1
|
Wang R, Wang K, Li Z, Long H, Zhang D, Li Y, Xia Z, Guo X, Chen W, Cao F, Jiang F. Blood-Brain Barrier-Permeable, Reactive Oxygen Species-Producing, and Mitochondria-Targeting Nanosystem Amplifies Glioblastoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27434-27447. [PMID: 40289326 DOI: 10.1021/acsami.5c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Gemcitabine (GTB), a clinically approved nucleoside analogue for cancer treatment, faces therapeutic limitations due to rapid enzymatic deactivation by cytidine deaminase (CDA) in tumor microenvironments. Over 90% of systemically administered GTB undergoes catalytic conversion to inactive 2'-deoxy-2',2'-difluorouracil metabolites through CDA-mediated deamination. To address this pharmacological challenge, we developed a multifunctional codelivery nanosystem through strategic engineering of reactive oxygen species (ROS)-generating, mitochondria-targeting CPUL1-TPP (CT) nanoaggregates. These self-assembling CT/GTB complexes were further optimized with DSPE-MPEG2k (DP) and Angiopep-2-conjugated DSPE-MPEG2k (Ang-DP) to create blood-brain barrier (BBB)-penetrating Ang-DP@CT/GTB nanoparticles, enhancing both physiological stability and low-density lipoprotein receptor-related protein 1 (LRP1)-mediated glioma targeting. Comparative analyses revealed that Ang-DP@CT/GTB nanoparticles significantly enhanced GTB's antiglioblastoma efficacy compared to free drug administration in both in vitro and in vivo models. Mechanistic investigations demonstrated that the nanosystem upregulates heme oxygenase-1 (HO-1), subsequently downregulating CDA expression to mitigate GTB metabolism. This coordinated molecular modulation prolongs GTB's therapeutic activity while leveraging the ROS-generating capacity of CT components for synergistic tumor suppression. The BBB-permeable codelivery platform exemplifies a rational design paradigm for multifunctional carrier-free pure nanodrugs (PNDs), demonstrating how clinical drug reformulation can overcome inherent pharmacokinetic limitations. This nanotechnology-driven approach provides critical insights for optimizing chemotherapeutic performance through metabolic pathway regulation and targeted delivery engineering.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ke Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhuolin Li
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haoping Long
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dongyu Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yanting Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhuolu Xia
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xindong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Feng Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
2
|
Yang H, Zhang D, Yuan Z, Qiao H, Xia Z, Cao F, Lu Y, Jiang F. Novel 4-Aryl-4H-chromene derivative displayed excellent in vivo anti-glioblastoma efficacy as the microtubule-targeting agent. Eur J Med Chem 2024; 267:116205. [PMID: 38350361 DOI: 10.1016/j.ejmech.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
In this study, a series of novel 4-Aryl-4H-chromene derivatives (D1-D31) were designed and synthesized by integrating quinoline heterocycle to crolibulin template molecule based on the strategy of molecular hybridization. One of these compounds D19 displayed positive antiproliferative activity against U87 cancer cell line (IC50 = 0.90 ± 0.03 μM). Compound D19 was verified as the microtubule-targeting agent through downregulating tubulin related genes of U87 cells, destroying the cytoskeleton of tubulins and interacting with the colchicine-binding site to inhibit the polymerization of tubulins by transcriptome analysis, immune-fluorescence staining, microtubule dynamics and EBI competition assays as well as molecular docking simulations. Moreover, compound D19 induced G2/M phase arrest, resulted in cell apoptosis and inhibited the migration of U87 cells by flow cytometry analysis and wound healing assays. Significantly, compound D19 dose-dependently inhibited the tumor growth of orthotopic glioma xenografts model (GL261-Luc) and effectively prolonged the survival time of mice, which were extremely better than those of positive drug temozolomide (TMZ). Compound D19 exhibited potent in vivo antivascular activity as well as no observable toxicity. Furthermore, the results of in silico simulation studies and P-gp transwell assays verified the positive correlation between compound D19's Blood-Brain Barrier (BBB) permeability and its in vivo anti-GBM activity. Overall, compound D19 can be used as a promising anti-GBM lead compound for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Haoyi Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Dongyu Zhang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziyang Yuan
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Haishi Qiao
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhuolu Xia
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Cao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Jiang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Sfera A, Andronescu L, Britt WG, Himsl K, Klein C, Rahman L, Kozlakidis Z. Receptor-Independent Therapies for Forensic Detainees with Schizophrenia-Dementia Comorbidity. Int J Mol Sci 2023; 24:15797. [PMID: 37958780 PMCID: PMC10647468 DOI: 10.3390/ijms242115797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Forensic institutions throughout the world house patients with severe psychiatric illness and history of criminal violations. Improved medical care, hygiene, psychiatric treatment, and nutrition led to an unmatched longevity in this population, which previously lived, on average, 15 to 20 years shorter than the public at large. On the other hand, longevity has contributed to increased prevalence of age-related diseases, including neurodegenerative disorders, which complicate clinical management, increasing healthcare expenditures. Forensic institutions, originally intended for the treatment of younger individuals, are ill-equipped for the growing number of older offenders. Moreover, as antipsychotic drugs became available in 1950s and 1960s, we are observing the first generation of forensic detainees who have aged on dopamine-blocking agents. Although the consequences of long-term treatment with these agents are unclear, schizophrenia-associated gray matter loss may contribute to the development of early dementia. Taken together, increased lifespan and the subsequent cognitive deficit observed in long-term forensic institutions raise questions and dilemmas unencountered by the previous generations of clinicians. These include: does the presence of neurocognitive dysfunction justify antipsychotic dose reduction or discontinuation despite a lifelong history of schizophrenia and violent behavior? Should neurolipidomic interventions become the standard of care in elderly individuals with lifelong schizophrenia and dementia? Can patients with schizophrenia and dementia meet the Dusky standard to stand trial? Should neurocognitive disorders in the elderly with lifelong schizophrenia be treated differently than age-related neurodegeneration? In this article, we hypothesize that gray matter loss is the core symptom of schizophrenia which leads to dementia. We hypothesize further that strategies to delay or stop gray matter depletion would not only improve the schizophrenia sustained recovery, but also avert the development of major neurocognitive disorders in people living with schizophrenia. Based on this hypothesis, we suggest utilization of both receptor-dependent and independent therapeutics for chronic psychosis.
Collapse
Affiliation(s)
- Adonis Sfera
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
- School of Behavioral Health, Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
- Department of Psychiatry, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Luminita Andronescu
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
| | - William G. Britt
- Department of Psychiatry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Kiera Himsl
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
| | - Carolina Klein
- California Department of State Hospitals, Sacramento, CA 95814, USA;
| | - Leah Rahman
- Department of Neuroscience, University of Oregon, 1585 E 13th Ave, Eugene, OR 97403, USA;
| | - Zisis Kozlakidis
- International Agency for Research on Cancer, 69366 Lyon Cedex, France;
| |
Collapse
|
4
|
Chen J, Feng D, Lu Y, Zhang Y, Jiang H, Yuan M, Xu Y, Zou J, Zhu Y, Zhang J, Ge C, Wang Y. A Novel Phenazine Analog, CPUL1, Suppresses Autophagic Flux and Proliferation in Hepatocellular Carcinoma: Insight from Integrated Transcriptomic and Metabolomic Analysis. Cancers (Basel) 2023; 15:cancers15051607. [PMID: 36900398 PMCID: PMC10001020 DOI: 10.3390/cancers15051607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND CPUL1, a phenazine analog, has demonstrated potent antitumor properties against hepatocellular carcinoma (HCC) and indicates a promising prospect in pharmaceutical development. However, the underlying mechanisms remain largely obscure. METHODS Multiple HCC cell lines were used to investigate the in vitro effects of CPUL1. The antineoplastic properties of CPUL1 were assessed in vivo by establishing a xenograft nude mice model. After that, metabolomics, transcriptomics, and bioinformatics were integrated to elucidate the mechanisms underlying the therapeutic efficacy of CPUL1, highlighting an unanticipated involvement of autophagy dysregulation. RESULTS CPUL1 suppressed HCC cell proliferation in vitro and in vivo, thereby endorsing the potential as a leading agent for HCC therapy. Integrative omics characterized a deteriorating scenario of metabolic debilitation with CPUL1, presenting an issue in the autophagy contribution of autophagy. Subsequent observations indicated that CPUL1 treatment could impede autophagic flow by suppressing autophagosome degradation rather than its formation, which supposedly exacerbated cellular damage triggered by metabolic impairment. Moreover, the observed late autophagosome degradation may be attributed to lysosome dysfunction, which is essential for the final stage of autophagy and cargo disposal. CONCLUSIONS Our study comprehensively profiled the anti-hepatoma characteristics and molecular mechanisms of CPUL1, highlighting the implications of progressive metabolic failure. This could partially be ascribed to autophagy blockage, which supposedly conveyed nutritional deprivation and intensified cellular vulnerability to stress.
Collapse
Affiliation(s)
- Jiaqin Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Feng
- Nanjing Southern Pharmaceutical Technology Co., Ltd., Nanjing 211100, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yanjun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Hanxiang Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Man Yuan
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Xu
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianjun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jingjing Zhang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chun Ge
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Correspondence: (C.G.); (Y.W.)
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (C.G.); (Y.W.)
| |
Collapse
|
5
|
Zhang C, Ding Q, Xia Z, Wang H, Jiang F, Lu Y. Novel Chalcone-Phenazine Hybrids Induced Ferroptosis in U87-MG Cells through Activating Ferritinophagy. Chem Biodivers 2023; 20:e202201117. [PMID: 36536551 DOI: 10.1002/cbdv.202201117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Thirty-seven novel chalcone-phenazine hybrid molecules (C1∼C13 and F1∼F24) with 1,2,3-triazole or ethyl group as linkers were designed and synthesized in this study. Some compounds exhibited selective cytotoxicity against U87-MG cancer cell lines in vitro, in which compound C4 were found to have the best antiproliferative activity. SAR study indicated 1,2,3-triazole group may be crucial for enhancing compounds' cytotoxicity. C4 was verified to induce ferroptosis in U87-MG cells by transcription, lipid peroxidation, lipid ROS assays. Furthermore, C4 was up-regulated LC3-II, degradated FTH1, and then increasing iron resulted in the down-regulation of NCOA4. Together, all above evidences highlighted the potential of compound C4 that triggered ferroptosis by activating ferritinophagy against U87-MG cells.
Collapse
Affiliation(s)
- Chunhua Zhang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Qifan Ding
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhuolu Xia
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Hengyu Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Jiang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
6
|
Liu J, Xu Y, Lu H, Wang R, Xia Z, Zhao C, Huang D, Jiang F, Chen W. Nanoaggregates of Disulfide-Decorated TrxR Inhibitor Promote Cellular Uptake, Selective Targeting, and Antitumor Efficacy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13955-13962. [PMID: 36377412 DOI: 10.1021/acs.langmuir.2c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Three self-assembled nanoaggregates (CPUL1-LA NAs, CPUL1-DA NAs, and CPUL1-AA NAs) were constructed through lipoic acid (LA), dithiodipropionic acid (DA), and adipic acid (AA) decorated TrxR inhibitor (CPUL1), respectively. Measurements of DLS, TEM, UV-vis, fluorescence, 1H NMR, ITC, and MTT assays verified disulfide-containing CPUL1-LA NAs and CPUL1-DA NAs spontaneously assembled carrier-free nanoparticles in aqueous solution, which possessed high drug contents, excellent stability, improved cytotoxicity against HUH7 hepatoma cells, and potential biosafety because of low cytotoxicity against L02 normal cells. In contrast, disulfide-free CPUL1-AA NAs happened to aggregate and precipitate after 48 h, which showed distinct instability in aqueous solution. Thus, disulfide units seemed to be crucial for constructing controllable and stable nanoaggregates. While measuring the reduction of nanoaggregates by TrxR/NADPH and GSH/GR/NADPH, cyclic disulfide of LA and linear disulfide of DA were verified to endow the nanoaggregates with targeting ability to respond specifically to TrxR over GSH. Furthermore, by tests of flow cytometry, fluorescence images, and CLSM, both CPUL1-LA NAs and CPUL1-DA NAs displayed a faster cellular uptake characteristic to be internalized by cancer cells and could generate more abundant ROS to induce cell apoptosis than that of free CPUL1, resulting in significantly improved antitumor efficacy against HUH7 cells in vitro.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Youqiao Xu
- Department of Infection Control, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
| | - Haojie Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Rong Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhuolu Xia
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Feng Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
7
|
Ding Q, Wang H, Wang Y, Lu Y. A thioredoxin reductase 1 inhibitor pyrano [3,2-a] phenazine inhibits A549 cells proliferation and migration through the induction of reactive oxygen species production. Mol Biol Rep 2022; 49:8835-8845. [PMID: 35780225 DOI: 10.1007/s11033-022-07733-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Thioredoxin reductase 1 (TrxR1) inhibitor, pyrano [3,2-a] phenazine, named CPUL-1, was synthesized with potential anticancer activity. The aim of the present work was to explore the potential anti-proliferative and anti-metastatic ability of CPUL-1 against A549 cancer cell lines in vitro. METHODS AND RESULTS First, Cell Counting Kit-8 (CCK8) assay was used to assess cell proliferation. The A549 cell migration was evaluated by wound healing assay and transwell assay. Second, the epithelial-mesenchymal transition (EMT)-related proteins in A549 cells treated with CPUL-1 were analyzed by western blot methods. Then, TrxR1 enzyme activity assay and reactive oxygen species (ROS) assay were conducted to evaluate the effect of CPUL-1 on TrxR1 inhibition and ROS levels. Finally, western blotting was used to explore the mechanism of CPUL-1. The study results revealed that the ability of cell proliferation and migration was decreased under CPUL-1 treatment. CPUL-1 could distinctly restrain the migration and invasion of A549 cells through inhibiting EMT process. The results of TrxR1 enzyme activity assay, ROS assay and western blotting showed that CPUL-1 influenced EMT via inducing ROS-mediated ERK/JNK signaling by inhibiting TrxR1 enzyme activity. CONCLUSIONS Together, proliferation suppression and anti-metastasis activity of CPUL-1 in A549 cells were demonstrated by all the evidence. Our findings highlight the great potential of phenazine compound CPUL-1 to suppress A549 cells proliferation and metastasis.
Collapse
Affiliation(s)
- Qifan Ding
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hengyu Wang
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Wang
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuanyuan Lu
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Advances in Phenazines over the Past Decade: Review of Their Pharmacological Activities, Mechanisms of Action, Biosynthetic Pathways and Synthetic Strategies. Mar Drugs 2021; 19:md19110610. [PMID: 34822481 PMCID: PMC8620606 DOI: 10.3390/md19110610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/25/2023] Open
Abstract
Phenazines are a large group of nitrogen-containing heterocycles, providing diverse chemical structures and various biological activities. Natural phenazines are mainly isolated from marine and terrestrial microorganisms. So far, more than 100 different natural compounds and over 6000 synthetic derivatives have been found and investigated. Many phenazines show great pharmacological activity in various fields, such as antimicrobial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory and anticancer activity. Researchers continued to investigate these compounds and hope to develop them as medicines. Cimmino et al. published a significant review about anticancer activity of phenazines, containing articles from 2000 to 2011. Here, we mainly summarize articles from 2012 to 2021. According to sources of compounds, phenazines were categorized into natural phenazines and synthetic phenazine derivatives in this review. Their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies were summarized. These may provide guidance for the investigation on phenazines in the future.
Collapse
|
9
|
Zhong Y, Liu J, Cheng X, Zhang H, Zhang C, Xia Z, Wu Z, Zhang L, Zheng Y, Gao Z, Jiang Z, Wang Z, Huang D, Lu Y, Jiang F. Design, synthesis and biological evaluations of diverse Michael acceptor-based phenazine hybrid molecules as TrxR1 inhibitors. Bioorg Chem 2021; 109:104736. [PMID: 33640630 DOI: 10.1016/j.bioorg.2021.104736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
A series of novel phenazine derivatives (1~27) containing the Michael acceptor scaffolds were designed and synthesized in this study. Some compounds exhibited selective cytotoxicity against Bel-7402 cancer cell line in vitro, in which compound 26 were found to have the best antiproliferative activity. Meanwhile, compound 26 showed no obvious cell toxicity against human normal liver epithelial L02 cells, which means this compound possessed a better safety potential. In the following research, compound 26 was verified to inhibit TrxR1 enzyme activity, ultimately resulting in cellular molecular mechanism events of apoptosis including growth of intracellular ROS level, depletion of reduced Trx1, liberation of ASK1 and up-regulation of p38, respectively. Together, all these evidences implicated that compound 26 acted as the TrxR1 inhibitor against Bel-7402 cells, and could activate apoptosis through the ROS-Trx-ASK1-p38 pathway.
Collapse
Affiliation(s)
- Yucheng Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Cheng
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Chunhua Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuolu Xia
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongxi Wu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Zheng
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhanyu Gao
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhidong Jiang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhixiang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Feng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|