1
|
Soares Dos Santos TC, Salvador Tessaro P, de Andrade Querino AL, Rodrigues Neto AH, Evangelista IMF, de Sousa AM, Nunes Rugani J, Xerxes Coelho Oliveira W, Lima do Monte-Neto R, Silva H. Exploring Mono and Bis-gold(I)-DTC Complexes Against Cancer and Leishmania. Chem Asian J 2025:e202401553. [PMID: 39960873 DOI: 10.1002/asia.202401553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Indexed: 03/14/2025]
Abstract
Cancer is one of the main challenges of global public health and a leading cause of death, hindering the increase in life expectancy, and leishmaniasis occupies the second position in the number of deaths from parasitic diseases. Gold(I)-based drugs are being studied for chemotherapy and have shown promising results, leading to the search for analogs with more favorable effect profiles. This work presents the synthesis and characterization of five new gold(I) complexes, [AuIDTCPPh3] and [AuI 2DTC(PPh3)2], using dithiocarbamate-derived ligands and triphenylphosphine, with potential biological activity. The antiproliferative activity was investigated in breast tumor cell lines (MDA-MB-231 and 4T1) and a non-tumor breast cell line (MCF-10a), showing that complexation with gold enhances cytotoxic activity. The antileishmanial activity was investigated against intracellular amastigotes of Leishmania (Viannia) braziliensis, L. (Leishmania) amazonensis, and L. (L.) infantum. All complexes demonstrated promising activity, especially the bis-gold(I) complexes, which showed higher activity in the studied cell lines and Leishmania parasites. The results show the importance of the gold atom in these compounds, supporting the development of gold-based compounds as prototypes for metallodrugs.
Collapse
Affiliation(s)
- Thaiz Cristina Soares Dos Santos
- Laboratório de Síntese e Interações Bioinorgânicas (SibLab), Departmento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia Salvador Tessaro
- Laboratório de Síntese e Interações Bioinorgânicas (SibLab), Departmento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Luiza de Andrade Querino
- Laboratório de Síntese e Interações Bioinorgânicas (SibLab), Departmento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arthur Henrique Rodrigues Neto
- Laboratório de Síntese e Interações Bioinorgânicas (SibLab), Departmento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Igor Martins Felix Evangelista
- Laboratório de Síntese e Interações Bioinorgânicas (SibLab), Departmento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alessandra Mara de Sousa
- RdM Lab - Biotechnology Applied to Pathogens Research Group (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Jerônimo Nunes Rugani
- RdM Lab - Biotechnology Applied to Pathogens Research Group (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Willian Xerxes Coelho Oliveira
- Laboratório de Química de Materiais Moleculares (LQMMol), Departmento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rubens Lima do Monte-Neto
- RdM Lab - Biotechnology Applied to Pathogens Research Group (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Heveline Silva
- Laboratório de Síntese e Interações Bioinorgânicas (SibLab), Departmento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Su J, Wang X, Li S, Wu X, Li M, Du F, Deng S, Shen J, Zhao Y, Xiao Z, Chen Y. Synthesis and antitumor evaluation of glycyrrhetinic acid-dithiocarbamate hybrids. Arch Pharm (Weinheim) 2025; 358:e2400421. [PMID: 39526492 DOI: 10.1002/ardp.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glycyrrhetinic acid (GA) is a naturally occurring triterpene compound. The aim of this study was to employ the pharmacophore hybrid strategy to merge GA with various dithiocarbamates and obtain novel compounds with better antitumor activities. We present a two-step synthetic protocol wherein the GA derivative underwent reaction with carbon disulfide and various secondary amines in a one-pot manner under mild conditions, facilitating the preparation of a series of structurally novel GA-dithiocarbamate derivatives. Bioassay screening revealed that the representative compound 3c demonstrated the capacity to reduce the mitochondrial membrane potential in Hep3B and Huh-7 cells, induce nuclear apoptosis, inhibit invasion and migration, and prompt both early and late apoptosis. Furthermore, our research findings indicated that this apoptotic phenomenon may be associated with the expression of Bcl-2, Bax, Bak, PARP, and cleaved-PARP proteins. Utilizing network pharmacology for predicting core targets and signaling pathways of compound 3c for hepatocellular carcinoma (HCC) treatment involved employing molecular docking models to demonstrate high affinity between compound and target protein. In conjunction with Western blot analysis, compound 3c may impact HCC through the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sha Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
3
|
Koçak Aslan E, Sezer A, Tüylü Küçükkılınç T, Palaska E. Novel 1,2,4-triazole derivatives containing the naphthalene moiety as selective butyrylcholinesterase inhibitors: Design, synthesis, and biological evaluation. Arch Pharm (Weinheim) 2024; 357:e2400406. [PMID: 39034293 DOI: 10.1002/ardp.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Butyrylcholinesterase (BChE) is considered a promising therapeutic target for treating Alzheimer's disease due to the increase in the levels and activity of BChE in the late stage of the disease. In this study, a series of novel 1,2,4-triazole derivatives bearing the naphthalene moiety linked to the benzothiazole, thiazole, and phenyl scaffolds via amid chain were designed and synthesized as potential and selective BChE inhibitors. The results of the inhibitory activity studies revealed that most of these compounds exhibited significant inhibitor potency on BChE. Compounds 35a (0.025 ± 0.01 μM) and 37a (0.035 ± 0.01 μM) displayed the most potent inhibitory activity, with excellent selectivity against BChE over acetylcholinesterase (SIBChE, 23,686 and 16,936, respectively) among the target compounds. The kinetics studies revealed that these compounds behaved with noncompetitive BChE inhibitors. Molecular docking studies indicated that 35a and 37a fit well into the active side of BChE. In addition, 35a and 37a also had the lowest cytotoxicity for human neuroblastoma cells (SH-SY5Y), potential antioxidant capacity, moderate inhibition potency on amyloid-β1-42 aggregation, and significant neuroprotective effect against SH-SY5Y cell injury induced by H2O2 and amyloid-β1-42. All results suggest that these compounds might be considered as promising new lead compounds in the drug discovery process for the treatment of late-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Ebru Koçak Aslan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Sıhhiye, Turkey
| | - Aysima Sezer
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Tuba Tüylü Küçükkılınç
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Erhan Palaska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Sıhhiye, Turkey
| |
Collapse
|
4
|
Manzoor S, Gabr MT, Nafie MS, Raza MK, Khan A, Nayeem SM, Arafa RK, Hoda N. Discovery of Quinolinone Hybrids as Dual Inhibitors of Acetylcholinesterase and Aβ Aggregation for Alzheimer's Disease Therapy. ACS Chem Neurosci 2024; 15:539-559. [PMID: 38149821 DOI: 10.1021/acschemneuro.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The development of multitargeted therapeutics has evolved as a promising strategy to identify efficient therapeutics for neurological disorders. We report herein new quinolinone hybrids as dual inhibitors of acetylcholinesterase (AChE) and Aβ aggregation that function as multitargeted ligands for Alzheimer's disease. The quinoline hybrids (AM1-AM16) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. Among the tested compounds, AM5 and AM10 inhibited AChE activity by more than 80% at single-dose screening and possessed a remarkable ability to inhibit the fibrillation of Aβ42 oligomers at 10 μM. In addition, dose-dependent screening of AM5 and AM10 was performed, giving half-maximal AChE inhibitory concentration (IC50) values of 1.29 ± 0.13 and 1.72 ± 0.18 μM, respectively. In addition, AM5 and AM10 demonstrated concentration-dependent inhibitory profiles for the aggregation of Aβ42 oligomers with estimated IC50 values of 4.93 ± 0.8 and 1.42 ± 0.3 μM, respectively. Moreover, the neuroprotective properties of the lead compounds AM5 and AM10 were determined in SH-SY5Y cells incubated with Aβ oligomers. This work would enable future research efforts aiming at the structural optimization of AM5 and AM10 to develop potent dual inhibitors of AChE and amyloid aggregation. Furthermore, the in vivo assay confirmed the antioxidant activity of compounds AM5 and AM10 through increasing GSH, CAT, and SOD activities that are responsible for scavenging the ROS and restoring its normal level. Blood investigation illustrated the protective activity of the two compounds against lead-induced neurotoxicity through retaining hematological and liver enzymes near normal levels. Finally, immunohistochemistry investigation revealed the inhibitory activity of β-amyloid (Aβ) aggregation.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
| | - Moustafa T Gabr
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York10021, United States
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (P.O. Box 27272), United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ashma Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Reem K Arafa
- Drug Design and Discovery Lab, Helmy Institute for Medical Sciences, Zewail City of Science, Technology and Innovation, Giza 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza12578,Egypt
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
5
|
Kostopoulou I, Tzani A, Chronaki K, Prousis KC, Pontiki E, Hadjiplavlou-Litina D, Detsi A. Novel Multi-Target Agents Based on the Privileged Structure of 4-Hydroxy-2-quinolinone. Molecules 2023; 29:190. [PMID: 38202773 PMCID: PMC10780633 DOI: 10.3390/molecules29010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
In this work, the privileged scaffold of 4-hydroxy-2quinolinone is investigated through the synthesis of carboxamides and hybrid derivatives, as well as through their bioactivity evaluation, focusing on the ability of the molecules to inhibit the soybean LOX, as an indication of their anti-inflammatory activity. Twenty-one quinolinone carboxamides, seven novel hybrid compounds consisting of the quinolinone moiety and selected cinnamic or benzoic acid derivatives, as well as three reverse amides are synthesized and classified as multi-target agents according to their LOX inhibitory and antioxidant activity. Among all the synthesized analogues, quinolinone-carboxamide compounds 3h and 3s, which are introduced for the first time in the literature, exhibited the best LOX inhibitory activity (IC50 = 10 μM). Furthermore, carboxamide 3g and quinolinone hybrid with acetylated ferulic acid 11e emerged as multi-target agents, revealing combined antioxidant and LOX inhibitory activity (3g: IC50 = 27.5 μM for LOX inhibition, 100% inhibition of lipid peroxidation, 67.7% ability to scavenge hydroxyl radicals and 72.4% in the ABTS radical cation decolorization assay; 11e: IC50 = 52 μM for LOX inhibition and 97% inhibition of lipid peroxidation). The in silico docking results revealed that the synthetic carboxamide analogues 3h and 3s and NDGA (the reference compound) bind at the same alternative binding site in a similar binding mode.
Collapse
Affiliation(s)
- Ioanna Kostopoulou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| | - Andromachi Tzani
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| | - Konstantina Chronaki
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| | - Kyriakos C. Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | - Eleni Pontiki
- Laboratory of Pharmaceutical Chemistry, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (D.H.-L.)
| | - Dimitra Hadjiplavlou-Litina
- Laboratory of Pharmaceutical Chemistry, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (D.H.-L.)
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| |
Collapse
|
6
|
Campanale C, Triozzi M, Ragonese A, Losacco D, Massarelli C. Dithiocarbamates: Properties, Methodological Approaches and Challenges to Their Control. TOXICS 2023; 11:851. [PMID: 37888701 PMCID: PMC10610574 DOI: 10.3390/toxics11100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Dithiocarbamates (DTCs) are a group of chemicals used primarily as fungicides, although they are exploited for various other applications. DTCs represent one of the oldest classes of broad-spectrum fungicides employed worldwide to control fungal diseases on many crops. Due to their ease of synthesis, low production costs (cheap and readily available starting materials) and a fungicidal activity with a multi-site mode of action, they are still among modern agriculture's most extensively used pesticides. Although the environmental degradation in air, water, and soil is relatively rapid due to photolysis and/or hydrolysis, they are among the most frequently detected pesticides in the European Union (EU), also with a high frequency of maximum residue level (MRL) exceedances. The current review aims to comprehensively survey all aspects of DTCs, including the environmental fate, toxicity and analytical methods for determining parental compounds and degradation products in environmental and food samples. Furthermore, the accumulation of carbamate and dithiocarbamate pesticides in vegetables, fruits, bioindicator organisms and human biological samples, as well as their health effects on humans, are also considered in this study.
Collapse
Affiliation(s)
- Claudia Campanale
- CNR-IRSA, National Research Council of Italy, Water Research Institute, V.le F. De Blasio 5, 70132 Bari, Italy
| | - Mariangela Triozzi
- CNR-IRSA, National Research Council of Italy, Water Research Institute, V.le F. De Blasio 5, 70132 Bari, Italy
| | - Annamaria Ragonese
- CNR-IRSA, National Research Council of Italy, Water Research Institute, V.le F. De Blasio 5, 70132 Bari, Italy
| | - Daniela Losacco
- CNR-IRSA, National Research Council of Italy, Water Research Institute, V.le F. De Blasio 5, 70132 Bari, Italy
| | - Carmine Massarelli
- CNR-IRSA, National Research Council of Italy, Water Research Institute, V.le F. De Blasio 5, 70132 Bari, Italy
| |
Collapse
|
7
|
Kim M, Hong S, Jeong J, Hong S. Visible-Light-Active Coumarin- and Quinolinone-Based Photocatalysts and Their Applications in Chemical Transformations. CHEM REC 2023:e202200267. [PMID: 36627191 DOI: 10.1002/tcr.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Organic dyes have been actively studied as useful photocatalysts because they allow access to versatile structural flexibility and green synthetic applications. The identification of a new class of robust organic chromophores is, therefore, in high demand to increase structural diversity and variability. Although coumarins and quinolinones have long been acknowledged as organic chromophores, their ability to participate in photoinduced transformations is somewhat less familiar. Fascinated by their chromophoric features and adaptable platform, our group is interested in the identification of fluorescent bioactive molecules and in the development of new photoinduced synthetic methods using coumarins and quinolinones as photocatalysts. This account provides an overview of our recent progress in the discovery and application of light-absorbing coumarin and quinolinone derivatives in photochemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Myojeong Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonghyeok Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwook Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Shen R, Chen Y, Li X, Wang X, Yang A, Kou X. Carrier-free Chinese herbal small molecules self-assembly with 3D-porous crystal framework as a synergistic anti-AD agent. Int J Pharm 2023; 630:122458. [PMID: 36462740 DOI: 10.1016/j.ijpharm.2022.122458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease caused by multiple factors. Single-target drugs have limited efficacy for AD treatment. Therefore, multi-target intervention strategy has great potential. Traditional Chinese medicine (TCM) is mostly used in the form of compound prescription, which has the polypharmacology behavior. Rhizoma Coptidis and Radix et Rhizoma Rhei are frequently used as the couplet medicines of TCM for AD therapy. In this study, the novel carrier-free nanoassembly with 3D-porous frame crystal structure has formulated from supramolecular self-assembly of berberine (BER) and rhein (RHE), the main active components of Rhizoma Coptidis and Radix et Rhizoma Rhei, respectively. Combining with the spectral data and single crystal structure, the self-assembly process was clarified as dominated by electrostatic interaction and π-π stacking. In vitro release property, cholinesterase (ChE) inhibition, β-amyloid (Aβ) aggregation regulation, radical elimination, metal ions chelation and cytotoxicity assay indicated that the obtained BER-RHE assembly had the Fickian diffusion-controlled sustained release ability, synergistic biological activities and virtually no neurotoxicity. In addition, in vivo reactive oxygen species (ROS) level evaluation showed that the assembly could reduce the accumulation of intracellular ROS in Caenorhabditis elegans (C. elegans). Meanwhile, BER-RHE assembly could also be used as a novel potential carrier for drug delivery due to its superior 3D-porous frame. This green and facile strategy for carrier-free nanoassembly microscopic construction via supramolecular self-assembly might provide inspiration for the development of multi-target therapy for AD and the design of the novel drug delivery system.
Collapse
Affiliation(s)
- Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhong Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiangyu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
9
|
Synthesis and Evaluation of Novel S-alkyl Phthalimide- and S-benzyl-oxadiazole-quinoline Hybrids as Inhibitors of Monoamine Oxidase and Acetylcholinesterase. Pharmaceuticals (Basel) 2022; 16:ph16010011. [PMID: 36678507 PMCID: PMC9865589 DOI: 10.3390/ph16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
New S-alkyl phthalimide 5a-f and S-benzyl 6a-d analogs of 5-(2-phenylquinolin-4-yl)-1,3,4-oxadiazole-2-thiol (4) were prepared by reacting 4 with N-bromoalkylphthalimide and CF3-substituted benzyl bromides in excellent yields. Spectroscopic techniques were employed to elucidate the structures of the synthesized molecules. The inhibition activity of newly synthesized molecules toward MAO-A, MAO-B, and AChE enzymes, was also assessed. All these compounds showed activity in the submicromolar range against all enzymes. Compounds 5a and 5f were found to be the most potent compounds against MAO-A (IC50 = 0.91 ± 0.15 nM) and MAO-B (IC50 = 0.84 ± 0.06 nM), while compound 5c showed the most efficient acetylcholinesterase inhibition (IC50 = 1.02± 0.65 μM). Docking predictions disclosed the docking poses of the synthesized molecules with all enzymes and demonstrated the outstanding potency of compounds 5a, 5f, and 5c (docking scores = -11.6, -15.3, and -14.0 kcal/mol against MAO-A, MAO-B, and AChE, respectively). These newly synthesized analogs act as up-and-coming candidates for the creation of safer curative use against Alzheimer's illness.
Collapse
|
10
|
SAR studies of quinoline and derivatives as potential treatments for Alzheimer’s disease. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
11
|
Yang A, Zhang H, Hu C, Wang X, Shen R, Kou X, Wang H. Novel coumarin derivatives as multifunctional anti-AD agents: Design, synthesis, X-ray crystal structure and biological evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Khan BA, Hamdani SS, Ahmed MN, Rashid U, Hameed S, Ibrahim MA, Iqbal J, Granados CC, Macías MA. Design, synthesis, crystal structures, computational studies, in vitro and in silico monoamine oxidase-A&B inhibitory activity of two novel S-benzyl dithiocarbamates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
14
|
Synthesis and evaluation of new 2-oxo-1,2-dihydroquinoline-3-carboxamides as potent inhibitors against acetylcholinesterase enzyme. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Sulfonamide-Derived Dithiocarbamate Gold(I) Complexes Induce the Apoptosis of Colon Cancer Cells by the Activation of Caspase 3 and Redox Imbalance. Biomedicines 2022; 10:biomedicines10061437. [PMID: 35740458 PMCID: PMC9221018 DOI: 10.3390/biomedicines10061437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022] Open
Abstract
Two new families of dithiocarbamate gold(I) complexes derived from benzenesulfonamide with phosphine or carbene as ancillary ligands have been synthesized and characterized. In the screening of their in vitro activity on human colon carcinoma cells (Caco-2), we found that the more lipophilic complexes—those with the phosphine PPh3—exhibited the highest anticancer activity whilst also displaying significant cancer cell selectivity. [Au(S2CNHSO2C6H5)(PPh3)] (1) and [Au(S2CNHSO2-p-Me-C6H4)(IMePropargyl)] (8) produce cell death, probably by intrinsic apoptosis (mitochondrial membrane potential modification) and caspase 3 activation, causing cell cycle arrest in the G1 phase with p53 activation. Besides this, both complexes might act as multi-target anticancer drugs, as they inhibit the activity of the enzymes thioredoxin reductase (TrxR) and carbonic anhydrase (CA IX) with the alteration of the redox balance, and show a pro-oxidant effect.
Collapse
|
16
|
Kou X, Hu C, Shi X, Li X, Yang A, Shen R. A multifunctional metal regulator as the potential theranostic agent: Design, synthesis, anti-AD activities and metallic ion sensing properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121110. [PMID: 35276472 DOI: 10.1016/j.saa.2022.121110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Although there is no cure for Alzheimer's disease (AD) due to its complex pathogenesis, early detection and treatment can help delay the development of the disease. So, it is necessary to develop multifunctional metal regulators that can integrate the therapeutics and diagnostics effect against AD. In this work, N-(anthracene-9-ylmethylene)benzohydrazide (probe 1), a fluorescent probe with imine and carbonyl as chelating sites was designed and synthesized. Results showed that 1 had good activities related to AD, such as regulation of metal homeostasis, inhibition of β-amyloid (Aβ) aggregation and scavenging of reactive oxygen species. The selectivity experiment showed that probe 1 had a good recognition effect on Cu2+. Fluorescence imaging assay also indicated that probe 1 had a good fluorescence imaging effect on Cu2+ in living cells. Furthermore, probe 1 had showed no cytotoxicity and good BBB permeability. These results indicated that probe 1 had potential diagnostic and therapeutic capabilities, and can be used as the multifunctional theranostic agent for AD.
Collapse
Affiliation(s)
- Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chengting Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xuli Shi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xingying Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
17
|
Venkatesh R, Shankar G, Narayanan AC, Modi G, Sabiah S, Kandasamy J. Multicomponent Synthesis of S-Benzyl Dithiocarbamates from para-Quinone Methides and Their Biological Evaluation for the Treatment of Alzheimer's Disease. J Org Chem 2022; 87:6730-6741. [PMID: 35545917 DOI: 10.1021/acs.joc.2c00423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multicomponent synthesis of biologically relevant S-benzyl dithiocarbamates from para-quinone methides, amines, and carbon disulfide are described under catalyst and additive-free conditions. The reactions proceeded at room temperature in a short span of time with excellent yields. One of the synthesized compounds, 3e showed considerable acetylcholinesterase (AChE) inhibitory (51.70 + 5.63% at 20 μm) and antioxidant (63.52 ± 1.15 at 20 μm) activities.
Collapse
Affiliation(s)
- Rapelly Venkatesh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Aswathi C Narayanan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | | | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
18
|
Guo J, Xu A, Cheng M, Wan Y, Wang R, Fang Y, Jin Y, Xie SS, Liu J. Design, Synthesis and Biological Evaluation of New 3,4-Dihydro-2(1H)-Quinolinone-Dithiocarbamate Derivatives as Multifunctional Agents for the Treatment of Alzheimer’s Disease. Drug Des Devel Ther 2022; 16:1495-1514. [PMID: 35611357 PMCID: PMC9124477 DOI: 10.2147/dddt.s354879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
Background Alzheimer’s disease (AD) belongs to neurodegenerative disease, and the increasing number of AD patients has placed a heavy burden on society, which needs to be addressed urgently. ChEs/MAOs dual-target inhibitor has potential to treat AD according to reports. Purpose To obtain effective multi-targeted agents for the treatment of AD, a novel series of hybrid compounds were designed and synthesized by fusing the pharmacophoric features of 3,4-dihydro-2 (1H)-quinolinone and dithiocarbamate. Methods All compounds were evaluated for their inhibitory abilities of ChEs and MAOs. Then, further biological activities of the most promising candidate 3e were determined, including the ability to cross the blood-brain barrier (BBB), kinetics and molecular model analysis, cytotoxicity in vitro and acute toxicity studies in vivo. Results Most compounds showed potent and clear inhibition to AChE and MAOs. Among them, compound 3e was considered to be the most effective and balanced inhibitor to both AChE and MAOs (IC50=0.28 µM to eeAChE; IC50=0.34 µM to hAChE; IC50=2.81 µM to hMAO-B; IC50=0.91 µM to hMAO-A). In addition, 3e showed mixed inhibition of hAChE and competitive inhibition of hMAO-B in the enzyme kinetic studies. Further studies indicated that 3e could penetrate the BBB and showed no toxicity on PC12 cells and HT-22 cells when the concentration of 3e was lower than 12.5 µM. More importantly, 3e lacked acute toxicity in mice even at high dose (2500 mg/kg, P.O.). Conclusion This work indicated that compound 3e with a six-carbon atom linker and a piperidine moiety at terminal position was a promising candidate and was worthy of further study.
Collapse
Affiliation(s)
- Jie Guo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Airen Xu
- Clinical Pharmacology Research Center, The Second Hospital of Yinzhou, Ningbo, Zhejiang, People’s Republic of China
| | - Maojun Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
- Correspondence: Sai-Sai Xie, National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 56, Yangming Road, Donghu District, Nanchang City, Jiangxi Province, 330006, People’s Republic of China, Email
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
- Jing Liu, School of Pharmacy, Jiangxi University of Chinese Medicine, No. 56, Yangming Road, Donghu District, Nanchang City, Jiangxi Province, 330006, People’s Republic of China, Email
| |
Collapse
|
19
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Developments of Molecular Hybrids Targeting Tubulin Polymerization. Int J Mol Sci 2022; 23:4001. [PMID: 35409361 PMCID: PMC8999808 DOI: 10.3390/ijms23074001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Microtubules are cylindrical protein polymers formed from αβ-tubulin heterodimers in the cytoplasm of eukaryotic cells. Microtubule disturbance may cause cell cycle arrest in the G2/M phase, and anomalous mitotic spindles will form. Microtubules are an important target for cancer drug action because of their critical role in mitosis. Several microtubule-targeting agents with vast therapeutic advantages have been developed, but they often lead to multidrug resistance and adverse side effects. Thus, single-target therapy has drawbacks in the effective control of tubulin polymerization. Molecular hybridization, based on the amalgamation of two or more pharmacophores of bioactive conjugates to engender a single molecular structure with enhanced pharmacokinetics and biological activity, compared to their parent molecules, has recently become a promising approach in drug development. The practical application of combined active scaffolds targeting tubulin polymerization inhibitors has been corroborated in the past few years. Meanwhile, different designs and syntheses of novel anti-tubulin hybrids have been broadly studied, illustrated, and detailed in the literature. This review describes various molecular hybrids with their reported structural-activity relationships (SARs) where it is possible in an effort to generate efficacious tubulin polymerization inhibitors. The aim is to create a platform on which new active scaffolds can be modeled for improved tubulin polymerization inhibitory potency and hence, the development of new therapeutic agents against cancer.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.S.)
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
20
|
Study on the Mechanism of Acori Graminei Rhizoma in the Treatment of Alzheimer's Disease Based on Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2022; 2021:5418142. [PMID: 34977242 PMCID: PMC8720003 DOI: 10.1155/2021/5418142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is a common neurodegenerative disease in the elderly. This study explored the curative effect and possible mechanism of Acori graminei rhizoma on Alzheimer's disease. In this paper, 8 active components of Acori graminei rhizoma were collected by consulting literature and using the TCMSP database, and 272 targets were screened using the PubChem and Swiss Target Prediction databases. Introduce it into the software of Cytoscape 3.7.2 and establish the graph of "drug-active ingredient-ingredient target." A total of 276 AD targets were obtained from OMIM, Gene Cards, and DisGeNET databases. Import the intersection targets of drugs and diseases into STRING database for enrichment analysis, and build PPI network in the Cytoscape 3.7.2 software, whose core targets involve APP, AMPK, NOS3, etc. GO analysis and KEGG analysis showed that there were 195 GO items and 30 AD-related pathways, including Alzheimer's disease pathway, serotonin synapse, estrogen signaling pathway, dopaminergic synapse, and PI3K-Akt signaling pathway. Finally, molecular docking was carried out to verify the binding ability between Acori graminei rhizoma and core genes. Our results predict that Acori graminei rhizoma can treat AD mainly by mediating Alzheimer's signal pathway, thus reducing the production of Aβ, inhibiting the hyperphosphorylation of tau protein, regulating neurotrophic factors, and regulating the activity of kinase to change the function of the receptor.
Collapse
|
21
|
Nadeem MS, Khan JA, Rashid U. Fluoxetine and sertraline based multitarget inhibitors of cholinesterases and monoamine oxidase-A/B for the treatment of Alzheimer's disease: Synthesis, pharmacology and molecular modeling studies. Int J Biol Macromol 2021; 193:19-26. [PMID: 34687762 DOI: 10.1016/j.ijbiomac.2021.10.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
For the potential therapy of Alzheimer's disease (AD), cholinesterases (ChE) and monoamine oxidase (MAO) are key enzymes that regulate the level of acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) and monoamines. The aim of current research is the synthesis of multi-target compounds that can concomitantly inhibit ChEs and MAO. A series of fluoxetine and sertraline hybrids was designed and evaluated as multi-target inhibitors of ChEs and hMAO. In-vitro enzyme inhibition studies demonstrated that a number of compounds displayed excellent inhibition in submicromolar to nanomolar range. However, compounds 17, 22, 38-40 possess excellent concomitant inhibitory activity against ChEs and hMAO-A/B enzymes and thus emerged as optimal multi-target hybrids. In-vivo acute toxicity study showed the safety of synthesized compounds up to 2000 mg/kg dose. The examinations of brain tissue in Swiss albino mice suggested that selected most active MAO-B inhibitors 17 and 22 have a propensity to block the MAO-B activity that could be responsible for their neurodegenerative effect in mice. The in-vitro inhibitory manner of interaction of these multipotent compounds on all four targets were confirmed by molecular docking investigations.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jalaluddin Azam Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| |
Collapse
|
22
|
Acetylcholinesterase inhibition, molecular docking and ADME prediction studies of new dihydrofuran-piperazine hybrid compounds. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02788-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
A network pharmacology approach to uncover the key ingredients in Ginkgo Folium and their anti-Alzheimer's disease mechanisms. Aging (Albany NY) 2021; 13:18993-19012. [PMID: 34315132 PMCID: PMC8351672 DOI: 10.18632/aging.203348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/10/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to identify potential anti-Alzheimer’s disease (AD) targets and action mechanisms of Ginkgo Folium (GF) through a network pharmacology approach. Eighty-four potential targets of 10 active anti-AD ingredients of GF were identified, among which genkwanin (GK) had the greatest number of AD-related targets. KEGG pathway enrichment analysis showed that the most significantly enriched signaling pathway of GF against AD was Alzheimer disease (hsa05010). More importantly, 29 of the 84 targets were significantly correlated with tau, Aβ or both Aβ and tau pathology. In addition, GO analysis suggested that the main biological processes of GF in AD treatment were the regulation of chemical synaptic transmission (GO:0007268), neuron death (GO:0070997), amyloid-beta metabolic process (GO:0050435), etc. We further investigated the anti-AD effects of GK using N2A-APP cells (a classical cellular model of AD). Treatment N2A-APP cells with 100 μM GK for 48 h affected core targets related to tau pathology (such as CDK5 and GSK3β). In conclusion, these findings indicate that GF exerts its therapeutic effects on AD by acting directly on multiple pathological processes of AD.
Collapse
|
24
|
Boadi NO, Degbevi M, Saah SA, Badu M, Borquaye LS, Kortei NK. Antimicrobial properties of metal piperidine dithiocarbamate complexes against Staphylococcus aureus and Candida albicans. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Üstün E, Çelebi MS, Ayvaz MÇ, Şahin N. PEPPSI complexes as potential prodrugs: enzyme inhibition, antioxidant activity, electrochemical characterization, molecular docking analysis. Z NATURFORSCH C 2021; 76:219-227. [PMID: 33792212 DOI: 10.1515/znc-2020-0295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/13/2021] [Indexed: 02/06/2023]
Abstract
In this study, enzyme inhibition and antioxidant activity analyzes of previously characterized pyridine-enhanced precatalyst preparation stabilization and initiation (PEPPSI)-type Palladium(II) complexes with benzimidazole-type ligands {dichloro[L]pyridine palladium(II), L1: 1-(2-methyl-2-propenyl)-3-[benzylbenzimidazole]-2-ylidene, L2: 1-(2-methyl-2-propenyl)-3-[4-chloro benzylbenzimidazole]-2-ylidene, L3: 1-(2-methyl-2-propenyl)-3-[3-methylbenzylbenzimidazole]-2-ylidene, L4: 1-(2-methyl-2-propenyl)-3-[3,4,5-thrimethoxybenzylbenzimidazole]-2-ylidene, L5: 1-(2-methyl-2-propenyl)-3-[3-naphthylbenzylbenzimidazole]-2-ylidene, L6: 1-(2-methyl-2-propenyl)-3-[anthracen-9-ylmethylbenzimidazole]-2-ylidene} were performed and evaluated as potential drugs for neurodegenerative disorders such as Alzheimer disease and Parkinson disease. Inhibition of tyrosinase enzyme of N-heterocyclic carbenes (NHC) complexes was determined for the first time in literature. Chelating activities of the complexes were determined and compared with EDTA. Electrochemical characterization was performed using cyclic voltammetry method. Moreover, global reactivity descriptors and electronic transitions were evaluated by DFT/TDDFT methods and molecular docking interactions with human acetylcholine esterase, human butyrylcholine esterase and oxidoreductase were studied.
Collapse
Affiliation(s)
- Elvan Üstün
- Department of Chemistry, Faculty of Science and Arts, Ordu University, 52200, Ordu, Turkey
| | - Mutlu S Çelebi
- Department of Chemistry, Faculty of Science and Arts, Ordu University, 52200, Ordu, Turkey
| | - Melek Ç Ayvaz
- Department of Chemistry, Faculty of Science and Arts, Ordu University, 52200, Ordu, Turkey
| | - Neslihan Şahin
- Department of Basic Education, Faculty of Education, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
26
|
A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer's disease. Eur J Pharmacol 2021; 897:173950. [PMID: 33607107 DOI: 10.1016/j.ejphar.2021.173950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive memory loss, declining language skills and other cognitive disorders. AD has brought great mental and economic burden to patients, families and society. However due to the complexity of AD's pathology, drugs developed for the treatment of AD often fail in clinical or experimental trials. The main problems of current anti-AD drugs are low efficacy due to mono-target method or side effects, especially high hepatotoxicity. To tackle these two main problems, multi-target-directed ligand (MTDL) based on "one molecule, multiple targets" has been studied. MTDLs can regulate multiple biological targets at the same time, so it has shown higher efficacy, better safety. As a natural active small molecule, α-mangostin (α-M) has shown potential multi-factor anti-AD activities in a series of studies, furthermore it also has a certain hepatoprotective effect. The good availability of α-M also provides support for its application in clinical research. In this work, multiple activities of α-M related to AD therapy were reviewed, which included anti-cholinesterase, anti-amyloid-cascade, anti-inflammation, anti-oxidative stress, low toxicity, hepatoprotective effects and drug formulation. It shows that α-M is a promising candidate for the treatment of AD.
Collapse
|
27
|
Zhang Q, Hao C, Miao Y, Yun Y, Sun X, Pan Y, Sun J, Wang X. Design and synthesis of benzyl aminocoumarin and its anti-Alzheimer's activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj02950a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzylaminocoumarin is a kind of compound with coumarin skeleton and benzylamino side chain structure at positions 3 and 4.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Canhua Hao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yuhang Miao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yinling Yun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Xiaoya Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yinbo Pan
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| |
Collapse
|
28
|
Du H, Jiang X, Ma M, Xu H, Liu S, Ma F. Novel deoxyvasicinone and tetrahydro-beta-carboline hybrids as inhibitors of acetylcholinesterase and amyloid beta aggregation. Bioorg Med Chem Lett 2020; 30:127659. [PMID: 33137375 DOI: 10.1016/j.bmcl.2020.127659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
A novel series of deoxyvasicinone-tetrahydro-beta-carboline hybrids were synthesized and evaluated as acetylcholinesterase (AChE) and β-amyloid peptide (Aβ) aggregation inhibitors for the treatment of Alzheimer's disease. The results revealed that the derivatives had multifunctional profiles, including AChE inhibition, Aβ1-42 aggregation inhibition, and neuroprotective properties. Inspiringly, hybrids 8b and 8d displayed excellent inhibitory activities against hAChE (IC50 = 0.93 and 1.08 nM, respectively) and Aβ1-42 self-aggregation (IC50 = 19.71 and 2.05 μM, respectively). In addition, 8b and 8d showed low cytotoxicity and good neuroprotective activity against Aβ1-42-induced damage in SH-SY5Y cells.
Collapse
Affiliation(s)
- Hongtao Du
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; College of Science, Northwest A&F University, Yangling 712100, Shaanxi Province, China.
| | - Xinyu Jiang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Meng Ma
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Huili Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Shuang Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Fang Ma
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
29
|
Shinde SD, Sakla AP, Shankaraiah N. An insight into medicinal attributes of dithiocarbamates: Bird's eye view. Bioorg Chem 2020; 105:104346. [PMID: 33074122 DOI: 10.1016/j.bioorg.2020.104346] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023]
Abstract
Dithiocarbamates are considered as an important motif owing to its extensive biological applications in medicinal chemistry. The synthesis of this framework can easily be achieved via a one-pot reaction of primary/secondary amines, CS2, and alkyl halides under catalyst-free conditions or sometimes in the presence of a base. By virtue of its colossal pharmacological scope, it has been an evolving subject of interest for many researchers around the world. The present review aims to highlight various synthetic approaches for dithiocarbamates with the major emphasis on medicinal attributes of these architectures as leads in the drug discovery of small molecules such as HDAC inhibitor, lysine-specific demethylase 1 (LSD1) down-regulator, kinase inhibitor (focal adhesion kinase, pyruvate kinase, Bruton's tyrosine kinase), carbonic anhydrase inhibitor, DNA intercalators, and apoptosis-inducing agents. Moreover, recent medicinal advancements in the synthesis of dithiocarbamate derivatives as anticancer, antifungal, antibacterial, anti-Alzheimer, antitubercular, anti-glaucoma, anti-cholinergic, antihyperglycemic, anti-inflammatory activities have been elaborated with notable examples.
Collapse
Affiliation(s)
- Sangita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
30
|
Sari S, Yilmaz M. Synthesis, characterization, acetylcholinesterase inhibition, and molecular docking studies of new piperazine substituted dihydrofuran compounds. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02599-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Moghaddam FM, Goudarzi M, Chamani F, Dezag HM. A new Mumm-type rearrangement with dithiocarbamates via isocyanide-based multicomponent reaction under ultrasound irradiation: synthesis of polysubstituted pyrrolidine compounds. NEW J CHEM 2020. [DOI: 10.1039/d0nj00691b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Through a domino reaction, five new bonds were formed, carbon–sulfur, two carbon–nitrogen, and two carbon–carbon bonds.
Collapse
Affiliation(s)
- Firouz Matloubi Moghaddam
- Laboratory of Organic Synthesis and Natural Products
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Mehri Goudarzi
- Laboratory of Organic Synthesis and Natural Products
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Fatemeh Chamani
- Laboratory of Organic Synthesis and Natural Products
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Hamid Mohammadzadeh Dezag
- Laboratory of Organic Synthesis and Natural Products
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| |
Collapse
|
32
|
Rana M, Pareek A, Bhardwaj S, Arya G, Nimesh S, Arya H, Bhatt TK, Yaragorla S, Sharma AK. Aryldiazoquinoline based multifunctional small molecules for modulating Aβ42aggregation and cholinesterase activity related to Alzheimer's disease. RSC Adv 2020; 10:28827-28837. [PMID: 35520091 PMCID: PMC9055851 DOI: 10.1039/d0ra05172a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Novel series of aryldiazoquinoline multifunctional molecules controls amyloid formation and neuro-protective role by inhibiting esterase enzymes.
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry
- Central University of Rajasthan
- Ajmer
- India
| | - Abhishek Pareek
- School of Chemistry
- University of Hyderabad
- P.O. Central University
- Hyderabad
- India
| | - Shivani Bhardwaj
- Department of Chemistry
- Central University of Rajasthan
- Ajmer
- India
| | - Geeta Arya
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | - Surendra Nimesh
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | - Hemant Arya
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | - Tarun K. Bhatt
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | | | - Anuj K. Sharma
- Department of Chemistry
- Central University of Rajasthan
- Ajmer
- India
| |
Collapse
|