1
|
Jia DX, Li Y, Liu XY, Gao WJ, Fang CH, Lv MJ, Yu JH, Yue JM. Talaromyketides A-I: Nine polyketides with anti-inflammatory activity from a soil fungus Talaromyces sp. KYS-41. Bioorg Chem 2025; 157:108275. [PMID: 39993338 DOI: 10.1016/j.bioorg.2025.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
A chemical investigation into fermentation product of Talaromyces sp. KYS-41, a fungus isolated from Kunyu Mountain soil, resulted in the discovery and identification of 27 polyketides. Notably, talaromyketides A-I (1-9) are reported for the first time, with talaromyketides A-C (1-3) being three pair of enantiomers. Talaromyketides A-D (1-4) display novel frameworks and are regarded as products resulting from oxidative ring-opening and/or subsequent rearrangement of the bibenzyl derivatives. Talaromyketide A (1) exhibits a scaffold comprising an isochroman-1,4-dione, whereas talaromyketide B (2) showcases the structural backbone of a naphthalen-1(4H)-one. Talaromyketides C (3) and D (4) are the outcomes of oxidative ring-opening of one of the phenyl rings in bibenzyl derivatives. Biological evaluations demonstrated that compounds 2b, 9, and 18-21 show significant anti-inflammatory activity with IC50 values within 10 μM. By inhibiting the activation of NF-κB/MAPK signaling pathways, (-)-1S-talaromyketide B (2b) is involved in suppression of inflammatory response and shows significant pharmacological effects in vivo on zebrafish model.
Collapse
Affiliation(s)
- Dong-Xue Jia
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Ying Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xiang-Yu Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Wen-Jing Gao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Chu-Hong Fang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Ming-Jun Lv
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Jin-Hai Yu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Jian-Min Yue
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
2
|
Laevens GCS, Dolson WC, Drapeau MM, Telhig S, Ruffell SE, Rose DM, Glick BR, Stegelmeier AA. The Good, the Bad, and the Fungus: Insights into the Relationship Between Plants, Fungi, and Oomycetes in Hydroponics. BIOLOGY 2024; 13:1014. [PMID: 39765681 PMCID: PMC11673877 DOI: 10.3390/biology13121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025]
Abstract
Hydroponic systems are examples of controlled environment agriculture (CEA) and present a promising alternative to traditional farming methods by increasing productivity, profitability, and sustainability. In hydroponic systems, crops are grown in the absence of soil and thus lack the native soil microbial community. This review focuses on fungi and oomycetes, both beneficial and pathogenic, that can colonize crops and persist in hydroponic systems. The symptomatology and mechanisms of pathogenesis for Botrytis, Colletotrichum, Fulvia, Fusarium, Phytophthora, Pythium, and Sclerotinia are explored for phytopathogenic fungi that target floral organs, leaves, roots, and vasculature of economically important hydroponic crops. Additionally, this review thoroughly explores the use of plant growth-promoting fungi (PGPF) to combat phytopathogens and increase hydroponic crop productivity; details of PGP strategies and mechanisms are discussed. The benefits of Aspergillus, Penicillium, Taloromyces, and Trichoderma to hydroponics systems are explored in detail. The culmination of these areas of research serves to improve the current understanding of the role of beneficial and pathogenic fungi, specifically in the hydroponic microbiome.
Collapse
Affiliation(s)
- Grace C. S. Laevens
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - William C. Dolson
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Michelle M. Drapeau
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Soufiane Telhig
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada; (S.T.)
| | - Sarah E. Ruffell
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Danielle M. Rose
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada; (S.T.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | | |
Collapse
|
3
|
Podlech J. Natural resorcylic lactones derived from alternariol. Beilstein J Org Chem 2024; 20:2171-2207. [PMID: 39224229 PMCID: PMC11368053 DOI: 10.3762/bjoc.20.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
In this overview, naturally occurring resorcylic lactones biosynthetically derived from alternariol and almost exclusively produced by fungi, are discussed with view on their isolation, structure, biological activities, biosynthesis, and total syntheses. This class of compounds consists until now of 127 naturally occurring compounds, with very divers structural motifs. Although only a handful of these toxins (i.e., alternariol and its 9-O-methyl ether, altenusin, dehydroaltenusin, altertenuol, and altenuene) were frequently found and isolated as fungal contaminants in food and feed and have been investigated in significant detail, further metabolites, which were much more rarely found as natural products, similarly show interesting biological activities.
Collapse
Affiliation(s)
- Joachim Podlech
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
4
|
Zhang JC, Yang XQ, Zhou H, Yan YB, Ding ZT. The new analogues of β- trans-bergamotene from endophytic fungus Nigrospora sp. E121 with yam culture medium. Nat Prod Res 2024:1-7. [PMID: 38742433 DOI: 10.1080/14786419.2024.2353910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Two new bicyclic sesquiterpenes,Δ9-2, 5, 11-trihydroxyl-β-cis-bergamotene (3) and Nigrohydroin A (4), together with ten known compounds (1, 2 and 5-12) were obtained from endophytic fungus Nigrospora sp. E121. The structures were elucidated on the basis of their 1D and 2D NMR spectra and mass spectrometric data. The possible biosynthetic pathway of compounds 1, 2, 3 and 4 in Nigrospora sp. E121were reported according to literature. The phytotoxic assay results indicated that the acetyl fragment in α-acetylorcinol may contribute to the phytotoxic activity of this compound.
Collapse
Affiliation(s)
- Ju-Cheng Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese medicine, Kunming, China
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, China
- Key Laboratory of Ethnic Drug Research and Development in Honghe Prefecture, Honghe University, Mengzi, China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Hao Zhou
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Ya-Bin Yan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Zhong-Tao Ding
- School of Chinese Materia Medica, Yunnan University of Chinese medicine, Kunming, China
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Sirimangkalakitti N, Lin J, Harada K, Setiawan A, Arisawa M, Arai M. Chemical Constituents and Anticancer Activities of Marine-Derived Fungus Trichoderma lixii. Molecules 2024; 29:2048. [PMID: 38731537 PMCID: PMC11085134 DOI: 10.3390/molecules29092048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The fungal genus Trichoderma is a rich source of structurally diverse secondary metabolites with remarkable pharmaceutical properties. The chemical constituents and anticancer activities of the marine-derived fungus Trichoderma lixii have never been investigated. In this study, a bioactivity-guided investigation led to the isolation of eleven compounds, including trichodermamide A (1), trichodermamide B (2), aspergillazine A (3), DC1149B (4), ergosterol peroxide (5), cerebrosides D/C (6/7), 5-hydroxy-2,3-dimethyl-7-methoxychromone (8), nafuredin A (9), and harzianumols E/F (10/11). Their structures were identified by using various spectroscopic techniques and compared to those in the literature. Notably, compounds 2 and 5-11 were reported for the first time from this species. Evaluation of the anticancer activities of all isolated compounds was carried out. Compounds 2, 4, and 9 were the most active antiproliferative compounds against three cancer cell lines (human myeloma KMS-11, colorectal HT-29, and pancreas PANC-1). Intriguingly, compound 4 exhibited anti-austerity activity with an IC50 of 22.43 μM against PANC-1 cancer cells under glucose starvation conditions, while compound 2 did not.
Collapse
Affiliation(s)
- Natchanun Sirimangkalakitti
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan; (N.S.); (J.L.); (K.H.)
| | - Jianyu Lin
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan; (N.S.); (J.L.); (K.H.)
| | - Kazuo Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan; (N.S.); (J.L.); (K.H.)
| | - Andi Setiawan
- Department of Chemistry, Faculty of Science, Lampung University, Jl. Prof. Dr. Sumantri Brodjonegoro No. 1, Bandar Lampung 35145, Lampung, Indonesia;
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan; (N.S.); (J.L.); (K.H.)
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan; (N.S.); (J.L.); (K.H.)
| |
Collapse
|
6
|
Kuang M, Peng WW, Huang YT, Li MF, Qin SY, Zheng YT, Xu L, Huang Q, Zou ZX. Two new chromone derivatives from the rhizosphere soil fungus Ilyonectria robusta. Nat Prod Res 2024; 38:1398-1405. [PMID: 36408983 DOI: 10.1080/14786419.2022.2147169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Two new chromone derivatives (1 and 2), and two known compounds (3 and 4) were isolated from the rhizosphere soil fungus Ilyonectria robusta. Their planar structures and absolute configurations were determined by extensive spectroscopic analysis and electronic circular dichroism (ECD) calculations. Additionally, all the isolated compounds were evaluated for their antibacterial activity against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli, but no obvious activity was observed at a concentration of 128 μg/mL.
Collapse
Affiliation(s)
- Min Kuang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P.R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P.R. China
| | - Wei-Wei Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P.R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P.R. China
| | - Yuan-Tao Huang
- Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou, P.R. China
| | - Mei-Fang Li
- Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou, P.R. China
| | - Si-Yu Qin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P.R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P.R. China
| | - Yu-Ting Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P.R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P.R. China
| | - Li Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P.R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P.R. China
| | - Qi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P.R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P.R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhen-Xing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P.R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P.R. China
| |
Collapse
|
7
|
Rahman M, Borah SM, Borah PK, Bora P, Sarmah BK, Lal MK, Tiwari RK, Kumar R. Deciphering the antimicrobial activity of multifaceted rhizospheric biocontrol agents of solanaceous crops viz., Trichoderma harzianum MC2, and Trichoderma harzianum NBG. FRONTIERS IN PLANT SCIENCE 2023; 14:1141506. [PMID: 36938007 PMCID: PMC10020943 DOI: 10.3389/fpls.2023.1141506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The Solanaceae family is generally known to be the third most economically important plant taxon, but also harbors a host of plant pathogens. Diseases like wilt and fruit rot of solanaceous crops cause huge yield losses in the field as well as in storage. In the present study, eight isolates of Trichoderma spp. were obtained from rhizospheric micro-flora of three solanaceous crops: tomato, brinjal, and chili plants, and were subsequently screened for pre-eminent biocontrol activity against three fungal (Fusarium oxysporum f. sp. lycopersicum, Colletotrichum gloeosporioides, and Rhizoctonia solani) and one bacterial (Ralstonia solanacearum) pathogen. Morphological, ITS, and tef1α marker-based molecular identification revealed eight isolates were different strains of Trichoderma. Seven isolates were distinguished as T. harzianum while one was identified as T. asperellum. In vitro antagonistic and biochemical assays indicated significant biocontrol activity governed by all eight isolates. Two fungal isolates, T. harzianum MC2 and T. harzianum NBG were further evaluated to decipher their best biological control activity. Preliminary insights into the secondary metabolic profile of both isolates were retrieved by liquid chromatography-mass spectrometry (LC-MS). Further, a field experiment was conducted with the isolates T. harzianum MC2 and T. harzianum NBG which successfully resulted in suppression of bacterial wilt disease in tomato. Which possibly confer biocontrol properties to the identified isolates. The efficacy of these two strains in suppressing bacterial wilt and promoting plant growth in the tomato crop was also tested in the field. The disease incidence was significantly reduced by 47.50% and yield incremented by 54.49% in plants treated in combination with both the bioagents. The results of scanning electron microscopy were also in consensus with the in planta results. The results altogether prove that T. harzianum MC2 and T. harzianum NBG are promising microbes for their prospective use in agricultural biopesticide formulations.
Collapse
Affiliation(s)
- Mehjebin Rahman
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Sapna Mayuri Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Pradip Kr. Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Popy Bora
- Department of Plant Pathology, Regional Agricultural Research Station, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Milan Kumar Lal
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Rahul Kumar Tiwari
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Ravinder Kumar
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
8
|
Zhang J, Zhang B, Cai L, Liu L. New Dibenzo- α-pyrone Derivatives with α-Glucosidase Inhibitory Activities from the Marine-Derived Fungus Alternaria alternata. Mar Drugs 2022; 20:md20120778. [PMID: 36547925 PMCID: PMC9785194 DOI: 10.3390/md20120778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Three new dibenzo-α-pyrone derivatives, alternolides A-C (1-3), and seven known congeners (4-10) were isolated from the marine-derived fungus of Alternaria alternata LW37 assisted by the one strain-many compounds (OSMAC) strategy. The structures of 1-3 were established by extensive spectroscopic analyses, and their absolute configurations were determined by modified Snatzke's method and electronic circular dichroism (ECD) calculations. Compounds 6 and 7 showed good 1,1-diphenyl-2-picrylhydrazyl (DPPH) antioxidant scavenging activities with IC50 values of 83.94 ± 4.14 and 23.60 ± 1.23 µM, respectively. Additionally, 2, 3 and 7 exhibited inhibitory effects against α-glucosidase with IC50 values of 725.85 ± 4.75, 451.25 ± 6.95 and 6.27 ± 0.68 µM, respectively. The enzyme kinetics study indicated 2 and 3 were mixed-type inhibitors of α-glucosidase with Ki values of 347.0 and 108.5 µM, respectively. Furthermore, the interactions of 2, 3 and 7 with α-glucosidase were investigated by molecular docking.
Collapse
Affiliation(s)
- Jinxin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baodan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-10-64807043
| |
Collapse
|
9
|
Coulibaly AE, Pakora GA, Ako ABA, Amari GELND, N’Guessan CA, Kouabenan A, Kone D, Djaman JA. Diversity of Sclerotium rolfsii antagonist fungi isolated from soils of the rhizosphere of tomato crops and identification of some antifungal compounds. Heliyon 2022; 8:e08943. [PMID: 35243065 PMCID: PMC8857420 DOI: 10.1016/j.heliyon.2022.e08943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 11/03/2022] Open
Abstract
Sclerotium rolfsii Sacc. the causative agent of white rot is one of the destructive pathogens of nightshade crops. In Côte d'Ivoire, this fungal pathogen constitutes a major constraint for the cultivation of tomato (Solanum lycopersicum) with 41.01% crop losses in humid forest areas. Controlling this fungus with synthetic chemicals can be effective, but harmful to human health and the environment. The use of biological control agents could be an alternative approach to control S. rolfsii. In this perspective, the objective of this work was to select fungi from the rhizosphere of tomato crops capable of inhibiting the growth of S. rolfsii. To do this, 153 fungi were isolated from the rhizosphere and from direct confrontation tests 10 fungi whose antagonistic power of S. rolfsii varied between 27 and 60% were selected. Molecular identification (ITS) of these antagonist fungi revealed that the isolates belonged to the genera Talaromyces sp. (n = 4), Trichoderma sp. (n = 3), Penicillium sp. (n = 2) and Clonostachys sp. (n = 1). Among these fungi, Talaromyces purpureogenus and Talaromyces assiutensis were able to diffuse compounds in agar capable of inhibiting the growth of S. rolfsii. The chemical study of these 2 fungi made it possible to identify mitorubrin and mitorubrinol produced by T. purpureogenus and spiculisporic acid produced by T. assiutensis. Mitorubrin and mitorubrinol had inhibitory activities of 100 and 70% at 10 mg/mL, respectively, whereas spiculisporic acid showed moderate inhibition of 38 at 20 mg/mL of the growth of S. rolfsii; however, its abundant production by the fungus could be an advantage in the control of this phytopathogen. Isolated from the same biotope as S. rolfsii, T. purpureogenus and T. assiutensis represent favorable candidates for the biological control against S. rolfsii.
Collapse
|
10
|
Zhai YJ, Huo GM, Wei J, Lin LB, Zhang Q, Li JN, Chen X, Han WB, Gao JM. Structures and absolute configurations of butenolide derivatives from the isopod-associated fungus Pidoplitchkoviella terricola. PHYTOCHEMISTRY 2022; 193:112981. [PMID: 34653910 DOI: 10.1016/j.phytochem.2021.112981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this research, twenty aromatic and branched aliphatic polyketides, including seven previously undescribed butenolide derivatives, piterriones A-G and one known analogue, along with twelve known altenusin derivatives, were isolated from the isopod-associated fungus Pidoplitchkoviella terricola. Their structures were elucidated by analysis of NMR (1D and 2D) and mass spectrometry data, and their absolute configurations were determined by Mosher's method, microscale derivatization, and comparison of their specific rotations and ECD spectra. Dihydroaltenuene B exhibited mushroom tyrosinase inhibitory activity with an IC50 value of 38.33 ± 1.59 μM, which was comparable to that of the positive control, kojic acid (IC50 = 39.72 ± 1.34 μM). A molecular-docking study disclosed the hydrogen bonding interactions between the 3-OH and 4'-OH of dihydroaltenuene B and the His244, Met280 and Gly281 residues of tyrosinase.
Collapse
Affiliation(s)
- Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Guang-Ming Huo
- Institute of Medicinal Fungi, School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, 210017, People's Republic of China
| | - Jing Wei
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo, 726000, Shaanxi, People's Republic of China
| | - Li-Bin Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jian-Nan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xin Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Ahmed HFA, Seleiman MF, Al-Saif AM, Alshiekheid MA, Battaglia ML, Taha RS. Biological Control of Celery Powdery Mildew Disease Caused by Erysiphe heraclei DC In Vitro and In Vivo Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:2342. [PMID: 34834704 PMCID: PMC8623452 DOI: 10.3390/plants10112342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to investigate the potentiality of certain biocontrol agents, namely Bacillus subtilis, B. pumilus, B. megaterium, Pseudomonas fluorescens, Serratia marcescens, Trichoderma album, T. harzianum and T. viride, as well as the synthetic fungicide difenoconazole to control celery powdery mildew caused by Erysiphe heraclei DC, in vitro (against conidia germination and germ tube length of E. heraclei) and in vivo (against disease severity and AUDPC). In vitro, it was found that the antifungal activity of the tested biocontrol agents significantly reduced the germination percentage of the conidia and germ tube length of the pathogen. The reduction in conidia germination ranged between 88.2% and 59.6% as a result of the treatment with B. subtilis and T. album, respectively compared with 97.1% by the synthetic fungicide difenoconazole. Moreover, the fungicide achieved the highest reduction in germ tube length (92.5%) followed by B. megaterium (82.0%), while T. album was the least effective (62.8%). Spraying celery plants with the tested biocontrol agents in the greenhouse significantly reduced powdery mildew severity, as well as the area under the disease progress curve (AUDPC), after 7, 14, 21 and 28 days of application. In this regard, B. subtilis was the most efficient followed by B. pumilus, S. marcescens and B. megaterium, with 80.1, 74.4, 73.2 and 70.5% reductions in disease severity, respectively. In AUDPC, reductions of those microorganisms were 285.3, 380.9, 396.7 and 431.8, respectively, compared to 1539.1 in the control treatment. On the other hand, the fungicide difenoconazole achieved maximum efficacy in reducing disease severity (84.7%) and lowest AUDPC (219.3) compared to the other treatments. In the field, all the applied biocontrol agents showed high efficiency in suppressing powdery mildew on celery plants, with a significant improvement in growth and yield characteristics. In addition, they caused an increase in the concentration of leaf pigments, and the activities of defense-related enzymes such as peroxidase (PO) and polyphenol oxidase (PPO) and total phenol content (TPC). In conclusion, the results showed the possibility of using tested biocontrol agents as eco-friendly alternatives to protect celery plants against powdery mildew.
Collapse
Affiliation(s)
- Hamada F. A. Ahmed
- Department of Ornamental, Medicinal and Aromatic Plant Diseases, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza P.O. Box 12619, Egypt;
| | - Mahmoud F. Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Adel M. Al-Saif
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | | | - Ragab S. Taha
- Botany Department, Faculty of Agriculture, Beni-Suef University, Beni Suef 62521, Egypt;
| |
Collapse
|
12
|
Davolos D, Russo F, Canfora L, Malusà E, Tartanus M, Furmanczyk EM, Ceci A, Maggi O, Persiani AM. A Genomic and Transcriptomic Study on the DDT-Resistant Trichoderma hamatum FBL 587: First Genetic Data into Mycoremediation Strategies for DDT-Polluted Sites. Microorganisms 2021; 9:microorganisms9081680. [PMID: 34442757 PMCID: PMC8401308 DOI: 10.3390/microorganisms9081680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 01/09/2023] Open
Abstract
Trichoderma hamatum FBL 587 isolated from DDT-contaminated agricultural soils stands out as a remarkable strain with DDT-resistance and the ability to enhance DDT degradation process in soil. Here, whole genome sequencing and RNA-Seq studies for T. hamatum FBL 587 under exposure to DDT were performed. In the 38.9 Mb-genome of T. hamatum FBL 587, 10,944 protein-coding genes were predicted and annotated, including those of relevance to mycoremediation such as production of secondary metabolites and siderophores. The genome-scale transcriptional responses of T. hamatum FBL 587 to DDT exposure showed 1706 upregulated genes, some of which were putatively involved in the cellular translocation and degradation of DDT. With regards to DDT removal capacity, it was found upregulation of metabolizing enzymes such as P450s, and potentially of downstream DDT-transforming enzymes such as epoxide hydrolases, FAD-dependent monooxygenases, glycosyl- and glutathione-transferases. Based on transcriptional responses, the DDT degradation pathway could include transmembrane transporters of DDT, antioxidant enzymes for oxidative stress due to DDT exposure, as well as lipases and biosurfactants for the enhanced solubility of DDT. Our study provides the first genomic and transcriptomic data on T. hamatum FBL 587 under exposure to DDT, which are a base for a better understanding of mycoremediation strategies for DDT-polluted sites.
Collapse
Affiliation(s)
- Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL, Research Area, Via R. Ferruzzi 38/40, 00143 Rome, Italy
- Correspondence: ; Tel.: +39-0654876328
| | - Fabiana Russo
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| | - Loredana Canfora
- Council of Agricultural Research and Economics, Centre for Agriculture and Environment, Via Della Navicella 2/4, 00184 Rome, Italy;
| | - Eligio Malusà
- The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (E.M.); (M.T.); (E.M.F.)
| | - Małgorzata Tartanus
- The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (E.M.); (M.T.); (E.M.F.)
| | - Ewa Maria Furmanczyk
- The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (E.M.); (M.T.); (E.M.F.)
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| | - Oriana Maggi
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| |
Collapse
|
13
|
Ebrahimi N, Amirmahani F, Sadeghi B, Ghanaatian M. Trichoderma longibrachiatum derived metabolite as a potential source of anti‐breast‐cancer agent. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00705-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Antifeedant and antiphytopathogenic metabolites from co-culture of endophyte Irpex lacteus, phytopathogen Nigrospora oryzae, and entomopathogen Beauveria bassiana. Fitoterapia 2020; 148:104781. [PMID: 33259889 DOI: 10.1016/j.fitote.2020.104781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/29/2022]
Abstract
Five new tremulane sesquiterpenoids were isolated from co-culture of endophyte Irpex lacteus, phytopathogen Nigrospora oryzae, and entomopathogen Beauveria bassiana. All compounds showed obvious antifeedant activities against silkworm with inhibition percentages of 73-99%, at concentrations of 50 μg/cm2. Compound 11 indicated notable antifeedant activity with inhibition percentage of 93% at concentration of 6.25 μg/cm2 among them. Compounds 2, 3, 4, 8, 9, 15 and 16 indicated anti-fungal activities against I. lacteus with MIC values ≤8 μg/mL, compounds 11, 12, 16-18 showed significant anti-fungal activity against N. oryzae with MICs ≤ 4 μg/mL, and compounds 2, 5, 12 and 18 indicated significant anti-fungal activity against B. bassiana with MICs ≤ 8 μg/mL. In addition, the I. lacteus should unite B. bassiana to inhibit the production of phytotoxins from N. oryzae in the ternary culture.
Collapse
|
15
|
Chen S, Deng Y, Yan C, Wu Z, Guo H, Liu L, Liu H. Secondary Metabolites with Nitric Oxide Inhibition from Marine-Derived Fungus Alternaria sp. 5102. Mar Drugs 2020; 18:md18080426. [PMID: 32823987 PMCID: PMC7460390 DOI: 10.3390/md18080426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Two new benzofurans, alternabenzofurans A and B (1 and 2) and two new sesquiterpenoids, alternaterpenoids A and B (3 and 4), along with 18 known polyketides (5−22), were isolated from the marine-derived fungus Alternaria sp. 5102. Their structures were elucidated on the basis of extensive spectroscopic analyses (1D and 2D NMR, HR-ESIMS, and ECD) and X-ray crystallography, as well as the modified Mosher’s method. Compounds 2, 3, 5, 7, 9–18, and 20–22 exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by lipopolysaccharide with IC50 values in the range from 1.3 to 41.1 μM. Structure-activity relationships of the secondary metabolites were discussed.
Collapse
Affiliation(s)
- Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Yanlian Deng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
| | - Chong Yan
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Hongju Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
- Correspondence: ; Tel.: +86-769-22896599
| |
Collapse
|
16
|
Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A. Trichoderma: The "Secrets" of a Multitalented Biocontrol Agent. PLANTS 2020; 9:plants9060762. [PMID: 32570799 PMCID: PMC7355703 DOI: 10.3390/plants9060762] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023]
Abstract
The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens. This symbiotic association in plants leads to the acquisition of plant resistance to pathogens, improves developmental processes and yields and promotes absorption of nutrient and fertilizer use efficiency. Among other biocontrol mechanisms, antibiosis, competition and mycoparasitism are among the main features through which microorganisms, including Thrichoderma, react to the presence of other competitive pathogenic organisms, thereby preventing or obstructing their development. Stimulation of every process involves the biosynthesis of targeted metabolites like plant growth regulators, enzymes, siderophores, antibiotics, etc. This review summarizes the biological control activity exerted by Trichoderma spp. and sheds light on the recent progress in pinpointing the ecological significance of Trichoderma at the biochemical and molecular level in the rhizosphere as well as the benefits of symbiosis to the plant host in terms of physiological and biochemical mechanisms. From an applicative point of view, the evidence provided herein strongly supports the possibility to use Trichoderma as a safe, ecofriendly and effective biocontrol agent for different crop species.
Collapse
Affiliation(s)
- Monika Sood
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; (M.S.); (D.K.)
| | - Dhriti Kapoor
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; (M.S.); (D.K.)
| | - Vipul Kumar
- School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India;
| | - Mohamed S. Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Marco Landi
- Department of Agriculture, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Correspondence: (M.L.); (A.S.)
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy;
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
- Correspondence: (M.L.); (A.S.)
| |
Collapse
|
17
|
Diversity of Trichoderma spp. in Marine Environments and Their Biological Potential for Sustainable Industrial Applications. SUSTAINABILITY 2020. [DOI: 10.3390/su12104327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms are regarded as a sustainable source of biologically active molecules. Among them, Trichoderma spp. have been an attractive source of biological compounds. However, the study of marine-derived Trichoderma has developed slowly because of the difficulty in isolating the fungi. In our study, 30 strains of marine-derived Trichoderma were identified through the translation elongation factor 1-alpha (EF1α) sequences, and their biological activities, such as antioxidant activity by ABTS and DPPH assays, antifungal activity against Asteromyces cruciatus and Lindra thalassiae, and tyrosinase inhibition activity, were investigated. As a result, the 30 marine Trichoderma species were classified into 21 taxa, including three new species candidates. Three strains of T. asperellum showed the highest ABTS radical scavenging activity and antifungal activity. T. bissettii SFC20170821-M05 and T. guizhouense SFC20180619-M23 showed notable DPPH radical scavenging activity and tyrosinase inhibition activity, respectively. This study showed the potential of marine-derived Trichoderma as a source of bioactive compounds.
Collapse
|
18
|
Tang J, Huang L, Liu Y, Toshmatov Z, Zhang C, Shao H. Two Phytotoxins Isolated from the Pathogenic Fungus of the Invasive Weed Xanthium italicum. Chem Biodivers 2020; 17:e2000043. [PMID: 32112467 DOI: 10.1002/cbdv.202000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/27/2020] [Indexed: 01/25/2023]
Abstract
Alternariol and altenuisol were isolated as the major phytotoxins produced by an Alternaria sp. pathogenic fungus of the invasive weed Xanthium italicum. Altenuisol exhibited stronger phytotoxic effect compared with alternariol. At 10 μg/mL, alternariol and altenuisol promoted root growth of the monocot plant Pennisetum alopecuroides by 11.1 % and 75.2 %, respectively, however, inhibitory activity was triggered by the increase of concentration, with root elongation being suppressed by 35.5 % and 52.0 % with alternariol and altenuisol at 1000 μg/mL, respectively. Alternariol slightly inhibited root length of the dicot plant Medicago sativa at 10-1000 μg/mL, whereas altenuisol stimulated root growth by 51.0 % at 10 μg/mL and inhibited root length by 43.4 % at 200 μg/mL. Alternariol and altenuisol did not exert strong regulatory activity on another dicot plant, Amaranthus retroflexus, when tested concentration was low, however, when the concentration reached 1000 μg/mL, they reduced root length by 68.1 % and 51.0 %, respectively. Alternariol and altenuisol exerted similar effect on shoot growth of three tested plants but to a lesser extent. It is noteworthy to mention that this is the first report on the phytotoxicity of altenuisol.
Collapse
Affiliation(s)
- Jieshi Tang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, P. R. China.,Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Shihezi, 832003, P. R. China
| | - Ling Huang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, P. R. China
| | - Yu Liu
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, P. R. China
| | - Zokir Toshmatov
- Institute of Chemistry of Plant Substances of the Academy of Sciences of the Republic of Uzbekistan, 77, M. ULugbek St., Tashkent, 100170, Uzbekistan
| | - Chi Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, P. R. China
| | - Hua Shao
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Chemical Composition of an Aphid Antifeedant Extract from an Endophytic Fungus, Trichoderma sp. EFI671. Microorganisms 2020; 8:microorganisms8030420. [PMID: 32192023 PMCID: PMC7143094 DOI: 10.3390/microorganisms8030420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/27/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Botanical and fungal biopesticides, including endophytes, are in high demand given the current restrictive legislations on the use of chemical pesticides. As part of an ongoing search for new biopesticides, a series of fungal endophytes have been isolated from selected medicinal plants including Lauraceae species. In the current study, an extract from the endophytic fungus Trichoderma sp. EFI 671, isolated from the stem parts of the medicinal plant Laurus sp., was screened for bioactivity against plant pathogens (Fusarium graminearum, Rhizoctonia solani, Sclerotinia sclerotiorum and Botrytis cinerea), insect pests (Spodoptera littoralis, Myzus persicae, Rhopalosiphum padi) and plant parasites (Meloidogyne javanica), with positive results against M. persicae. The chemical study of the neutral fraction of the active hexane extract resulted in the isolation of a triglyceride mixture (m1), eburicol (2), β-sitostenone (3), ergosterol (4) and ergosterol peroxide (5). The free fatty acids present in the acid fraction of the extract and in m1 (oleic, linoleic, palmitic and stearic) showed strong dose-dependent antifeedant effects against M. persicae. Liquid (potato dextrose broth, PDB and Sabouraud Broth, SDB) and solid (corn, sorghum, pearl millet and rice) growth media were tested in order to optimize the yield and bioactivity of the fungal extracts. Pearl millet and corn gave the highest extract yields. All the extracts from these solid media had strong effects against M. persicae, with sorghum being the most active. Corn media increased the methyl linoleate content of the extract, pearl millet media increased the oleic acid and sorghum media increased the oleic and linoleic acids compared to rice. The antifeedant effects of these extracts correlated with their content in methyl linoleate and linoleic acid. The phytotoxic effects of these extracts against ryegrass, Lolium perenne, and lettuce, Lactuca sativa, varied with culture media, with sorghum being non- toxic.
Collapse
|
20
|
Rashad YM, Abdel-Azeem AM. Recent Progress on Trichoderma Secondary Metabolites. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Heo YM, Lee H, Kim K, Kwon SL, Park MY, Kang JE, Kim GH, Kim BS, Kim JJ. Fungal Diversity in Intertidal Mudflats and Abandoned Solar Salterns as a Source for Biological Resources. Mar Drugs 2019; 17:E601. [PMID: 31652878 PMCID: PMC6891761 DOI: 10.3390/md17110601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Intertidal zones are unique environments that are known to be ecological hot spots. In this study, sediments were collected from mudflats and decommissioned salterns on three islands in the Yellow Sea of South Korea. The diversity analysis targeted both isolates and unculturable fungi via Illumina sequencing, and the natural recovery of the abandoned salterns was assessed. The phylogeny and bioactivities of the fungal isolates were investigated. The community analysis showed that the abandoned saltern in Yongyudo has not recovered to a mudflat, while the other salterns have almost recovered. The results suggested that a period of more than 35 years may be required to return abandoned salterns to mudflats via natural restoration. Gigasporales sp. and Umbelopsis sp. were selected as the indicators of mudflats. Among the 53 isolates, 18 appeared to be candidate novel species, and 28 exhibited bioactivity. Phoma sp., Cladosporium sphaerospermum, Penicillium sp. and Pseudeurotium bakeri, and Aspergillus urmiensis showed antioxidant, tyrosinase inhibition, antifungal, and quorum-sensing inhibition activities, respectively, which has not been reported previously. This study provides reliable fungal diversity information for mudflats and abandoned salterns and shows that they are highly valuable for bioprospecting not only for novel microorganisms but also for novel bioactive compounds.
Collapse
Affiliation(s)
- Young Mok Heo
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Kyeongwon Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Sun Lul Kwon
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Min Young Park
- Department of Biosystems & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Ji Eun Kang
- Department of Biosystems & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Gyu-Hyeok Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Beom Seok Kim
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
22
|
Macías FA, Mejías FJ, Molinillo JM. Recent advances in allelopathy for weed control: from knowledge to applications. PEST MANAGEMENT SCIENCE 2019; 75:2413-2436. [PMID: 30684299 DOI: 10.1002/ps.5355] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 05/27/2023]
Abstract
Allelopathy is the biological phenomenon of chemical interactions between living organisms in the ecosystem, and must be taken into account in addressing pest and weed problems in future sustainable agriculture. Allelopathy is a multidisciplinary science, but in some cases, aspects of its chemistry are overlooked, despite the need for a deep knowledge of the chemical structural characteristics of allelochemicals to facilitate the design of new herbicides. This review is focused on the most important advances in allelopathy, paying particular attention to the design and development of phenolic compounds, terpenoids and alkaloids as herbicides. The isolation of allelochemicals is mainly addressed, but other aspects such as the analysis and activities of derivatives or analogs are also covered. Furthermore, the use of allelopathy in the fight against parasitic plants is included. The past 12 years have been a prolific period for publications on allelopathy. This critical review discusses future research areas in this field and the state of the art is analyzed from the chemist's perspective. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| | - Francisco Jr Mejías
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| | - José Mg Molinillo
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| |
Collapse
|
23
|
Shi YN, Pusch S, Shi YM, Richter C, Maciá-Vicente JG, Schwalbe H, Kaiser M, Opatz T, Bode HB. (±)-Alternarlactones A and B, Two Antiparasitic Alternariol-like Dimers from the Fungus Alternaria alternata P1210 Isolated from the Halophyte Salicornia sp. J Org Chem 2019; 84:11203-11209. [DOI: 10.1021/acs.joc.9b01229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Stefan Pusch
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | | | | | | | | | - Marcel Kaiser
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute and University of Basel, 4003 Basel, Switzerland
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | | |
Collapse
|
24
|
Non-Volatile Metabolites from Trichoderma spp. Metabolites 2019; 9:metabo9030058. [PMID: 30909487 PMCID: PMC6468342 DOI: 10.3390/metabo9030058] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/11/2023] Open
Abstract
The genus Trichoderma is comprised of many common fungi species that are distributed worldwide across many ecosystems. Trichoderma species are well-known producers of secondary metabolites with a variety of biological activities. Their potential use as biocontrol agents has been known for many years. Several reviews about metabolites from Trichoderma have been published. These reviews are based on their structural type, biological activity, or fungal origin. In this review, we summarize the secondary metabolites per Trichoderma species and elaborate on approximately 390 non-volatile compounds from 20 known species and various unidentified species.
Collapse
|
25
|
Liu L, Xu W, Li S, Chen M, Cheng Y, Yuan W, Cheng Z, Li Q. Penicindopene A, a new indole diterpene from the deep-sea fungus Penicillium sp. YPCMAC1. Nat Prod Res 2018; 33:2988-2994. [DOI: 10.1080/14786419.2018.1514402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lijun Liu
- College of Pharmacy, Henan University, Kaifeng, P. R. China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State Oceanic Administration, Xiamen, P. R. China
| | - Shumin Li
- College of Pharmacy, Henan University, Kaifeng, P. R. China
| | - Mengying Chen
- College of Pharmacy, Henan University, Kaifeng, P. R. China
| | - Yongjun Cheng
- College of Pharmacy, Henan University, Kaifeng, P. R. China
| | - Wangjun Yuan
- College of Pharmacy, Henan University, Kaifeng, P. R. China
| | - Zhongbin Cheng
- College of Pharmacy, Henan University, Kaifeng, P. R. China
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, P. R. China
| | - Qin Li
- College of Pharmacy, Henan University, Kaifeng, P. R. China
- Eucommia ulmoides Cultivation and Utilization of Henan Engineering Laboratory, Kaifeng, P. R. China
| |
Collapse
|
26
|
Santos SS, Augusto DG, Alves PAC, Pereira JS, Duarte LMB, Melo PC, Gross E, Kaneto CM, Silva A, Santos JL. Trichoderma asperelloides ethanolic extracts efficiently inhibit Staphylococcus growth and biofilm formation. PLoS One 2018; 13:e0202828. [PMID: 30142222 PMCID: PMC6108504 DOI: 10.1371/journal.pone.0202828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/09/2018] [Indexed: 11/19/2022] Open
Abstract
Fungi from the widely distributed genus Trichoderma are of great biotechnological interest, being currently used in a vast range of applications. Here, we report that high-molecular weight fraction (HWF) derived from Trichoderma asperelloides ethanolic extract exhibits antibiotic activity against staphylococcal biofilms. The antibacterial and anti-biofilm properties of T. asperelloides extracts were evaluated by well-established assays in Staphylococcus aureus ATCC strains (29213 and 6538) and in one clinical isolate from bovine mastitis. The HWF from T. asperelloides eradicated S. aureus by causing substantial matrix de-structuring and biomass reduction (p < 10-5) at concentrations as low as 2.3 μg mL-1. Additionally, we present ultra-structure analysis by the use of scanning electron microscopy as well as transmission microscopy, which showed that T. asperelloides killed cells through cell wall and membrane disturbance. Remarkably, the HWF from T. asperelloides killed S. aureus and eradicated its biofilms in a greater performance than gentamicin (p < 10-5), a known potent antibiotic against S. aureus. Our results indicate that extract from T. asperelloides may represent a promising candidate for the development of new antibiotics against gram-positive bacteria.
Collapse
Affiliation(s)
- Simone S. Santos
- Laboratório de Imunobiologia, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Danillo G. Augusto
- Laboratório de Imunobiologia, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
- Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
| | - Patrícia A. Casaes Alves
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Julia S. Pereira
- Centro Federal de Educação Tecnológica de Minas Gerais, Departamento de Engenharia de Materiais, Belo Horizonte, Brazil
| | - Larissa M. B. Duarte
- Centro Federal de Educação Tecnológica de Minas Gerais, Departamento de Engenharia de Materiais, Belo Horizonte, Brazil
| | - Poliana C. Melo
- Hospital Veterinário Departamento de Ciências Agrárias, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Eduardo Gross
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Carla M. Kaneto
- Laboratório de Imunobiologia, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Aline Silva
- Laboratório de Microbiologia, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Jane L. Santos
- Laboratório de Imunobiologia, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
27
|
Macedo WR, Silva GH, Santos MFC, Oliveira APS, Souza DS. Physiologic and metabolic effects of exogenous kojic acid and tyrosol, chemicals produced by endophytic fungus, on wheat seeds germination. Nat Prod Res 2017; 32:2692-2696. [DOI: 10.1080/14786419.2017.1374261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- W. R. Macedo
- Crop Physiology and Metabolism Lab, Institute of Agricultural Science, Universidade Federal de Viçosa – Campus de Rio Paranaíba, Rio Paranaíba, Brasil
| | - G. H. Silva
- Institute of Exact Science, Universidade Federal de Viçosa – Campus de Rio Paranaíba, Rio Paranaíba, Brasil
| | - M. F. C. Santos
- Institute of Chemistry, Universidade Federal de Alfenas, Alfenas, Brasil
| | - A. P. S. Oliveira
- Crop Physiology and Metabolism Lab, Institute of Agricultural Science, Universidade Federal de Viçosa – Campus de Rio Paranaíba, Rio Paranaíba, Brasil
| | - D. S. Souza
- Crop Physiology and Metabolism Lab, Institute of Agricultural Science, Universidade Federal de Viçosa – Campus de Rio Paranaíba, Rio Paranaíba, Brasil
| |
Collapse
|