1
|
Conejo-García A, Jiménez-Martínez Y, Cámara R, Franco-Montalbán F, Peña-Martín J, Boulaiz H, Carrión MD. New substituted benzoxazine derivatives as potent inducers of membrane permeability and cell death. Bioorg Med Chem 2024; 111:117849. [PMID: 39068873 DOI: 10.1016/j.bmc.2024.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
The search for new agents targeting different forms of cell death is an important research focus for developing new and potent antitumor therapies. As a contribution to this endeavor, we have designed and synthesized a series of new substituted 3,4-dihydro-2H-1,4-benzoxazine derivatives. These compounds have been evaluated for their efficacy against MCF-7 breast cancer and HCT-116 colon cancer cell lines. Overall, substituting this heterocycle led to improved antiproliferative activity compared to the unsubstituted derivative 1. The most active compounds, 2b and 4b, showed IC50 values of 2.27 and 3.26 μM against MCF-7 cells and 4.44 and 7.63 μM against HCT-116 cells, respectively. To investigate the mechanism of action of the target compounds, the inhibition profile of 8 kinases involved in cell signaling was studied highlighting residual activity on HER2 and JNK1 kinases. 2b and 4b showed a consistent binding mode to both receptor kinases, establishing significant interactions with known and catalytically important domains and residues. Compounds 2b and 4b exhibit potent cytotoxic activity by disrupting cell membrane permeability, likely triggering both inflammatory and non-inflammatory cell death mechanisms. This dual capability increases their versatility in the treatment of different stages or types of tumors, providing greater flexibility in clinical applications.
Collapse
Affiliation(s)
- Ana Conejo-García
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
| | - Yaiza Jiménez-Martínez
- Department of Anatomy and Human Embryology, Faculty of Medicine, Avenida de la Investigación 11, University of Granada, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Rubén Cámara
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain
| | - Francisco Franco-Montalbán
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain
| | - Jesús Peña-Martín
- Department of Anatomy and Human Embryology, Faculty of Medicine, Avenida de la Investigación 11, University of Granada, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Houria Boulaiz
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain; Department of Anatomy and Human Embryology, Faculty of Medicine, Avenida de la Investigación 11, University of Granada, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Avenida del Conocimiento s/n, 18016 Granada, Spain.
| | - M Dora Carrión
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain.
| |
Collapse
|
2
|
Ouyang B, Shan C, Shen S, Dai X, Chen Q, Su X, Cao Y, Qin X, He Y, Wang S, Xu R, Hu R, Shi L, Lu T, Yang W, Peng S, Zhang J, Wang J, Li D, Pang Z. AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer. Nat Commun 2024; 15:7560. [PMID: 39215014 PMCID: PMC11364624 DOI: 10.1038/s41467-024-51980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Due to low success rates and long cycles of traditional drug development, the clinical tendency is to apply omics techniques to reveal patient-level disease characteristics and individualized responses to treatment. However, the heterogeneous form of data and uneven distribution of targets make drug discovery and precision medicine a non-trivial task. This study takes pyroptosis therapy for triple-negative breast cancer (TNBC) as a paradigm and uses data mining of a large TNBC cohort and drug databases to establish a biofactor-regulated neural network for rapidly screening and optimizing compound pyroptosis drug pairs. Subsequently, biomimetic nanococrystals are prepared using the preferred combination of mitoxantrone and gambogic acid for rational drug delivery. The unique mechanism of obtained nanococrystals regulating pyroptosis genes through ribosomal stress and triggering pyroptosis cascade immune effects are revealed in TNBC models. In this work, a target omics-based intelligent compound drug discovery framework explores an innovative drug development paradigm, which repurposes existing drugs and enables precise treatment of refractory diseases.
Collapse
Affiliation(s)
- Boshu Ouyang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
- Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, P. R. China
| | - Caihua Shan
- Microsoft Research Asia, Shanghai, 200232, P. R. China
| | - Shun Shen
- Pharmacy Department & Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, P. R. China
| | - Xinnan Dai
- Microsoft Research Asia, Shanghai, 200232, P. R. China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaomin Su
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Yongbin Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Xifeng Qin
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ying He
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Siyu Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ruizhe Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ruining Hu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Tun Lu
- School of Computer Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Shaojun Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University); Zhuhai, Guangdong, 519000, P. R. China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China.
| | - Dongsheng Li
- Microsoft Research Asia, Shanghai, 200232, P. R. China.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China.
| |
Collapse
|
3
|
Liu J, Chen T, Liu X, Li Z, Zhang Y. Engineering materials for pyroptosis induction in cancer treatment. Bioact Mater 2024; 33:30-45. [PMID: 38024228 PMCID: PMC10654002 DOI: 10.1016/j.bioactmat.2023.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer remains a significant global health concern, necessitating the development of innovative therapeutic strategies. This research paper aims to investigate the role of pyroptosis induction in cancer treatment. Pyroptosis, a form of programmed cell death characterized by the release of pro-inflammatory cytokines and the formation of plasma membrane pores, has gained significant attention as a potential target for cancer therapy. The objective of this study is to provide a comprehensive overview of the current understanding of pyroptosis and its role in cancer treatment. The paper discusses the concept of pyroptosis and its relationship with other forms of cell death, such as apoptosis and necroptosis. It explores the role of pyroptosis in immune activation and its potential for combination therapy. The study also reviews the use of natural, biological, chemical, and multifunctional composite materials for pyroptosis induction in cancer cells. The molecular mechanisms underlying pyroptosis induction by these materials are discussed, along with their advantages and challenges in cancer treatment. The findings of this study highlight the potential of pyroptosis induction as a novel therapeutic strategy in cancer treatment and provide insights into the different materials and mechanisms involved in pyroptosis induction.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - XianLing Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Oncology, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
4
|
Fadaly WAA, Zidan TH, Kahk NM, Mohamed FEA, Abdelhakeem MM, Khalil RG, Nemr MTM. New pyrazolyl-thiazolidinone/thiazole derivatives as celecoxib/dasatinib analogues with selective COX-2, HER-2 and EGFR inhibitory effects: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis, molecular modelling and ADME studies. J Enzyme Inhib Med Chem 2023; 38:2281262. [PMID: 38010912 PMCID: PMC11003491 DOI: 10.1080/14756366.2023.2281262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Two new series of pyrazolyl-thiazolidinone/thiazole derivatives 16a-b and 18a-j were synthesised, merging the scaffolds of celecoxib and dasatinib. Compounds 16a, 16b and 18f inhibit COX-2 with S.I. 134.6, 26.08 and 42.13 respectively (celecoxib S.I. = 24.09). Compounds 16a, 16b, 18c, 18d and 18f inhibit MCF-7 with IC50 = 0.73-6.25 μM (dasatinib IC50 = 7.99 μM) and (doxorubicin IC50 = 3.1 μM) and inhibit A549 with IC50 = 1.64-14.3 μM (dasatinib IC50 = 11.8 μM and doxorubicin IC50 = 2.42 μM) with S.I. (F180/MCF7) of 33.15, 7.13, 18.72, 13.25 and 8.28 respectively higher than dasatinib (4.03) and doxorubicin (3.02) and S.I. (F180/A549) of 14.75, 12.96, 4.16, 7.07 and 18.88 respectively higher than that of dasatinib (S.I. = 2.72) and doxorubicin (S.I = 3.88). Derivatives 16a, 18c, 18d, 18f inhibit EGFR and HER-2 IC50 for EGFR of 0.043, 0.226, 0.388, 0.19 μM respectively and for HER-2 of 0.032, 0.144, 0.195, 0.201 μM respectively.
Collapse
Affiliation(s)
- Wael A. A. Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Taha H. Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M. Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E. A. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M. Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab G. Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T. M. Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Peerzada MN, Hamdy R, Rizvi MA, Verma S. Privileged Scaffolds in Drug Discovery against Human Epidermal Growth Factor Receptor 2 for Cancer Treatment. Curr Pharm Des 2023; 29:3563-3578. [PMID: 38141192 DOI: 10.2174/0113816128283615231218094706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
HER2 is the membrane receptor tyrosine kinase showing overexpression in several human malignancies, particularly breast cancer. HER2 overexpression causes the activation of Ras- MAPK and PI3K/Akt/ NF-κB cellular signal transduction pathways that lead to cancer development and progression. HER2 is, therefore, presumed as one of the key targets for the development of tumor-specific therapies. Several preclinical have been developed that function by inhibiting the HER2 tyrosine kinase activity through the prevention of the dimerization process. Most HER2 inhibitors act as ATP competitors and prevent the process of phosphorylation, and abort the cell cycle progression and proliferation. In this review, the clinical drug candidates and potent pre-clinical newly developed molecules are described, and the core chemical scaffolds typically responsible for anti-HER2 activity are deciphered. In addition, the monoclonal antibodies that are either used in monotherapy or in combination therapy against HER2-positive cancer are briefly described. The identified key moieties in this study could result in the discovery of more effective HER2-targeted anticancer drug molecules and circumvent the development of resistance by HER2-specific chemotherapeutics in the future.
Collapse
Affiliation(s)
- Mudasir Nabi Peerzada
- Tumor Biology and Drug Discovery Laboratory, National Institute of Pathology, Indian Council of Medical Research, Safdarjang Hospital Campus, New Delhi 110029, India
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | | | - Saurabh Verma
- Tumor Biology and Drug Discovery Laboratory, National Institute of Pathology, Indian Council of Medical Research, Safdarjang Hospital Campus, New Delhi 110029, India
| |
Collapse
|
6
|
Odame F, Neglo D, Sedohia D, Arthur R. Antifungal synergistic effects and anti-biofilm formation activities of some bioactive 2,3-dihydro-1,5-benzoxazepine derivatives. Arch Microbiol 2022; 205:39. [PMID: 36567396 DOI: 10.1007/s00203-022-03377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
Benzoxazepines constitute a significant class of organic compounds extensively described in the literature. Several derivatives with pharmacological properties have been produced due to the semi-rigid azepine scaffold, which allows for the addition of other heteroatoms. This study investigated the possible antifungal effect and antioxidant activity of 2,3-dihydro-1,5-benzoxazepines. The antifungal effect was investigated using the broth dilution assay, while the antioxidant property was determined using the ABTS and DPPH scavenging tests. The results indicated that the 2,3-dihydro-1,5-benzoxazepine derivatives had antifungal properties and could be working via its fungicidal and biofilm inhibitory properties. It was also realized that it had synergistic effects when administered concomitantly with standard antifungal drugs. The antioxidant effects were high with 2,2-dimethyl-4-[(E)-2-(4-methylphenyl)ethenyl]-2,3-dihydro-1,5-benzoxazepine (1) compared to the other derivatives. It could be concluded that 2,3-dihydro-1,5-benzoxazepines could possess fungicidal and possible antioxidant properties. And hence could serve as new drug leads in discovering novel drugs that could help manage fluconazole-resistant vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Felix Odame
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana.
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Daniel Sedohia
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|