1
|
Cerra B, Gioiello A. Discovery and development of steroidal enzyme inhibitors as anti-cancer drugs: state-of-the-art and future perspectives. J Enzyme Inhib Med Chem 2025; 40:2483818. [PMID: 40172115 PMCID: PMC11967001 DOI: 10.1080/14756366.2025.2483818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025] Open
Abstract
Steroidal compounds have emerged as effective therapeutic agents in oncology. Beyond natural-occurring and synthetic steroids that act as cytotoxic anti-tumoral agents, steroidal derivatives can be designed to mime the endogenous substrates of key metabolic enzymes in steroidogenesis, thus reducing the circulating levels of relevant oestrogenic and androgenic hormones responsible for cancer survival and proliferation. Therefore, enzyme inhibition represents an intriguing endocrine approach for the treatment of hormone-dependent tumours, such as breast and prostate cancer, with well-known approved drugs and several pre-clinical and clinical candidates under investigation. This review summarises the key advancements over the past decade (2014-2024) in the development of steroidal enzyme inhibitors endowed with anticancer activity, illustrating their mechanisms of action, therapeutic potential, drug design approaches, and current clinical applications. Furthermore, we discuss challenges related to drug resistance, off-target effects, and future strategies to optimise their efficacy in oncology.
Collapse
Affiliation(s)
- Bruno Cerra
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Giovannuzzi S, Shyamal SS, Bhowmik R, Ray R, Manaithiya A, Carta F, Parrkila S, Aspatwar A, Supuran CT. Physiological modeling of the metaverse of the Mycobacterium tuberculosis β-CA inhibition mechanism. Comput Biol Med 2024; 181:109029. [PMID: 39173489 DOI: 10.1016/j.compbiomed.2024.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Tuberculosis (TB) is an infectious disease that primarily affects the lungs of humans and accounts for Mycobacterium tuberculosis (Mtb) bacteria as the etiologic agent. In this study, we introduce a computational framework designed to identify the important chemical features crucial for the effective inhibition of Mtb β-CAs. Through applying a mechanistic model, we elucidated the essential features pivotal for robust inhibition. Using this model, we engineered molecules that exhibit potent inhibitory activity and introduce relevant novel chemistry. The designed molecules were prioritized for synthesis based on their predicted pKi values via the QSAR (Quantitative Structure-Activity Relationship) model. All the rationally designed and synthesized compounds were evaluated in vitro against different carbonic anhydrase isoforms expressed from the pathogen Mtb; moreover, the off-target and widely human-expressed CA I and II were also evaluated. Among the reported derivatives, 2, 4, and 5 demonstrated the most valuable in vitro activity, resulting in promising candidates for the treatment of TB infection. All the synthesized molecules exhibited favorable pharmacokinetic and toxicological profiles based on in silico predictions. Docking analysis confirmed that the zinc-binding groups bind effectively into the catalytic triad of the Mtb β-Cas, supporting the in vitro outcomes with these binding interactions. Furthermore, molecules with good prediction accuracies according to previously established mechanistic and QSAR models were utilized to delve deeper into the realm of systems biology to understand their mechanism in combating tuberculotic pathogenesis. The results pointed to the key involvement of the compounds in modulating immune responses via NF-κβ1, SRC kinase, and TNF-α to modulate granuloma formation and clearance via T cells. This dual action, in which the pathogen's enzyme is inhibited while modulating the human immune machinery, represents a paradigm shift toward more effective and comprehensive treatment approaches for combating tuberculosis.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Sagar Singh Shyamal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rajarshi Ray
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Fabrizio Carta
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Seppo Parrkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Sobati M, Abdoli M, Angeli A, Bonardi A, Ferraroni M, Supuran CT, Žalubovskis R. Sulfonamide-incorporated bis(α-aminophosphonates) as promising carbonic anhydrase inhibitors: Design, synthesis, biological evaluation, and X-ray crystallographic studies. Arch Pharm (Weinheim) 2024; 357:e2400038. [PMID: 38498884 DOI: 10.1002/ardp.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
A novel series of sulfonamide-incorporated bis(α-aminophosphonates) acting as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors is reported. The synthesized bivalent ligands were tested against five human (h) isoforms, hCA I, hCA II, hCA VII, hCA IX, and hCA XIII. Such derivatives showed high activity and selectivity against the cancer-related, membrane-bound isoform hCA IX, and among them, compound 5h, tetraisopropyl (1,3-phenylenebis{[(4-sulfamoylphenyl)amino]methylene})bis(phosphonate) showed a KI of 15.1 nM, being highly selective against this isoform over all other investigated ones (hCA I/IX = 42; hCA II/IX = 6, hCA VII/IX = 3, hCA XIII/IX = 5). Therefore, compound 5h could be a potential lead for the development of selective anticancer agents. The newly developed sulfonamides were also found effective inhibitors against the cytosolic hCA XIII isoform. Compound 5i displayed the best inhibition against this isoform with a KI of 17.2 nM, equal to that of the well-known inhibitor acetazolamide (AAZ), but significantly more selective over all other tested isoforms (hCA I/XIII = 239; hCA II/XIII = 23, hCA VII/XIII = 2, hCA IX/XIII = 3) compared to AAZ.
Collapse
Affiliation(s)
- Marjan Sobati
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Morteza Abdoli
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Alessandro Bonardi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Raivis Žalubovskis
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
4
|
Rosatelli E, Carotti A, Cerra B, De Franco F, Passeri D, Pellicciari R, Gioiello A. Chemical exploration of TGR5 functional hot-spots: Synthesis and structure-activity relationships of C7- and C23-Substituted cholic acid derivatives. Eur J Med Chem 2023; 261:115851. [PMID: 37813065 DOI: 10.1016/j.ejmech.2023.115851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
The activation of TGR5 bestows on bile acids the ability to modulate nongenomic signaling pathways, which are responsible of physiological actions including immunosuppressive and anti-inflammatory properties as well as the regulation of glucose metabolism and energy homeostasis. TGR5 agonists have therefore emerged in drug discovery and preclinical appraisals as promising compounds for the treatment of liver diseases and metabolic syndrome. In this study, we have been devising site-selected chemical modifications of the bile acid scaffold to provide novel chemical tools able to modulate the functions of TGR5 in different tissues. Biological results of the tested collection of semisynthetic cholic acid derivatives were used to extend the structure-activity relationships of TGR5 agonists and to clarify the molecular basis and functional role of TGR5 hot-spots in the receptor activation and selectivity. Some unexpected properties deriving from the molecular structure of bile acids have been unveiled as relevant to the receptor activation and may hence be used to design novel, selective and potent TGR5 agonists.
Collapse
Affiliation(s)
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy
| | - Bruno Cerra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy
| | | | | | | | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy.
| |
Collapse
|
5
|
Astrain-Redin N, Paoletti N, Plano D, Bonardi A, Gratteri P, Angeli A, Sanmartin C, Supuran CT. Selenium-analogs based on natural sources as cancer-associated carbonic anhydrase isoforms IX and XII inhibitors. J Enzyme Inhib Med Chem 2023; 38:2191165. [PMID: 36938694 PMCID: PMC10035951 DOI: 10.1080/14756366.2023.2191165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
In the relentless search for new cancer treatments, organoselenium compounds, and carbonic anhydrase (CA) inhibitors have emerged as promising drug candidates. CA isoforms IX and XII are overexpressed in many types of cancer, and their inhibition is associated with potent antitumor/antimetastatic effects. Selenium-containing compounds, particularly selenols, have been shown to inhibit tumour-associated CA isoforms in the nanomolar range since the properties of the selenium atom favour binding to the active site of the enzyme. In this work, two series of selenoesters (1a-19a and 1b-19b), which gathered NSAIDs, carbo/heterocycles, and fragments from natural products, were evaluated against hCA I, II, IX, and XII. Indomethacin (17b) and flufenamic acid (19b) analogs exhibited selectivity for tumour-associated isoform IX in the low micromolar range. In summary, selenoesters that combine NSAIDs with fragments derived from natural sources have been developed as promising nonclassical inhibitors of the tumour-associated CA isoforms.
Collapse
Affiliation(s)
- Nora Astrain-Redin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Niccolò Paoletti
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Sesto Fiorentino, Florence, Italy
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, Sesto Fiorentino, Florence, Italy
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Alessandro Bonardi
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Sesto Fiorentino, Florence, Italy
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, Sesto Fiorentino, Florence, Italy
| | - Paola Gratteri
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, Sesto Fiorentino, Florence, Italy
| | - Carmen Sanmartin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
6
|
Ivanova J, Abdoli M, Nocentini A, Žalubovskis R, Supuran CT. Derivatives of 4-methyl-1,2,3-benzoxathiazine 2,2-dioxide as selective inhibitors of human carbonic anhydrases IX and XII over the cytosolic isoforms I and II. J Enzyme Inhib Med Chem 2023; 38:2170370. [PMID: 36718988 PMCID: PMC9891166 DOI: 10.1080/14756366.2023.2170370] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
A series of 4-methyl-1,2,3-benzoxathiazine-2,2-dioxides with various substituents in 5, 6 or 7 positions was obtained from corresponding 2'-hydroxyacetophenones in their reaction with sulphamoyl chloride. 6- and 7-aryl substituted 4-methyl-1,2,3-benzoxathiazine-2,2-dioxides were obtained from aryl substituted 2'-hydroxyacetophenonesprepared from 4- or 5-bromo-2'-hydroxyacetophenones via two-step protocol. 4-Methyl-1,2,3-benzoxathiazine-2,2-dioxides were investigated as inhibitors of four human (h) carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, off-target cytosolic hCA I and II, and target transmembrane, tumour-associated hCA IX and XII. Twenty derivatives of 4-methyl-1,2,3-benzoxathiazine 2,2-dioxide were obtained. With one exception (compound2a), they mostly act as nanomolar inhibitors of target hCA IX and XII. Basically, all screened compounds express none or low inhibitory properties towards off-target hCA I. hCA II is inhibited in micromolar range. Overwhelming majority of 4-methyl-1,2,3-benzoxathiazine 2,2-dioxides express excellent selectivity towards CA IX/XII over hCA I as well as very good selectivity towards CA IX/XII over hCA II.
Collapse
Affiliation(s)
| | - Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessio Nocentini
- Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Claudiu T. Supuran
- Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
7
|
Begines P, Bonardi A, Nocentini A, Gratteri P, Giovannuzzi S, Ronca R, Tavani C, Luisa Massardi M, López Ó, Supuran CT. Design and synthesis of sulfonamides incorporating a biotin moiety: Carbonic anhydrase inhibitory effects, antiproliferative activity and molecular modeling studies. Bioorg Med Chem 2023; 94:117467. [PMID: 37722299 DOI: 10.1016/j.bmc.2023.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
Sulfonamides constitute an important class of classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Herein we have accomplished the conjugation of biotin with an ample number of sulfonamide motifs with the aim of testing them in vitro as inhibitors of the human carbonic anhydrase (hCA) isoforms I and II (cytosolic isozymes), as well as hCA IX and XII (transmembrane, tumor-associated enzymes). Most of these newly synthesized compounds exhibited interesting inhibition profiles, with activities in the nanomolar range. The presence of a 4-F-C6H4 moiety, also found in SLC-0111, afforded an excellent selectivity towards the tumor-associated hypoxia-induced hCA isoform XII with an inhibition constant (KI) of 4.5 nM. The 2-naphthyl derivative was the most potent inhibitor against hCA IX (KI = 6.2 nM), 4-fold stronger than AAZ (KI = 25 nM) with very good selectivity. Some compounds were chosen for antiproliferative activity testing against a panel of 3 human tumor cell lines, one compound showing anti-proliferative activity on glioblastoma, triple-negative breast cancer, and pancreatic carcinoma cell lines.
Collapse
Affiliation(s)
- Paloma Begines
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy; Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, Seville E-41071, Spain
| | - Alessandro Bonardi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy; NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy; NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Camilla Tavani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maria Luisa Massardi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, Seville E-41071, Spain.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy.
| |
Collapse
|
8
|
Abdoli M, Bonardi A, Paoletti N, Aspatwar A, Parkkila S, Gratteri P, Supuran CT, Žalubovskis R. Inhibition Studies on Human and Mycobacterial Carbonic Anhydrases with N-((4-Sulfamoylphenyl)carbamothioyl) Amides. Molecules 2023; 28:molecules28104020. [PMID: 37241761 DOI: 10.3390/molecules28104020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A library of structurally diverse N-((4-sulfamoylphenyl)carbamothioyl) amides was synthesized by selective acylation of easily accessible 4-thioureidobenzenesulfonamide with various aliphatic, benzylic, vinylic and aromatic acyl chlorides under mild conditions. Inhibition of three α-class cytosolic human (h) carbonic anhydrases (CAs) (EC 4.2.1.1); that is, hCA I, hCA II and hCA VII and three bacterial β-CAs from Mycobacterium tuberculosis (MtCA1-MtCA3) with these sulfonamides was thereafter investigated in vitro and in silico. Many of the evaluated compounds displayed better inhibition against hCA I (KI = 13.3-87.6 nM), hCA II (KI = 5.3-384.3 nM), and hCA VII (KI = 1.1-13.5 nM) compared with acetazolamide (AAZ) as the control drug (KI values of 250, 12.5 and 2.5 nM, respectively, against hCA I, hCA II and hCA VII). The mycobacterial enzymes MtCA1 and MtCA2 were also effectively inhibited by these compounds. MtCA3 was, on the other hand, poorly inhibited by the sulfonamides reported here. The most sensitive mycobacterial enzyme to these inhibitors was MtCA2 in which 10 of the 12 evaluated compounds showed KIs (KI, the inhibitor constant) in the low nanomolar range.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Alessandro Bonardi
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Niccolò Paoletti
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Paola Gratteri
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| |
Collapse
|
9
|
Abdoli M, Luca VD, Capasso C, Supuran CT, Žalubovskis R. Investigation of carbonic anhydrase inhibitory potency of ( Z/E)-alkyl N'-benzyl- N-(arylsulfonyl)-carbamimidothioates. Future Med Chem 2023; 15:615-627. [PMID: 37140057 DOI: 10.4155/fmc-2022-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Aim: Among 15 human (h) carbonic anhydrase (CA; EC 4.2.1.1) isoforms, two (hCA IX and XII) play important roles in the growth and survival of tumor cells, making them therapeutic targets for cancer treatment. This study aimed to develop novel sulfonamide-based compounds as selective hCA IX and XII inhibitors. Materials & methods: A library of novel N-sulfonyl carbamimidothioates was obtained for CA inhibitory activity studies against four hCA isoforms. Results: None of the developed compounds displayed inhibitory potential against off-target isoforms hCA I and II. However, they effectively inhibited tumor-associated hCA IX and XII. Conclusion: The present study suggests potent lead compounds as selective hCA IX and XII inhibitors with anticancer activity.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science & Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
| | - Viviana De Luca
- Department of Biology, Agriculture & Food Sciences, Institute of Biosciences & Bioresources, Napoli, 80131, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture & Food Sciences, Institute of Biosciences & Bioresources, Napoli, 80131, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical & Nutraceutical Section, University of Florence, Florence, 50019, Italy
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science & Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| |
Collapse
|
10
|
Abdoli M, De Luca V, Capasso C, Supuran CT, Žalubovskis R. Inhibition Studies on Carbonic Anhydrase Isoforms I, II, IX, and XII with a Series of Sulfaguanidines. ChemMedChem 2023; 18:e202200658. [PMID: 36691902 DOI: 10.1002/cmdc.202200658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Two novel sulfaguanidine series, six N-(N,N'-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamide derivatives and nine N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide derivatives, were obtained by desulfidative amination of easily accessible dimethyl arylsulfonylcarbonimidodithioates under catalyst- and base-free conditions. The newly synthesized compounds were tested for the inhibition of four different isozymes of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). Both series reported here were inactive against the off-target isozymes hCA I and II (Ki >100 μM). Interestingly, all investigated compounds inhibited both target isozymes hCA IX and XII in the submicromolar to micromolar ranges in which Ki values spanned from 0.168 to 0.921 μM against hCA IX and from 0.335 to 1.451 μM against hCA XII. The results indicated that N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamides were slightly more potent inhibitors than N-(N,N'-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamides. Among the evaluated compounds, N-n-octyl-substituted N-carbamimidoylbenzenesulfonamide showed the most significant activity with a Ki value of 0.168 μM against hCA IX, which was four-fold more selective toward this isozyme versus hCA XII. Again, another derivative from N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide series, N-p-methylbenzyl-substituted N-carbamimidoylbenzenesulfonamide, demonstrated superior inhibitory activity against hCA XII with a Ki value of 0.335 μM.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, 1048, Riga, Latvia
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019, Florence, Italy
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, 1048, Riga, Latvia
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| |
Collapse
|
11
|
Duran HE. Pyrimidines: Molecular docking and inhibition studies on carbonic anhydrase and cholinesterases. Biotechnol Appl Biochem 2023; 70:68-82. [PMID: 35112394 DOI: 10.1002/bab.2329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. The disease is characterized by dementia, memory impairment, cognitive impairment, and speech impairment. Cholinesterases (ChEs; AChE, acetylcholinesterase and BChE, butyrylcholinesterase) inhibitors and their benefits of cholinergic replacement in the treatment of AD have been researched and documented by scientists in various ways to date. Recent studies prove that human carbonic anhydrases (hCAs) are also one of the important targets in the treatment of AD. Therefore, the development of new agents that can simultaneously modulate the various mechanisms or targets involved in the AD pathway may be a powerful strategy to treat AD, the current disease. Considering these data, the effects of the pyrimidines (1-7) were investigated in this study for the discovery and development of multitargeted ChEs and hCAs inhibitors associated with AD. In addition, the molecular docking analysis of the 4-amino-2-choloropyrimidine (2) was performed to understand the binding interactions on the active site of the enzyme. All compounds (1-7) showed satisfactory enzyme inhibitory potency in micromolar concentrations against AChE, BChE, hCAI, and hCAII with KI values ranging from 0.099 to 0.241 μM, from 1.324 to 3.418 μM, from 0.201 to 0.884 μM, from 1.867 to 3.913 μM, respectively. Due to their ChEs and hCAs inhibition, these compounds (1-7) may be considered as leads for investigations in neurodegenerative diseases. All these results revealed that the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.201 ± 0.041 μM for hCA I), the 4-amino-6-hydroxypyrimidine (4) (KI value of 1.867 ± 0.296 μM for hCA II), the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.099 ± 0.008 μM for AChE), and the 4-amino-2-chloropyrimidine (2) (KI value of 1.324 ± 0.273 μM for BChE) from the pyrimidines in this series were the most promising derivatives, as they exhibited a good multifunctional inhibition at all experimental levels and in the in silico validation against these enzymes, for the treatment of AD.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
12
|
Ivanova J, Abdoli M, Nocentini A, Žalubovskis R, Supuran CT. 1,2,3-Benzoxathiazine-2,2-dioxides – effective inhibitors of human carbonic anhydrases. J Enzyme Inhib Med Chem 2023; 38:225-238. [DOI: 10.1080/14756366.2022.2142787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Morteza Abdoli
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Alessio Nocentini
- Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Claudiu T. Supuran
- Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
13
|
Sharma V, Kumar R, Angeli A, Supuran CT, Sharma PK. Benzenesulfonamides with trisubstituted triazole motif as selective carbonic anhydrase I, II, IV, and IX inhibitors. Arch Pharm (Weinheim) 2023; 356:e2200391. [PMID: 36316236 DOI: 10.1002/ardp.202200391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 01/03/2023]
Abstract
Twenty novel 1,2,3-triazole benzenesulfonamides featuring nitrile 8a-g, carbothioamide 9a-f, and N'-hydroxycarboximidamide 10a-g functionalities were designed and synthesized to improve potency and selectivity as carbonic anhydrase inhibitors (CAIs). The synthesized 1,2,3-triazole compounds were tested in vitro as CAIs against four physiologically and pharmacologically relevant isoforms of human carbonic anhydrase (hCA I, II, IV, and IX). Compounds 8a-g, 9a-f, and 10a-g displayed variable inhibition constants ranging from 8.1 nM to 3.22 μM for hCA I, 4.7 nM to 0.50 μM for hCA II, 15.0 nM to 3.7 μM for hCA IV, and 29.6 nM to 0.27 μM for hCA IX. As per the inhibition data profile, compounds 9a-e exhibited strong efficacy for hCA IV, whereas the inhibition was found to be somewhat diminished in the case of hCA IX by nearly all the compounds. A computational protocol based on docking and MM-GBSA was conducted to reveal the plausible interactions of the targeted sulfonamides within the hCA II and IX binding sites. The outcomes of appending various functionalities at the C-4 position of the 1,2,3-triazole motif over the inhibition potential and selectivity of the designed sulfonamides were examined with a potential for the discovery of new isoform selective CAIs. The CAI and SAR data established the significance of the synthesized 1,2,3-triazoles as building blocks for developing CAI drugs.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India.,Pt. Chiranji Lal Sharma Government College, Karnal, India
| | - Rajiv Kumar
- Ch. Mani Ram Godara Government College for Women, Fatehabad, India
| | - Andrea Angeli
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
14
|
Investigation on Hydrazonobenzenesulfonamides as Human Carbonic Anhydrase I, II, IX and XII Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010091. [PMID: 36615285 PMCID: PMC9822402 DOI: 10.3390/molecules28010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
A small series of hydrazonobenzenesulfonamides was designed, synthesized and studied for their human carbonic anhydrase (hCA) inhibitory activity. The synthesized compounds were evaluated against hCA I, II, IX and XII isoforms using acetazolamide (AAZ) as the standard inhibitor. Various hydrazonosulfonamide derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The most potent and selective hydrazones 8, 9, 10, 11, 19 and 24 were docked into isoforms I, II, IX and XII to better understand their activity and selectivity for the different CA isoforms.
Collapse
|
15
|
El-Azab AS, Abdel-Aziz AAM, Ghabbour HA, Bua S, Nocentini A, Alkahtani HM, Alsaif NA, Al-Agamy MHM, Supuran CT. Carbonic Anhydrase Inhibition Activities of Schiff's Bases Based on Quinazoline-Linked Benzenesulfonamide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227703. [PMID: 36431826 PMCID: PMC9697198 DOI: 10.3390/molecules27227703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
Human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII were investigated for their inhibitory activity with a series of new Schiff's bases based on quinazoline scaffold 4-27. The hCA I isoform was efficiently inhibited by Schiff's bases 4-6, 10-19, 22-27 and had an inhibition constant (Ki) value of 52.8-991.7 nM compared with AAZ (Ki, 250 nM). Amongst the quinazoline derivatives, the compounds 2, 3, 4, 10, 11, 16, 18, 24, 26, and 27 were proven to be effective hCA II inhibitors, with Ki values of 10.8-52.6 nM, measuring up to AAZ (Ki, 12 nM). Compounds 2-27 revealed compelling hCA IX inhibitory interest with Ki values of 10.5-99.6 nM, rivaling AAZ (Ki, 25.0 nM). Quinazoline derivatives 3, 10, 11, 13, 15-19, and 24 possessed potent hCA XII inhibitory activities with KI values of 5.4-25.5 nM vs. 5.7 nM of AAZ. Schiff's bases 7, 8, 9, and 21 represented attractive antitumor hCA IX carbonic anhydrase inhibitors (CAIs) with KI rates (22.0, 34.8, 49.2, and 45.3 nM, respectively). Compounds 5, 7, 8, 9, 14, 18, 19, and 21 showed hCA I inhibitors on hCA IX with a selectivity index of 22.46-107, while derivatives 12, 14, and 18 showed selective hCA I inhibitors on hCA XII with a selectivity profile of 45.04-58.58, in contrast to AAZ (SI, 10.0 and 43.86). Compounds 2, 5, 7-14, 19-23, and 25 showed a selectivity profile for hCA II inhibitors over hCA IX with a selectivity index of 2.02-19.67, whereas derivatives 5, 7, 8, 13, 14, 15, 17, 20, 21, and 22 showed selective hCA II inhibitors on hCA XII with a selectivity profile of 4.84-26.60 balanced to AAZ (SI, 0.48 and 2.10).
Collapse
Affiliation(s)
- Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.S.E.-A.); (C.T.S.)
| | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hazem A. Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Silvia Bua
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed H. M. Al-Agamy
- Department of Pharmaceutics and Microbiology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Claudiu T. Supuran
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
- Correspondence: (A.S.E.-A.); (C.T.S.)
| |
Collapse
|
16
|
Development of benzene and benzothiazole-sulfonamide analogues as selective inhibitors of the tumor-associated carbonic anhydrase IX. Eur J Med Chem 2022; 243:114793. [DOI: 10.1016/j.ejmech.2022.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|
17
|
Moi D, Deplano A, Angeli A, Balboni G, Supuran CT, Onnis V. Synthesis of Sulfonamides Incorporating Piperidinyl-Hydrazidoureido and Piperidinyl-Hydrazidothioureido Moieties and Their Carbonic Anhydrase I, II, IX and XII Inhibitory Activity. Molecules 2022; 27:molecules27175370. [PMID: 36080139 PMCID: PMC9457746 DOI: 10.3390/molecules27175370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Here we report a small library of hydrazinocarbonyl-ureido and thioureido benzenesulfonamide derivatives, designed and synthesized as potent and selective human carbonic anhydrase inhibitors (hCAIs). The synthesized compounds were evaluated against isoforms hCA I, II, IX and XII using acetazolamide (AAZ) as standard inhibitor. Several urea and thiourea derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The thiourea derivatives showed enhanced potency as compared to urea analogues. Additionally, eight compounds 5g, 5m, 5o, 5q, 6l, 6j, 6o and 6u were selected for docking analysis on isoform I, II, IX, XII to illustrate the potential interaction with the enzyme to better understand the activity against the different isoforms.
Collapse
Affiliation(s)
- Davide Moi
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Monserrato University Campus, 09042 Monserrato, Italy
| | - Alessandro Deplano
- Pharmacelera, Torre R, 4a Planta, Despatx A05, Parc Cientific de Barcelona, Baldiri Reixac 8, 08028 Barcelona, Spain
| | - Andrea Angeli
- Polo Scientifico Neurofarba Department, Laboratorio di Chimica Bioinorganica, Università Degli Studi di Firenze, Room 188, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Monserrato University Campus, 09042 Monserrato, Italy
| | - Claudiu T. Supuran
- Polo Scientifico Neurofarba Department, Laboratorio di Chimica Bioinorganica, Università Degli Studi di Firenze, Room 188, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Correspondence: (C.T.S.); (V.O.)
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Monserrato University Campus, 09042 Monserrato, Italy
- Correspondence: (C.T.S.); (V.O.)
| |
Collapse
|
18
|
Abdoli M, Giovannuzzi S, Supuran CT, Žalubovskis R. 4-(3-Alkyl/benzyl-guanidino)benzenesulfonamides as selective carbonic anhydrase VII inhibitors. J Enzyme Inhib Med Chem 2022; 37:1568-1576. [PMID: 35635139 PMCID: PMC9154774 DOI: 10.1080/14756366.2022.2080816] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Morteza Abdoli
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Giovannuzzi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Raivis Žalubovskis
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
- Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
19
|
Abstract
BACKGROUND The pathogenesis of gastroesophageal reflux disease (GERD) has not been resolved in detail. Esophageal epithelial cells provide resistance to acidic reflux via several mechanisms, many of which involve buffering acid with bicarbonate and transporting protons. Carbonic anhydrases (CAs) are enzymes that control the acid-base balance by catalyzing the reversible hydration of carbon dioxide to produce bicarbonate and hydrogen ions. AIMS We aimed to determine the immunohistochemical expression patterns of CAII, CAIX, and CAXII in the normal esophageal squamous epithelium and in patients with GERD. METHODS We evaluated 82 biopsy samples, including 26 with a histologically normal esophagus, 26 with histologically mild esophagitis, and 30 with severe esophagitis. Expression patterns of CAII, CAIX, and CAXII in the esophageal squamous epithelium were determined by immunohistochemical staining. RESULTS Cytoplasmic CAII expression was predominantly detected in the upper luminal part of the squamous epithelium and was significantly (p < 0.01) increased in GERD. Expression of CAIX was essentially membranous. The isozyme was constantly present in the peripapillary cells. In the interpapillary areas, clustered expression was observed to emerge and increase significantly (p < 0.01) in esophagitis. CAXII expression was the most abundant of the isozymes and was mainly membranous. In the normal squamous epithelium, CAXII expression was confined to the basal layer; in severe esophagitis, CAXII expression increased significantly in both basal (p < 0.05) and superficial (p < 0.01) halves of the epithelium. CONCLUSIONS We demonstrate upregulated expression of CAII, CAIX, and CAXII in GERD. The increase in expression likely contributes to esophageal epithelial resistance to acidic reflux.
Collapse
|
20
|
Sbravati D, Bonardi A, Bua S, Angeli A, Ferraroni M, Nocentini A, Casnati A, Gratteri P, Sansone F, Supuran CT. Calixarenes Incorporating Sulfonamide Moieties: Versatile Ligands for Carbonic Anhydrases Inhibition. Chemistry 2021; 28:e202103527. [PMID: 34882858 DOI: 10.1002/chem.202103527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/10/2022]
Abstract
Carbonic anhydrases (CAs) continue to represent a relevant pharmaceutical target. The need of selective inhibitors and the involvement of these metalloenzymes in many multifaceted diseases boost the search for new ligands able to distinguish among the different CA isoforms, and for multifunctional systems simultaneously able to inhibit CAs and to interfere with other pathological events by interacting with additional targets. In this work, we successfully explored the possibility of preparing new CAs ligands by combining calixarenes with benzensulfonamide units. Inhibition tests towards three human CA isoforms evidenced, for some of the ligands, Ki values in the nanomolar range and promising selectivity. X-ray and molecular modeling studies provided information on the mode of binding of these calixarene derivatives. Thanks to the encouraging results and the structural features typical of the calixarene scaffold, it is then possible to plan for the future the design of multifunctional inhibitors for this class of widely spread enzymes.
Collapse
Affiliation(s)
- Davide Sbravati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.,Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.,Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.,Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
21
|
Bonardi A, Nocentini A, Osman SM, Alasmary FA, Almutairi TM, Abdullah DS, Gratteri P, Supuran CT. Inhibition of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae with aromatic sulphonamides and clinically licenced drugs - a joint docking/molecular dynamics study. J Enzyme Inhib Med Chem 2021; 36:469-479. [PMID: 33472446 PMCID: PMC7822066 DOI: 10.1080/14756366.2020.1862102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023] Open
Abstract
The binding mode of aromatic sulphonamides and clinically licenced drugs to the three carbonic anhydrase (CA, EC 4.2.1.1) isoforms from the human pathogen V. cholerae was here thouroghly characterised by a joint docking and molecular dynamics in silico protocol. In fact, VchCA, VchCAβ, and VchCAγ are crucial in the pathogen life cycle and growth and represent innovative targets to fight V. cholerae proliferation overcoming the spreading chemoresistance to the available drugs. A set of 40 sulphonamides/sulfamates VchCAs inhibitors was studied using the proteins homology built 3 D models unveiling the key and stable interactions responsible for a potent CA inhibition. This study has the aim to offer insights and guidelines for the future rational design of potent and selective inhibitors targeting CA isoforms from V. cholerae or other human pathogens.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Sesto Fiorentino, Italy
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Sesto Fiorentino, Italy
| | - Alessio Nocentini
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Sesto Fiorentino, Italy
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Sesto Fiorentino, Italy
| | - Sameh Mohamed Osman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Dalal Saied Abdullah
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Paola Gratteri
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Sesto Fiorentino, Italy
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Eldeeb AH, Abo-Ashour MF, Angeli A, Bonardi A, Lasheen DS, Elrazaz EZ, Nocentini A, Gratteri P, Abdel-Aziz HA, Supuran CT. Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. Eur J Med Chem 2021; 221:113486. [PMID: 33965860 DOI: 10.1016/j.ejmech.2021.113486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
New series of benzenesulfonamide and benzoic acid derivatives were designed and synthesized using tail/dual tail approach to improve potency and selectivity as carbonic anhydrase inhibitors. The synthesized compounds evaluated as CAIs against isoforms hCA I, II, IV and IX with acetazolamide (AAZ) as standard inhibitor. The benzenesulfonamide derivatives 7a-d, 8a-h, 12a-c, 13a and 15a-c showed moderate to potent inhibitory activity with selectivity toward isoform hCA II, especially, compound 13a with (Ki = 7.6 nM), while the benzoic acid analogues 12d-f, 13b and 15d-f didn't show any activity except compounds 12d,f and 15e that showed weak activity. Additionally, molecular docking was performed for compounds 7a, 8a, 8e, 12a, 13a and 15a on isoform hCA I, II to illustrate the possible interaction with the active site to justify the inhibitory activity.
Collapse
Affiliation(s)
- Assem H Eldeeb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt.
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
23
|
Mousavi SS, Karami A, Haghighi TM, Tumilaar SG, Fatimawali, Idroes R, Mahmud S, Celik I, Ağagündüz D, Tallei TE, Emran TB, Capasso R. In Silico Evaluation of Iranian Medicinal Plant Phytoconstituents as Inhibitors against Main Protease and the Receptor-Binding Domain of SARS-CoV-2. Molecules 2021; 26:5724. [PMID: 34577194 PMCID: PMC8470205 DOI: 10.3390/molecules26185724] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which initially appeared in Wuhan, China, in December 2019. Elderly individuals and those with comorbid conditions may be more vulnerable to this disease. Consequently, several research laboratories continue to focus on developing drugs to treat this infection because this disease has developed into a global pandemic with an extremely limited number of specific treatments available. Natural herbal remedies have long been used to treat illnesses in a variety of cultures. Modern medicine has achieved success due to the effectiveness of traditional medicines, which are derived from medicinal plants. The objective of this study was to determine whether components of natural origin from Iranian medicinal plants have an antiviral effect that can prevent humans from this coronavirus infection using the most reliable molecular docking method; in our case, we focused on the main protease (Mpro) and a receptor-binding domain (RBD). The results of molecular docking showed that among 169 molecules of natural origin from common Iranian medicinal plants, 20 molecules (chelidimerine, rutin, fumariline, catechin gallate, adlumidine, astragalin, somniferine, etc.) can be proposed as inhibitors against this coronavirus based on the binding free energy and type of interactions between these molecules and the studied proteins. Moreover, a molecular dynamics simulation study revealed that the chelidimerine-Mpro and somniferine-RBD complexes were stable for up to 50 ns below 0.5 nm. Our results provide valuable insights into this mechanism, which sheds light on future structure-based designs of high-potency inhibitors for SARS-CoV-2.
Collapse
Affiliation(s)
- Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441, Iran; (S.S.M.); (A.K.); (T.M.H.)
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441, Iran; (S.S.M.); (A.K.); (T.M.H.)
| | - Tahereh Movahhed Haghighi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441, Iran; (S.S.M.); (A.K.); (T.M.H.)
| | - Sefren Geiner Tumilaar
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (S.G.T.); (F.)
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (S.G.T.); (F.)
- The University Center of Excellence for Biotechnology and Conservation of Wallacea, Sam Ratulangi University, Manado 95115, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia;
| | - Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey;
| | - Trina Ekawati Tallei
- The University Center of Excellence for Biotechnology and Conservation of Wallacea, Sam Ratulangi University, Manado 95115, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
24
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Kuzu B, Tan M, Gülçin İ, Menges N. A novel class for carbonic anhydrases inhibitors and evaluation of their non-zinc binding. Arch Pharm (Weinheim) 2021; 354:e2100188. [PMID: 34096646 DOI: 10.1002/ardp.202100188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
In this study, 23 different imidazole derivatives were synthesized, and the inhibitory properties of these derivatives against carbonic anhydrase I and II isoenzymes were investigated for the first time. The inhibition concentrations of the imidazole derivatives were found to be in the range of 2.89-115.5 nM. Docking studies examined the binding properties of the imidazole derivatives, and the structure-activity relationship is discussed. Theoretical calculations showed that the binding mode of the imidazole ring was non-zinc binding.
Collapse
Affiliation(s)
- Burak Kuzu
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| | - Meltem Tan
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Nurettin Menges
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| |
Collapse
|
26
|
Abstract
Coumarins constitute a relatively new class of inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), possessing a unique inhibition mechanism, acting as "prodrug inhibitors." They undergo the hydrolysis of the lactone ring mediated by the esterase activity of CA. The formed 2-hydroxy-cinnamic acids thereafter bind within a very particular part of the enzyme active site, at its entrance, where a high variability of amino acid residues among the different mammalian CA isoforms is present, and where other inhibitors classes were not seen bound earlier. This explains why coumarins are among the most isoform-selective CA inhibitors known to date among the many chemotypes endowed with such biological activity. As coumarins are widespread secondary metabolites in some bacteria, plants, fungi, and ascidians, many such compounds from various natural sources have been investigated for their CA inhibitory properties and for possible biomedical applications, mainly as anticancer agents targeting hypoxic tumours.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
27
|
Küçükbay H, Gönül Z, Küçükbay FZ, Angeli A, Bartolucci G, Supuran CT. Preparation, carbonic anhydrase enzyme inhibition and antioxidant activity of novel 7-amino-3,4-dihydroquinolin-2(1H)-one derivatives incorporating mono or dipeptide moiety. J Enzyme Inhib Med Chem 2020; 35:1021-1026. [PMID: 32297533 PMCID: PMC7178833 DOI: 10.1080/14756366.2020.1751620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New dipeptide–dihydroquinolinone derivatives were successfully synthesised by benzotriazole mediated nucleophilic acyl substitution reaction and their structures were elucidated by spectroscopic and analytic techniques. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was determined against four human (h) isoforms, hCA I, hCA II, hCA IX and hCA XII. While all compounds showed moderate to good in vitro CA inhibitory properties against hCA IX and hCA XII with inhibition constants in the micromolar level (37.7–86.8 and 2.0–8.6 µM, respectively), they did not show inhibitory activity against hCA I and hCA II up to 100 µM concentration. The antioxidant capacity of the peptide–dihydroquinolinone conjugates was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. Most of the synthesised compounds showed low antioxidant activities compared to the control antioxidant compounds BHA and α-tocopherol.
Collapse
Affiliation(s)
- Hasan Küçükbay
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - Zeynep Gönül
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - F Zehra Küçükbay
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche e Laboratorio Di Chimica Bioinorganica, Università Degli Studi Di Firenze, Florence, Italy
| | - Gianluca Bartolucci
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche e Laboratorio Di Chimica Bioinorganica, Università Degli Studi Di Firenze, Florence, Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche e Laboratorio Di Chimica Bioinorganica, Università Degli Studi Di Firenze, Florence, Italy
| |
Collapse
|
28
|
Pustenko A, Nocentini A, Gratteri P, Bonardi A, Vozny I, Žalubovskis R, Supuran CT. The antibiotic furagin and its derivatives are isoform-selective human carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2020; 35:1011-1020. [PMID: 32297543 PMCID: PMC7178874 DOI: 10.1080/14756366.2020.1752201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The clinically used antibiotic Furagin and its derivatives possess inhibitory activity on human (h) carbonic anhydrases (CA, EC 4.2.1.1), some of which are highly expressed in various tissues and malignancies (hCA IX/XII). Furagin exhibited good hCA IX and XII inhibition with KIs of 260 and 57 nM, respectively. It does not inhibit off-target CA I and poorly inhibited CA II (KI = 9.6 μM). Some synthesised Furagin derivatives with aminohydantoin moieties as zinc binding group exhibited weak inhibition of CA I/II, and good inhibition of CA IX/XII with KIs ranging from 350 to 7400 and 150 to 5600 nM, respectively. Docking and molecular dynamics simulations suggest that selectivity for the cancer-associated CA IX/XII over CA II is due to strong H-bond interactions in CA IX/XII, involving the tail orientated towards hydrophobic area of the active site. These results suggest a possible drug repurposing of Furagin as anti-cancer agent.
Collapse
Affiliation(s)
- Aleksandrs Pustenko
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy.,Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy.,Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Igor Vozny
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
29
|
Brichet J, Arancibia R, Berrino E, Supuran CT. Bioorganometallic derivatives of 4-hydrazino-benzenesulphonamide as carbonic anhydrase inhibitors: synthesis, characterisation and biological evaluation. J Enzyme Inhib Med Chem 2020; 35:622-628. [PMID: 32037900 PMCID: PMC7034112 DOI: 10.1080/14756366.2020.1724995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/27/2020] [Indexed: 01/28/2023] Open
Abstract
A series of bio-organometallic-hydrazones of the general formula [{(η5-C5H4)-C(R)=N-N(H)-C6H4-4-SO2NH2}]MLn(MLn = Re(CO)3, Mn(CO)3, FeCp; R=H, CH3) were prepared by reaction of formyl/acetyl organometallic precursors with 4-hydrazino-benzenesulphonamide. All compounds were characterized by conventional spectroscopic techniques (infra-red, 1H and 13C NMR, mass spectrometry and elemental analysis). Biological evaluation as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors agents was carried out using four human/h) isoforms, hCA I, II, IX and XII. The cytosolic isoforms hCA I and II were effectively inhibited by almost all derivatives with inhibition constants of 1.7-22.4 nM. Similar effects were observed for the tumour-associated transmembrane isoform hCA XII (KIs of 1.9-24.4 nM). hCA IX was less sensitive to inhibition with these compounds. The presence of bio-organometallic or metallo-carbonyl moieties in the molecules of these CAIs makes them amenable for interesting pharmacologic applications, for example for compounds with CO donating properties.
Collapse
Affiliation(s)
- Jeremie Brichet
- Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Arancibia
- Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Emanuela Berrino
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Firenze, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
30
|
Oguz M, Kalay E, Akocak S, Nocentini A, Lolak N, Boga M, Yilmaz M, Supuran CT. Synthesis of calix[4]azacrown substituted sulphonamides with antioxidant, acetylcholinesterase, butyrylcholinesterase, tyrosinase and carbonic anhydrase inhibitory action. J Enzyme Inhib Med Chem 2020; 35:1215-1223. [PMID: 32401067 PMCID: PMC7269057 DOI: 10.1080/14756366.2020.1765166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
A series of novel calix[4]azacrown substituted sulphonamide Schiff bases was synthesised by the reaction of calix[4]azacrown aldehydes with different substituted primary and secondary sulphonamides. The obtained novel compounds were investigated as inhibitors of six human (h) isoforms of carbonic anhydrases (CA, EC 4.2.1.1). Their antioxidant profile was assayed by various bioanalytical methods. The calix[4]azacrown substituted sulphonamide Schiff bases were also investigated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes, associated with several diseases such as Alzheimer, Parkinson, and pigmentation disorders. The new sulphonamides showed low to moderate inhibition against hCAs, AChE, BChE, and tyrosinase enzymes. However, some of them possessed relevant antioxidant activity, comparable with standard antioxidants used in the study.
Collapse
Affiliation(s)
- Mehmet Oguz
- Department of Chemistry, University of Selcuk, Konya, Turkey
- Department of Advanced Material and Nanotechnology, Selcuk University, Konya, Turkey
| | - Erbay Kalay
- Kars Vocational School, Kafkas University, Kars, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Mehmet Boga
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, University of Selcuk, Konya, Turkey
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
31
|
Alissa SA, Alghulikah HA, Alothman ZA, Osman SM, Del Prete S, Capasso C, Nocentini A, Supuran CT. Phosphonamidates are the first phosphorus-based zinc binding motif to show inhibition of β-class carbonic anhydrases from bacteria, fungi, and protozoa. J Enzyme Inhib Med Chem 2020; 35:59-64. [PMID: 31663383 PMCID: PMC6830296 DOI: 10.1080/14756366.2019.1681987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
A primary strategy to combat antimicrobial resistance is the identification of novel therapeutic targets and anti-infectives with alternative mechanisms of action. The inhibition of the metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.1) from pathogens (bacteria, fungi, and protozoa) was shown to produce an impairment of the microorganism growth and virulence. As phosphonamidates have been recently validated as human α-CA inhibitors (CAIs) and no phosphorus-based zinc-binding group have been assessed to date against β-class CAs, herein we report an inhibition study with this class of compounds against β-CAs from pathogenic bacteria, fungi, and protozoa. Our data suggest that phosphonamidates are among the CAIs with the best selectivity for β-class over human isozymes, making them interesting leads for the development of new anti-infectives.
Collapse
Affiliation(s)
- Siham A. Alissa
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hanan A. Alghulikah
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Zeid A. Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sameh M. Osman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Firenze), Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
32
|
Kalaycı M, Türkeş C, Arslan M, Demir Y, Beydemir Ş. Novel benzoic acid derivatives: Synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2020; 354:e2000282. [PMID: 33155700 DOI: 10.1002/ardp.202000282] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia, memory impairment, cognitive dysfunction, and speech impairment. The utility of cholinergic replacement by acetylcholinesterase (AChE) inhibitors in AD treatment has been well documented so far. Recently, studies have also evidenced that human carbonic anhydrases (hCAs) serve as an important target for AD treatment. In this direction, the improvement of new multitarget drugs, which can simultaneously modulate several mechanisms or targets included in the AD pathway, may be a potent strategy to treat AD. In light of these data for understanding and developing AD-related multitarget AChE and hCAs inhibitors, in this study, novel methylene-aminobenzoic acid and tetrahydroisoquinolynyl-benzoic acid derivatives (4a-g and 6a-g) were designed. The synthesized analogs were experimentally validated for their effects by in vitro and direct enzymatic tests. Also, the compounds were subjected to in silico monitoring with Schrödinger Suite software to assign binding affinities of potential derivatives based on Glide XP scoring, molecular mechanics-generalized Born surface area computing, and validation by molecular docking. The results revealed that 6c (1,3-dimethyldihydropyrimidine-2,4-(1H,3H)-dione-substituted, KI value of 33.00 ± 0.29 nM), 6e (cyclohexanone-substituted, KI value of 18.78 ± 0.09 nM), and 6f (2,2-dimethyl-1,3-dioxan-4-one-substituted, KI value of 13.62 ± 0.21 nM) from the benzoic acid derivatives in this series were the most promising derivatives, as they exhibited a good multifunctional inhibition at all experimental levels and in the in silico validation against hCA I, hCA II, and AChE, respectively, for the treatment of AD.
Collapse
Affiliation(s)
- Muharrem Kalaycı
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
33
|
Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. Int J Biol Macromol 2020; 163:1970-1988. [DOI: 10.1016/j.ijbiomac.2020.09.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
|
34
|
Angeli A, Carta F, Nocentini A, Winum JY, Zalubovskis R, Akdemir A, Onnis V, Eldehna WM, Capasso C, Simone GD, Monti SM, Carradori S, Donald WA, Dedhar S, Supuran CT. Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Metabolites 2020; 10:metabo10100412. [PMID: 33066524 PMCID: PMC7602163 DOI: 10.3390/metabo10100412] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed.
Collapse
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Jean-Yves Winum
- IBMM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France;
| | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia, Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Str., 1048 Riga, Latvia;
| | - Atilla Akdemir
- Computer-aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul 34093, Turkey;
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato, Cagliari, Italy;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Clemente Capasso
- Institute of Biosciences and Bioresources—National Research Council, via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simona Maria Monti
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - William A. Donald
- School of Chemistry, University of New South Wales, 1466 Sydney, Australia;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver Vancouver, BC V5Z 1L3, Canada;
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
- Correspondence:
| |
Collapse
|
35
|
Clima L, Craciun BF, Angeli A, Petreni A, Bonardi A, Nocentini A, Carta F, Gratteri P, Pinteala M, Supuran CT. Synthesis, Computational Studies and Assessment of in Vitro Activity of Squalene Derivatives as Carbonic Anhydrase Inhibitors. ChemMedChem 2020; 15:2052-2057. [PMID: 32744806 DOI: 10.1002/cmdc.202000500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/25/2022]
Abstract
We report novel molecules incorporating the nontoxic squalene scaffold and different carbonic anhydrase inhibitors (CAIs). Potent inhibitory action, in the low-nanomolar range, was detected against isoforms hCA II for sulfonamide derivatives, which proved to be selective against this isoform over the tumor-associate hCA IX and XII isoforms. On the other hand, coumarin derivatives showed weak potency but high selectivity against the tumor-associated isoform CA IX. These compounds are interesting candidates for preclinical evaluation in glaucoma or various tumors in which the two enzymes are involved. In addition, an in silico study of inhibitor-bound hCA II revealed extensive interactions with the hydrophobic pocket of the active site and provided molecular insights into the binding properties of these new inhibitors.
Collapse
Affiliation(s)
- Lilia Clima
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni", Institute of Macromolecular Chemistry, 700487, Iasi, Romania
| | - Bogdan Florin Craciun
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni", Institute of Macromolecular Chemistry, 700487, Iasi, Romania
| | - Andrea Angeli
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni", Institute of Macromolecular Chemistry, 700487, Iasi, Romania.,Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Andrea Petreni
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni", Institute of Macromolecular Chemistry, 700487, Iasi, Romania.,Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Alessandro Bonardi
- Department of Neurosciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Alessio Nocentini
- Department of Neurosciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Fabrizio Carta
- Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Paola Gratteri
- Department of Neurosciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni", Institute of Macromolecular Chemistry, 700487, Iasi, Romania
| | - Claudiu T Supuran
- Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
36
|
Swain B, Angeli A, Singh P, Supuran CT, Arifuddin M. New coumarin/sulfocoumarin linked phenylacrylamides as selective transmembrane carbonic anhydrase inhibitors: Synthesis and in-vitro biological evaluation. Bioorg Med Chem 2020; 28:115586. [PMID: 32631564 DOI: 10.1016/j.bmc.2020.115586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 11/28/2022]
Abstract
Two novel series of phenylacrylamide linked coumarins and sulfocoumarins (6a-p, 8a-i, and 14a-g) were synthesized and evaluated against four physiologically relevant human carbonic anhydrases (hCAs, EC 4.2.1.1), isoforms hCA I, hCA II, hCA IX and hCA XII for their inhibitory action. All new compounds when screened for carbonic anhydrase inhibitory activity have shown selective inhibition towards the tumor associated isoforms hCA IX and XII over CA I and II, with inhibition constants in the submicromolar to low nanomolar range. Compound 6b and 14g exhibited significant inhibition with low nanomolar potency against hCA IX, whereas 6k was effective against hCA XII. Compounds 6b, 14g and 6k may be considered as lead molecules for future development of cancer therapeutics based on a novel mechanism of action.
Collapse
Affiliation(s)
- Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto, Fiorentino, Florence, Italy
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto, Fiorentino, Florence, Italy.
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; Department of Chemistry, Anwarul Uloom College, 11-3-918, New Malleypally, Hyderabad 500001, T. S., India.
| |
Collapse
|
37
|
Eldehna WM, Nocentini A, Elsayed ZM, Al-Warhi T, Aljaeed N, Alotaibi OJ, Al-Sanea MM, Abdel-Aziz HA, Supuran CT. Benzofuran-Based Carboxylic Acids as Carbonic Anhydrase Inhibitors and Antiproliferative Agents against Breast Cancer. ACS Med Chem Lett 2020; 11:1022-1027. [PMID: 32435420 PMCID: PMC7236537 DOI: 10.1021/acsmedchemlett.0c00094] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022] Open
Abstract
Pursuing our effort for developing effective inhibitors of the cancer-related hCA IX isoform, here we describe the synthesis of novel benzofuran-based carboxylic acid derivatives, featuring the benzoic (9a-f) or hippuric (11a,b) acid moieties linked to 2-methylbenzofuran or 5-bromobenzofuran tails via an ureido linker. The target carboxylic acids were evaluated for the potential inhibitory action against hCAs I, II, IX, and XII. Superiorly, benzofuran-containing carboxylic acid derivatives 9b, 9e, and 9f acted as submicromolar hCA IX inhibitors with KIs = 0.91, 0.79, and 0.56 μM, respectively, with selective inhibitory profile against the target hCA IX over the off-target isoforms hCA I and II (SIs: 2 to >63 and 4-47, respectively). Compounds 9b, 9e, and 9f were examined for their antiproliferative action against human breast cancer (MCF-7 and MDA-MB-231) cell lines. In particular, 9e displayed promising antiproliferative (IC50 = 2.52 ± 0.39 μM), cell cycle disturbance, and pro-apoptotic actions in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Scientific
Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Alessio Nocentini
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Zainab M. Elsayed
- Scientific
Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Tarfah Al-Warhi
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nada Aljaeed
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ohoud J. Alotaibi
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Hatem A. Abdel-Aziz
- Department
of Applied Organic Chemistry, National Research
Center, Dokki, Cairo 12622, Egypt
| | - Claudiu T. Supuran
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
38
|
Moi D, Nocentini A, Deplano A, Osman SM, AlOthman ZA, Piras V, Balboni G, Supuran CT, Onnis V. Appliance of the piperidinyl-hydrazidoureido linker to benzenesulfonamide compounds: Synthesis, in vitro and in silico evaluation of potent carbonic anhydrase II, IX and XII inhibitors. Bioorg Chem 2020; 98:103728. [PMID: 32182519 DOI: 10.1016/j.bioorg.2020.103728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/10/2023]
Abstract
Herein we report on a new series of hydrazidoureidobenzensulfonamides investigated as inhibitors of the cytosolic human (h) hCA I and II isoforms, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The reported derivatives contain a 4-substituted piperidine fragment in which the hydrazidoureido linker has been involved as spacer between the benzenesulfonamide fragment which binds the zinc ion from the active site, and the tail of the inhibitor. Depending on the substitution pattern at the piperidine ring, low nanomolar inhibitors were detected against hCA II, hCA IX and hCA XII, making the new class of sulfonamides of interest for various pharmacologic applications.
Collapse
Affiliation(s)
- Davide Moi
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy
| | - Alessio Nocentini
- Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Alessandro Deplano
- Pharmacelera, Placa Pau Vila, 1, Sector 1, Edificio Palau de Mar, Barcelona 08039, Spain
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zeid A AlOthman
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Valentina Piras
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy.
| |
Collapse
|
39
|
Manikala VK, Rao VM. Synthesis and Anticancer Activity of (E)-5-[(1-Aryl-1H-1,2,3-triazol-4-yl)methylene]thiazolidine-2,4-diones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020050206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Hargunani P, Tadge N, Ceruso M, Leitans J, Kazaks A, Tars K, Gratteri P, Supuran CT, Nocentini A, Toraskar MP. Aryl-4,5-dihydro-1 H-pyrazole-1-carboxamide Derivatives Bearing a Sulfonamide Moiety Show Single-digit Nanomolar-to-Subnanomolar Inhibition Constants against the Tumor-associated Human Carbonic Anhydrases IX and XII. Int J Mol Sci 2020; 21:ijms21072621. [PMID: 32283813 PMCID: PMC7177888 DOI: 10.3390/ijms21072621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
A series of new 3-phenyl-5-aryl-N-(4-sulfamoylphenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide derivatives was designed here, synthesized, and studied for carbonic anhydrase (CAs, EC 4.2.1.1) inhibitory activity against the human (h) isozymes I, II, and VII (cytosolic, off-target isoforms), and IX and XII (anticancer drug targets). Generally, CA I was not effectively inhibited, whereas effective inhibitors were identified against both CAs II (KIs in the range of 5.2–233 nM) and VII (KIs in the range of 2.3–350 nM). Nonetheless, CAs IX and XII were the most susceptible isoforms to this class of inhibitors. In particular, compounds bearing an unsubstituted phenyl ring at the pyrazoline 3 position showed 1.3–1.5 nM KIs against CA IX. In contrast, a subset of derivatives having a 4-halo-phenyl at the same position of the aromatic scaffold even reached subnanomolar KIs against CA XII (0.62–0.99 nM). Docking studies with CA IX and XII were used to shed light on the derivative binding mode driving the preferential inhibition of the tumor-associated CAs. The identified potent and selective CA IX/XII inhibitors are of interest as leads for the development of new anticancer strategies.
Collapse
Affiliation(s)
- Priya Hargunani
- Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai 400 614, India; (P.H.); (N.T.)
| | - Nikhil Tadge
- Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai 400 614, India; (P.H.); (N.T.)
| | - Mariangela Ceruso
- Neurofarba Dept., Section of Pharmaceutical and Nutraceutical Sciences, Universitá degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (P.G.); (C.T.S.)
| | - Janis Leitans
- Latvian Biomedical Research and Study Center, Ratsupites 1, LV-1067 Riga, Latvia; (J.L.); (A.K.); (K.T.)
| | - Andris Kazaks
- Latvian Biomedical Research and Study Center, Ratsupites 1, LV-1067 Riga, Latvia; (J.L.); (A.K.); (K.T.)
| | - Kaspars Tars
- Latvian Biomedical Research and Study Center, Ratsupites 1, LV-1067 Riga, Latvia; (J.L.); (A.K.); (K.T.)
| | - Paola Gratteri
- Neurofarba Dept., Section of Pharmaceutical and Nutraceutical Sciences, Universitá degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (P.G.); (C.T.S.)
| | - Claudiu T. Supuran
- Neurofarba Dept., Section of Pharmaceutical and Nutraceutical Sciences, Universitá degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (P.G.); (C.T.S.)
| | - Alessio Nocentini
- Neurofarba Dept., Section of Pharmaceutical and Nutraceutical Sciences, Universitá degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (P.G.); (C.T.S.)
- Correspondence: (A.N.); (M.P.T.)
| | - Mrunmayee P. Toraskar
- Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai 400 614, India; (P.H.); (N.T.)
- Correspondence: (A.N.); (M.P.T.)
| |
Collapse
|
41
|
Supuran CT. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin Drug Discov 2020; 15:671-686. [PMID: 32208982 DOI: 10.1080/17460441.2020.1743676] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The spacious active site cavity of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) shows a great versatility for a variety of binding modes for modulators of activity, inhibitors, and activators, some of which are clinically used drugs. AREAS COVERED There are at least four well-documented CA inhibition mechanisms and the same number of binding modes for CA inhibitors (CAIs), one of which superposes with the binding of activators (CAAs). They include (i) coordination to the catalytic metal ion; (ii) anchoring to the water molecule coordinated to the metal ion; (iii) occlusion of the active site entrance; and (iv) binding outside the active site. A large number of chemical classes of CAIs show these binding modes explored in detail by kinetic, crystallographic, and other techniques. The tail approach was applied to all of them and allowed many classes of highly isoform-selective inhibitors. This is the subject of our review. EXPERT OPINION All active site regions of CAs accommodate inhibitors to bind, which is reflected in very different inhibition profiles for such compounds and the possibility to design drugs with effective action and new applications, such as for the management of hypoxic tumors, neuropathic pain, cerebral ischemia, arthritis, and degenerative disorders.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence , Florence, Italy
| |
Collapse
|
42
|
Fois B, Distinto S, Meleddu R, Deplano S, Maccioni E, Floris C, Rosa A, Nieddu M, Caboni P, Sissi C, Angeli A, Supuran CT, Cottiglia F. Coumarins from Magydaris pastinacea as inhibitors of the tumour-associated carbonic anhydrases IX and XII: isolation, biological studies and in silico evaluation. J Enzyme Inhib Med Chem 2020; 35:539-548. [PMID: 31948300 PMCID: PMC7006766 DOI: 10.1080/14756366.2020.1713114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In an in vitro screening for human carbonic anhydrase (hCA) inhibiting agents from higher plants, the petroleum ether and ethyl acetate extracts of Magydaris pastinacea seeds selectively inhibited hCA IX and hCA XII isoforms. The phytochemical investigation of the extracts led to the isolation of ten linear furocoumarins (1-10), four simple coumarins (12-15) and a new angular dihydrofurocoumarin (11). The structures of the isolated compounds were elucidated based on 1 D and 2 D NMR, MS, and ECD data analysis. All isolated compounds were inactive towards the ubiquitous cytosolic isoform hCA I and II (Ki > 10,000 nM) while they were significantly active against the tumour-associated isoforms hCA IX and XII. Umbelliprenin was the most potent coumarin inhibiting hCA XII isoform with a Ki of 5.7 nM. The cytotoxicity of the most interesting compounds on HeLa cancer cells was also investigated.
Collapse
Affiliation(s)
- Benedetta Fois
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Serenella Deplano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Costantino Floris
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Antonella Rosa
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Mariella Nieddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Firenze, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Firenze, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
43
|
Alhameed RA, Berrino E, Almarhoon Z, El-Faham A, Supuran CT. A class of carbonic anhydrase IX/XII - selective carboxylate inhibitors. J Enzyme Inhib Med Chem 2020; 35:549-554. [PMID: 31967484 PMCID: PMC7006686 DOI: 10.1080/14756366.2020.1715388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A small series of 2,4-dioxothiazolidinyl acetic acids was prepared from thiourea, chloroacetic acid, aromatic aldehydes, and ethyl-2-bromoacetate. They were assayed for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms of human (h) origin, the cytosolic hCA I and II, and the transmembrane hCA IX and XII, involved among others in tumorigenesis (hCA IX and XII) and glaucoma (hCA II and XII). The two cytosolic isoforms were not inhibited by these carboxylates, which were also rather ineffective as hCA IX inhibitors. On the other hand, they showed submicromolar hCA XII inhibition, with KIs in the range of 0.30–0.93 µM, making them highly CA XII-selective inhibitors.
Collapse
Affiliation(s)
- Rakia Abd Alhameed
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Emanuela Berrino
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Zainab Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.,Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
44
|
George RF, Bua S, Supuran CT, Awadallah FM. Synthesis of some N-aroyl-2-oxindole benzenesulfonamide conjugates with carbonic anhydrase inhibitory activity. Bioorg Chem 2020; 96:103635. [PMID: 32028060 DOI: 10.1016/j.bioorg.2020.103635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 01/07/2023]
Abstract
Implication of carbonic anhydrases (CAs) in many physiological functions made them attractive therapeutic targets. Herein, we report the synthesis of three series of benzenesulfonamide-based compounds (5a-e, 9a-e and 10a-e) as potential ligands to four of the human CA isoforms (hCA I, hCA II, hCA IX and hCA XII). All synthesized compounds were evaluated for their CA inhibitory activity. Most of the compounds preferentially inhibited the tumor-associated isoforms IX and XII. Series 9a-e and 10a-e showed the highest activity. Of particular interest was compound 10a which demonstrated the highest activity among all compounds with Ki of 68.3 and 21.5 nM against hCA IX and hCA XII, respectively, in addition to its highest selectivity index. To get deep insight on the interaction of compound 10a with CA, docking experiment was run to study the binding interaction with key amino acids and zinc ion in the catalytic site of the four isoforms studied.
Collapse
Affiliation(s)
- Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Silvia Bua
- University of Florence, Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- University of Florence, Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Fadi M Awadallah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
45
|
Pustenko A, Nocentini A, Balašova A, Krasavin M, Žalubovskis R, Supuran CT. 7-Acylamino-3H-1,2-benzoxathiepine 2,2-dioxides as new isoform-selective carbonic anhydrase IX and XII inhibitors. J Enzyme Inhib Med Chem 2020; 35:650-656. [PMID: 32079427 PMCID: PMC7048192 DOI: 10.1080/14756366.2020.1722658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A series of 3H-1,2-benzoxathiepine 2,2-dioxides incorporating 7-acylamino moieties were obtained by an original procedure starting from 5-nitrosalicylaldehyde, which was treated with propenylsulfonyl chloride followed by Wittig reaction of the bis-olefin intermediate. The new derivatives, belonging to the homosulfocoumarin chemotype, were assayed as inhibitors of the zinc metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Four pharmacologically relevant human (h) isoforms were investigated, the cytosolic hCA I and II and the transmembrane, tumour-associated hCA IX and XII. No relevant inhibition of hCA I and II was observed, whereas some of the new derivatives were effective, low nanomolar hCA IX/XII inhibitors, making them of interest for investigations in situations in which the activity of these isoforms is overexpressed, such as hypoxic tumours, arthritis or cerebral ischaemia.
Collapse
Affiliation(s)
- Aleksandrs Pustenko
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | - Mikhail Krasavin
- Department of Chemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
46
|
Fares M, Eldehna WM, Bua S, Lanzi C, Lucarini L, Masini E, Peat TS, Abdel-Aziz HA, Nocentini A, Keller PA, Supuran CT. Discovery of Potent Dual-Tailed Benzenesulfonamide Inhibitors of Human Carbonic Anhydrases Implicated in Glaucoma and in Vivo Profiling of Their Intraocular Pressure-Lowering Action. J Med Chem 2020; 63:3317-3326. [PMID: 32031797 DOI: 10.1021/acs.jmedchem.9b02090] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The design of three dual-tailed sulfonamide series 11a-11g, 14a-14h, and 16a-16e as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors are presented. All compounds were evaluated for inhibitory action against pharmacologically relevant human CA isoforms I, II, IV, and VII. Compounds 11a-11g emerged as potent CA inhibitors against the four tested isoforms with a significant selectivity to CA II, which is implicated in glaucoma (Ki in the range 0.36-6.9 nM). X-ray crystallographic analysis of three compounds (11a, 11d, and 11g) bound to CA II showed the validity of the adopted drug design strategy as specific moieties within the ligand structure interacted directly with the hydrophobic and hydrophilic halves of the CA II active site. Compounds 11b-11d and 11g were evaluated for their intraocular pressure-lowering effects in a rabbit model of glaucoma. 11b and 11d showed significant efficacy when compared to the clinically used drug dorzolamide.
Collapse
Affiliation(s)
- Mohamed Fares
- School of Chemistry & Molecular Bioscience, Molecular Horizons, and Illawarra Health & Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Cecilia Lanzi
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Gaetano Pieraccini 6, 50100 Florence, Italy
| | - Laura Lucarini
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Gaetano Pieraccini 6, 50100 Florence, Italy
| | - Emanuela Masini
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Gaetano Pieraccini 6, 50100 Florence, Italy
| | - Thomas S Peat
- Biomedical Manufacturing Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza 12622, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Paul A Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons, and Illawarra Health & Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
47
|
Pustenko A, Nocentini A, Balašova A, Alafeefy A, Krasavin M, Žalubovskis R, Supuran CT. Aryl derivatives of 3H-1,2-benzoxathiepine 2,2-dioxide as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2020; 35:245-254. [PMID: 31790605 PMCID: PMC6896485 DOI: 10.1080/14756366.2019.1695795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A new series of homosulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) possessing various substitution patterns and moieties in the 7, 8 or 9 position of the heterocylic ring were prepared by original procedures and investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. The 8-substituted homosulfocoumarins were the most effective hCA IX/XII inhibitors followed by the 7-substituted derivatives, whereas the substitution pattern in position 9 led to less effective binders for the transmembrane, tumour-associated isoforms IX/XII. The cytosolic isoforms hCA I and II were not inhibited by these compounds, similar to the sulfocoumarins/coumarins investigated earlier. As hCA IX and XII are validated anti-tumour targets, with one sulphonamide (SLC-0111) in Phase Ib/II clinical trials, finding derivatives with better selectivity for inhibiting the tumour-associated isoforms over the cytosolic ones, as the homosulfocoumarins reported here, is of crucial importance.
Collapse
Affiliation(s)
- Aleksandrs Pustenko
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Florence, Italy
| | | | - Ahmed Alafeefy
- Faculty of Pharmacy, University Technology MARA, UiTM, Bandar, Malaysia
| | - Mikhail Krasavin
- Chemistry Department, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
48
|
Said MA, Eldehna WM, Nocentini A, Fahim SH, Bonardi A, Elgazar AA, Kryštof V, Soliman DH, Abdel-Aziz HA, Gratteri P, Abou-Seri SM, Supuran CT. Sulfonamide-based ring-fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: Design, synthesis, and in vitro biological evaluation. Eur J Med Chem 2020; 189:112019. [PMID: 31972394 DOI: 10.1016/j.ejmech.2019.112019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/17/2022]
Abstract
In the present study, we report the design and synthesis of novel CAN508 sulfonamide-based analogues (4, 8a-e, 9a-h and 10a-e) as novel carbonic anhydrase (CA) inhibitors with potential CDK inhibitory activity. A bioisosteric replacement approach was adopted to replace the phenolic OH of CAN508 with a sulfamoyl group to afford compound 4. Thereafter, a ring-fusion approach was utilized to furnish the 5/5 fused imidazopyrazoles 8a-e which were subsequently expanded to 6/5 pyrazolopyrimidines 9a-h and 10a-e. All the synthesized analogues were evaluated for their inhibitory activity toward isoforms hCA I, II, IX and XII. The target tumor-associated isoforms hCA IX and XII were effectively inhibited with KIs ranges 6-67.6 and 10.1-88.6 nM, respectively. Furthermore, all compounds were evaluated for their potential CDK2 and 9 inhibitory activities. Pyrazolopyrimidines 9d, 9e and 10b displayed weak CDK2 inhibitory activity (IC50 = 6.4, 8.0 and 11.6 μM, respectively), along with abolished CDK9 inhibitory activity. This trend suggested that pyrazolopyrimidine derivatives merit further optimization to furnish more effective CDK2 inhibitor lead. On account of their excellent activity and selectivity towards hCA IX and XII, pyrazolopyrimidines 10 were evaluated for their anti-proliferative activity toward breast cancer MCF-7 and MDA-MB-468 cell lines under normoxic and hypoxic conditions. The most potent anti-proliferative agents 10a, 10c and 10d significantly increased cell percentage at sub-G1 and G2-M phases with concomitant decrease in the S phase population in MCF-7 treated cells. Finally, a docking study was undertaken to investigate the binding mode for the most selective hCA IX and XII inhibitors 10a-e, within hCA II, IX and XII active sites.
Collapse
Affiliation(s)
- Mohamed A Said
- Department of Pharmaceutical Chemistry, College of Pharmacy, Egyptian Russian University, Badr City, Cairo, P.O. Box 11829, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany, The Czech Academy of Sciences, Slechtitelu 27, 78371, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinská 5, 77900, Olomouc, Czech Republic
| | - Dalia H Soliman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Egyptian Russian University, Badr City, Cairo, P.O. Box 11829, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al Azhar University, Cairo, P.O. Box 11471, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Paola Gratteri
- Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
49
|
Said MA, Eldehna WM, Nocentini A, Bonardi A, Fahim SH, Bua S, Soliman DH, Abdel-Aziz HA, Gratteri P, Abou-Seri SM, Supuran CT. Synthesis, biological and molecular dynamics investigations with a series of triazolopyrimidine/triazole-based benzenesulfonamides as novel carbonic anhydrase inhibitors. Eur J Med Chem 2020; 185:111843. [PMID: 31718943 DOI: 10.1016/j.ejmech.2019.111843] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
In the presented work, we report the design and synthesis of different new sets of triazolopyrimidine-based (9a-d) and triazole-based (11a-h, 13a-c, 15a,b, 17a,b and 21a-g) benzenesulfonamides. The newly synthesized sulfonamides were assessed for their inhibitory activities toward four human (h) metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) isoforms; hCA I, II, IX and XII. The four examined isoforms were inhibited by the prepared sulfonamides (9a-d, 11a-h, 13a-c, 15a,b, 17a,b and 21a-g) in variable degrees with KIs ranges: 94.4-4953.5 nM for hCA I, 6.9-837.6 nM for hCA II, 3.3-85.0 nM for hCA XI, and 4.4-105.0 nM for hCA XII. In particular, sulfonamides 11e, 21a and 21e emerged as single-digit nanomolar hCA IX and hCA XII inhibitors. Interestingly, triazolopyrimidine-based sulfonamide 9d and triazole-based sulfonamide 21e were found to be the most selective hCA IX inhibitors over hCA I (SI = 100.85 and 210.58, respectively) and hCA II (SI = 18.54 and 38.36, respectively). Thereafter, sulfonamides 9d and 21e were docked into the active site of CAs II, IX and XII, then poses showing the best scoring values and favorable binding interactions were subjected to a MM-GBSA based refinement and, limited to CA IX and XII, to a cycle of 100 ns molecular dynamics.
Collapse
Affiliation(s)
- Mohamed A Said
- Department of Pharmaceutical Chemistry, College of Pharmacy, Egyptian Russian University, Badr City, Cairo, P.O. Box 11829, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Dalia H Soliman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Egyptian Russian University, Badr City, Cairo, P.O. Box 11829, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al Azhar University, Cairo, P.O. Box 11471, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Paola Gratteri
- Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
50
|
Nocentini A, Moi D, Deplano A, Osman SM, AlOthman ZA, Balboni G, Supuran CT, Onnis V. Sulfonamide/sulfamate switch with a series of piperazinylureido derivatives: Synthesis, kinetic and in silico evaluation as carbonic anhydrase isoforms I, II, IV, and IX inhibitors. Eur J Med Chem 2020; 186:111896. [DOI: 10.1016/j.ejmech.2019.111896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/05/2023]
|