devasia J, Nizam A, V. L. V. Azole-Based Antibacterial Agents: A Review on Multistep Synthesis Strategies and Biology. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1938615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jyothis Devasia
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Vasantha V. L.
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| |
Collapse
|
11
|
Beč A, Mioč M, Bertoša B, Kos M, Debogović P, Kralj M, Starčević K, Hranjec M. Design, synthesis, biological evaluation and QSAR analysis of novel N-substituted benzimidazole derived carboxamides. J Enzyme Inhib Med Chem 2022; 37:1327-1339. [PMID: 35514167 PMCID: PMC9090388 DOI: 10.1080/14756366.2022.2070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
As a result of our previous research focussed on benzimidazoles, herein we present design, synthesis, QSAR analysis and biological activity of novel N-substituted benzimidazole derived carboxamides. Carboxamides were designed to study the influence of the number of methoxy groups, the type of the substituent placed at the benzimidazole core on biological activity. Pronounced antioxidative activity displayed unsubstituted 28 (IC50 ≈ 3.78 mM, 538.81 mmolFe2+/mmolC) and dimethoxy substituted derivative 34 (IC50 ≈ 5.68 mM, 618.10 mmolFe2+/mmolC). Trimethoxy substituted 43 and unsubstituted compound 40 with isobutyl side chain at N atom showed strong activity against HCT116 (IC50 ≈ 0.6 µM, both) and H 460 cells (IC50 ≈ 2.5 µM; 0.4 µM), being less cytotoxic towards non-tumour cell. Antioxidative activity in cell generally confirmed relatively modest antioxidant capacity obtained in DPPH/FRAP assays of derivatives 34 and 40. The 3D-QSAR models were generated to explore molecular properties that have the highest influence on antioxidative activity.
Collapse
Affiliation(s)
- Anja Beč
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Marija Mioč
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marija Kos
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Patricia Debogović
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
12
|
Hashem HE, El Bakri Y. An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Bagdatli E, Cil E. Sulfa drugs–based Norbornenyl imides and reductive
Heck
reactions: Synthesis and antimicrobial screening. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Emine Bagdatli
- Faculty of Art and Sciences, Department of Chemistry Ordu University Ordu Turkey
| | - Elif Cil
- Faculty of Educational Sciences, Department of Mathematics and Science Education Ordu University Ordu Turkey
| |
Collapse
|
14
|
Rajasekhar S, Karuppasamy R, Chanda K. Exploration of potential inhibitors for tuberculosis via structure-based drug design, molecular docking, and molecular dynamics simulation studies. J Comput Chem 2021; 42:1736-1749. [PMID: 34216033 DOI: 10.1002/jcc.26712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Drug resistance in tuberculosis is major threat to human population. In the present investigation, we aimed to identify novel and potent benzimidazole molecules to overcome the resistance management. A series of 20 benzimidazole derivatives were examined for its activity as selective antitubercular agents. Initially, AutodockVina algorithm was performed to assess the efficacy of the molecules. The results are further enriched by redocking by means of Glide algorithm. The binding free energies of the compounds were then calculated by MM-generalized-born surface area method. Molecular docking studies elucidated that benzimidazole derivatives has revealed formation of hydrogen bond and strong binding affinity in the active site of Mycobacterium tuberculosis protein. Note that ARG308, GLY189, VAL312, LEU403, and LEU190 amino acid residues of Mycobacterium tuberculosis protein PrpR are involved in binding with ligands of benzimidazoles. Interestingly, the ligands exhibited same binding potential to the active site of protein complex PrpR in both the docking programs. In essence, the result portrays that benzimidazole derivatives such as 1p, 1q, and 1 t could be potent and selective antitubercular agents than the standard drug isoniazid. These compounds were then subjected to molecular dynamics simulation to validate the dynamics activity of the compounds against PrpR. Finally, the inhibitory behavior of compounds was predicted using a machine learning algorithm trained on a data collection of 15,000 compounds utilizing graph-based signatures. Overall, the study concludes that designed benzimidazoles can be employed as antitubercular agents. Indeed, the results are helpful for the experimental biologists to develop safe and non-toxic drugs against tuberculosis.
Collapse
Affiliation(s)
- Sreerama Rajasekhar
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
15
|
Racané L, Rep V, Kraljević Pavelić S, Grbčić P, Zonjić I, Radić Stojković M, Taylor MC, Kelly JM, Raić-Malić S. Synthesis, antiproliferative and antitrypanosomal activities, and DNA binding of novel 6-amidino-2-arylbenzothiazoles. J Enzyme Inhib Med Chem 2021; 36:1952-1967. [PMID: 34455887 PMCID: PMC8409973 DOI: 10.1080/14756366.2021.1959572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A series of 6-amidinobenzothiazoles, linked via phenoxymethylene or directly to the 1,2,3-triazole ring with a p-substituted phenyl or benzyl moiety, were synthesised and evaluated in vitro against four human tumour cell lines and the protozoan parasite Trypanosoma brucei. The influence of the type of amidino substituent and phenoxymethylene linker on antiproliferative and antitrypanosomal activities was observed, showing that the imidazoline moiety had a major impact on both activities. Benzothiazole imidazoline 14a, which was directly connected to N-1-phenyl-1,2,3-triazole, had the most potent growth-inhibitory effect (IC50 = 0.25 µM) on colorectal adenocarcinoma (SW620), while benzothiazole imidazoline 11b, containing a phenoxymethylene linker, exhibited the best antitrypanosomal potency (IC90 = 0.12 µM). DNA binding assays showed a non-covalent interaction of 6-amidinobenzothiazole ligands, indicating both minor groove binding and intercalation modes of DNA interaction. Our findings encourage further development of novel structurally related 6-amidino-2-arylbenzothiazoles to obtain more selective anticancer and anti-HAT agents.
Collapse
Affiliation(s)
- Livio Racané
- Faculty of Textile Technology, Department of Applied Chemistry, University of Zagreb, Zagreb, Croatia
| | - Valentina Rep
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| | | | - Petra Grbčić
- Faculty of Health Studies, University of Rijeka, Rijeka, Croatia
| | - Iva Zonjić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Silvana Raić-Malić
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
16
|
Zha GF, Preetham HD, Rangappa S, Sharath Kumar KS, Girish YR, Rakesh KP, Ashrafizadeh M, Zarrabi A, Rangappa KS. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem 2021; 115:105175. [PMID: 34298242 DOI: 10.1016/j.bioorg.2021.105175] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 12/19/2022]
Abstract
Small molecule based inhibitors development is a growing field in medicinal chemistry. In recent years, different heterocyclic derivatives have been designed to counter the infections caused by multi-drug resistant bacteria. Indeed, small molecule inhibitors can be employed as an efficient antibacterial agents with different mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming lethal to mankind due to easy transmission mode, rapid resistance development to existing antibiotics and affect difficult-to-treat skin and filmsy diseases. Benzimidazoles are a class of heterocyclic compounds which have capability to fight against MRSA. High biocompatibility of benzimidazoles, synergistic behaviour with antibiotics and their tunable physico-chemical properties attracted the researchers to develop new benzimidazole based antibacterial agents. The present review focus on recent developments of benzimidazole-hybrid molecules as anti MRSA agents and the results of in-vitro and in-vivo studies with possible mechanism of action and discussing structure-activity relationship (SAR) in different directions. Benzimdazoles act as DNA binding agents, enzyme inhibitors, anti-biofilm agents and showed synergistic effect with available antibiotics to achieve antibacterial activity against MRSA. This cumulative figures would help to design new benzimidazole-based MRSA growth inhibitors.
Collapse
Affiliation(s)
- Gao-Feng Zha
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhan 518107, China.
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | | | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B. G. Nagara, Mandya, 571448, India
| | - Kadalipura P Rakesh
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | | |
Collapse
|
17
|
1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 2020; 206:112686. [PMID: 32795773 DOI: 10.1016/j.ejmech.2020.112686] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), as a classic reason for genuine skin and flimsy tissues diseases, is a worldwide general wellbeing risk and has already tormented humanity for a long history, creating a critical need for the development of new classes of antibacterials. 1,2,3-Triazole moiety, readily interact with diverse enzymes and receptors in organisms through weak bond interaction, is among the most common frameworks present in the bioactive molecules. 1,2,3-Triazole derivatives, especially 1,2,3-triazole-containing hybrids, possess broad-spectrum activity against a panel of clinically important bacteria including drug-resistant pathogens, so rational design of 1,2,3-triazole derivatives may open a door for the opportunities on the development of novel anti-MRSA agents. This review is an endeavour to highlight the current scenario of 1,2,3-triazole-containing hybrids with potential anti-MRSA activity, covering articles published between 2010 and 2020.
Collapse
|
18
|
Caymaz B, Yıldız U, Akkoç S, Gerçek Z, Şengül A, Coban B. Synthesis, Characterization, and Antiproliferative Activity Studies of Novel Benzimidazole‐Imidazopyridine Hybrids as DNA Groove Binders. ChemistrySelect 2020. [DOI: 10.1002/slct.202001580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bahar Caymaz
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Ufuk Yıldız
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Senem Akkoç
- Department of Basic Pharmaceutical SciencesFaculty of PharmacySüleyman Demirel University Isparta 32260 Turkey
| | - Zuhal Gerçek
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Abdurrahman Şengül
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Burak Coban
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| |
Collapse
|
19
|
Sur VP, Mazumdar A, Kopel P, Mukherjee S, Vítek P, Michalkova H, Vaculovičová M, Moulick A. A Novel Ruthenium Based Coordination Compound Against Pathogenic Bacteria. Int J Mol Sci 2020; 21:E2656. [PMID: 32290291 PMCID: PMC7178087 DOI: 10.3390/ijms21072656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
The current epidemic of antibiotic-resistant infections urges to develop alternatives to less-effective antibiotics. To assess anti-bacterial potential, a novel coordinate compound (RU-S4) was synthesized using ruthenium-Schiff base-benzimidazole ligand, where ruthenium chloride was used as the central atom. RU-S4 was characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. Antibacterial effect of RU-S4 was studied against Staphylococcus aureus (NCTC 8511), vancomycin-resistant Staphylococcus aureus (VRSA) (CCM 1767), methicillin-resistant Staphylococcus aureus (MRSA) (ST239: SCCmecIIIA), and hospital isolate Staphylococcus epidermidis. The antibacterial activity of RU-S4 was checked by growth curve analysis and the outcome was supported by optical microscopy imaging and fluorescence LIVE/DEAD cell imaging. In vivo (balb/c mice) infection model prepared with VRSA (CCM 1767) and treated with RU-S4. In our experimental conditions, all infected mice were cured. The interaction of coordination compound with bacterial cells were further confirmed by cryo-scanning electron microscope (Cryo-SEM). RU-S4 was completely non-toxic against mammalian cells and in mice and subsequently treated with synthesized RU-S4.
Collapse
Affiliation(s)
- Vishma Pratap Sur
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (S.M.); (H.M.); (M.V.)
- Central European Institute of Technology, Brno University of Technology, CZ-61200 Brno, Czech Republic
| | - Aninda Mazumdar
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (S.M.); (H.M.); (M.V.)
- Central European Institute of Technology, Brno University of Technology, CZ-61200 Brno, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, CZ-771 46 Olomouc, Czech Republic;
| | - Soumajit Mukherjee
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (S.M.); (H.M.); (M.V.)
| | - Petr Vítek
- Global Change Research Institute of the Czech Academy of Sciences, CZ- 603 00 Brno, Czech Republic;
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (S.M.); (H.M.); (M.V.)
| | - Markéta Vaculovičová
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (S.M.); (H.M.); (M.V.)
- Central European Institute of Technology, Brno University of Technology, CZ-61200 Brno, Czech Republic
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (S.M.); (H.M.); (M.V.)
- Central European Institute of Technology, Brno University of Technology, CZ-61200 Brno, Czech Republic
| |
Collapse
|
20
|
Oduselu GO, Ajani OO, Ajamma YU, Brors B, Adebiyi E. Homology Modelling and Molecular Docking Studies of Selected Substituted Benzo[ d]imidazol-1-yl)methyl)benzimidamide Scaffolds on Plasmodium falciparum Adenylosuccinate Lyase Receptor. Bioinform Biol Insights 2019; 13:1177932219865533. [PMID: 31391779 PMCID: PMC6669854 DOI: 10.1177/1177932219865533] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/29/2019] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum adenylosuccinate lyase (PfADSL) is an important enzyme in purine metabolism. Although several benzimidazole derivatives have been commercially developed into drugs, the template design as inhibitor against PfADSL has not been fully explored. This study aims to model the 3-dimensional (3D) structure of PfADSL, design and predict in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) of 8 substituted benzo[d]imidazol-1-yl)methyl)benzimidamide compounds as well as predict the potential interaction modes and binding affinities of the designed ligands with the modelled PfADSL. PfADSL 3D structure was modelled using SWISS-MODEL, whereas the compounds were designed using ChemDraw Professional. ADMET predictions were done using OSIRIS Property Explorer and Swiss ADME, whereas molecular docking was done with AutoDock Tools. All designed compounds exhibited good in silico ADMET properties, hence can be considered safe for drug development. Binding energies ranged from -6.85 to -8.75 kcal/mol. Thus, they could be further synthesised and developed into active commercial antimalarial drugs.
Collapse
Affiliation(s)
- Gbolahan O Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Olayinka O Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Yvonne U Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Computer and Information Science, Covenant University, Ota, Nigeria
| |
Collapse
|
21
|
Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur J Med Chem 2019; 168:357-372. [DOI: 10.1016/j.ejmech.2019.02.055] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 01/07/2023]
|