1
|
Caurio AC, Boldori JR, Gonçalves LM, Rodrigues CC, Rodrigues NR, Somacal S, Emanuelli T, Roehrs R, Denardin CC, Denardin ELG. Protective effect of Bougainvillea glabra Choisy bract in toxicity induced by Paraquat in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109873. [PMID: 38423200 DOI: 10.1016/j.cbpc.2024.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Paraquat (PQ) is a herbicide widely used in agriculture to control weeds. The damage caused to health through intoxication requires studies to combating its damage to health. Bougainvillea glabra Choisy is a plant native to South America and its bracts contain a variety of compounds, including betalains and phenolic compounds, which have been underexplored about their potential applications and benefits for biological studies to neutralize toxicity. In this study, we evaluated the antioxidant and protective potential of the B. glabra bracts (BBGCE) hydroalcoholic extract against Paraquat-induced toxicity in Drosophila melanogaster. BBGCE demonstrated high antioxidant capacity in vitro through the assays of ferric-reducing antioxidant power (FRAP), radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), free radical ABTS and quantification of phenolic compounds, confirmed through identifying the main compounds. Wild males of D. melanogaster were exposed to Paraquat (1.75 mM) and B. glabra Choisy (1, 10, 50 and 100 μg/mL) in agar medium for 4 days. Flies exposed to Paraquat showed a reduction in survival rate and a significant decrease in climbing capacity and balance test when compared to the control group. Exposure of the flies to Paraquat caused a reduction in acetylcholinesterase activity, an increase in lipid peroxidation and production of reactive species, and a change in the activity of the antioxidant enzymes. Co-exposure with BBGCE was able to block toxicity induced by PQ exposure. Our results demonstrate that bract extract has a protective effect against PQ on the head and body of flies, attenuating behavioral deficit, exerting antioxidant effects and blocking oxidative damage in D. melanogaster.
Collapse
Affiliation(s)
- Aline Castro Caurio
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil; Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Jean Ramos Boldori
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Leonardo Martha Gonçalves
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Camille Cadore Rodrigues
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Nathane Rosa Rodrigues
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rafael Roehrs
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Cristiane Casagrande Denardin
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Elton Luis Gasparotto Denardin
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil.
| |
Collapse
|
2
|
Sharma P, Mittal P. Paraquat (herbicide) as a cause of Parkinson's Disease. Parkinsonism Relat Disord 2024; 119:105932. [PMID: 38008593 DOI: 10.1016/j.parkreldis.2023.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
The four features of Parkinson's disease (PD), which also manifests other non-motor symptoms, are bradykinesia, tremor, postural instability, and stiffness. The pathogenic causes of Parkinsonism include Lewy bodies, intracellular protein clumps of αsynuclein, and the degeneration of dopaminergic neurons in the substantia nigra's pars compacta region. The pathophysiology of PD is still poorly understood due to the complexity of the illness. The apoptotic cell death of neurons in PD, however, has been linked to a variety of intracellular mechanisms, according to a wide spectrum of study. The endoplasmic reticulum's stress, decreased levels of neurotrophic factors, oxidative stress, mitochondrial dysfunction, catabolic alterations in dopamine, and decreased activity of tyrosine hydroxylase are some of these causes. The herbicide paraquat has been used in laboratory studies to create a variety of PD pathological features in numerous in-vitro and in-vivo animals. Due to the unique neurotoxicity that paraquat causes, understanding of the pathophysiology of PD has changed. Parkinson's disease (PD) is more likely to develop among people exposed to paraquat over an extended period of time, according to epidemiological studies. Thanks to this paradigm, the hunt for new therapy targets for PD has expanded. In both in-vitro and in-vivo models, the purpose of this study is to summarise the relationship between paraquat exposure and the onset of Parkinson's disease (PD).
Collapse
Affiliation(s)
| | - Payal Mittal
- University Institute of Pharma Sciences, Mohali, Punjab, India.
| |
Collapse
|
3
|
Wang L, Lu K, Lou X, Zhang S, Song W, Li R, Geng L, Cheng B. Astaxanthin ameliorates dopaminergic neuron damage in paraquat-induced SH-SY5Y cells and mouse models of Parkinson's disease. Brain Res Bull 2023; 202:110762. [PMID: 37708917 DOI: 10.1016/j.brainresbull.2023.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Parkinson's disease (PD) is the second largest neurodegenerative disorder caused by the decreased number of dopaminergic (DAc) neurons in the substantia nigra pars compacta (SNpc). There is evidence that oxidative stress can contribute degeneration of DAc neurons in SNpc which is mainly caused by apoptotic cell death. Thus, suppressing oxidative stress and apoptosis of DAc neurons is an effective strategy to mitigate the progress of PD. Astaxanthin (AST) is a carotenoid, which mainly exists in marine organisms and is a powerful biological antioxidant. In this study, we aimed to determine the neuroprotective effect of AST on paraquat (PQ) -induced models of PD in vitro and in vivo. Here, we showed that AST significantly enhanced cell survival of SH-SY5Y cells against PQ toxicity by suppressing apoptotic cell death and oxidative stress. Moreover, we found that AST significantly ameliorated PQ-induced behavioral disorders associated with PD in C57BL/6 J mice and the damage to DAc neurons in the SNpc of mice. Lastly, we found that the neuroprotective effects of AST were conducted through inhibiting PQ-induced activation of MAPK signaling. In conclusion, our study indicates that AST had a strong protective effect on PQ-induced oxidative stress and antagonized apoptotic cell death in SH-SY5Y cells and PQ-induced mice PD model, which might provide new insights of AST for PD treatment.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China; Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Kunliang Lu
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xingyue Lou
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shenghui Zhang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Wenxin Song
- Chongqing Sixth People's Hospital, 301 Nancheng Avenue, Nan'an District, 400060 Chongqing, China
| | - Ranran Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Lujing Geng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Binfeng Cheng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
4
|
Chen Y, Chen X, Yang X, Gao P, Yue C, Wang L, Wu T, Jiang T, Wu H, Tang L, Wang Z. Cassiae Semen: A comprehensive review of botany, traditional use, phytochemistry, pharmacology, toxicity, and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116199. [PMID: 36702448 DOI: 10.1016/j.jep.2023.116199] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cassiae Semen, belonging to the family Leguminosae, is derived from the dry mature seeds of Cassia obtusifolia L. or Cassia tora L. and has long been used as a laxative, hepatoprotective, improve eyesight, and antidiabetic complications medicine or functional food in Asia. AIMS OF THE REVIEW This review summarizes the integrated research progress of botany, traditional uses, phytochemistry, pharmacology, toxicity, and quality control of Cassiae Semen. Additionally, the emerging challenges and possible developing directions are discussed as well. MATERIALS AND METHODS The information on Cassiae Semen was collected from published scientific materials, including ancient books of traditional Chinese Medicine; Ph.D. and M. Sc. dissertations; monographs on medicinal plants; pharmacopoeia of various countries and electronic databases, such as PubMed, Web of Science, ACS, Science Direct, J-STAGE, Springer link, Taylor, CNKI and Google Scholar, etc. RESULTS: First, the traditional uses and plant origins of Cassiae Semen are outlined. Secondly, approximately 137 compounds, including anthraquinones, naphthopyranones, naphthalenes, flavones, polysaccharides and other compounds, have been isolated and identified from Cassia obtusifolia L. and Cassia tora L. Third, the pharmacological activities and mechanisms of crude extract of Cassiae Semen and its main bioactive compounds are summarized. Moreover, the processing, toxicity, and quality control are introduced briefly. CONCLUSIONS Cassiae Semen is a frequently used Chinese Materia Medica with pharmacological effects that mainly affect the digestive system, cardiovascular systems and nervous system. This review summarized its botany, traditional uses, phytochemistry, and pharmacology, it also exhibited recent scientific research advances and gaps, which provide a deeper insight into the understanding and application of Cassiae Semen. In future research on Cassiae Semen, more attention should be given to the pharmacological activities of naphthopyranones and polysaccharides and the mechanism of action for improving eye diseases. Meanwhile, it is essential to focus on strengthening the study on the pharmacokinetics research and the safety evaluation of related health products research.
Collapse
Affiliation(s)
- Yingying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xiaoxu Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xiaoyun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Peiyun Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Chunyu Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Lixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Tong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Tong Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| |
Collapse
|
5
|
Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023; 15:nu15020449. [PMID: 36678322 PMCID: PMC9865516 DOI: 10.3390/nu15020449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases are known for their wide range of harmful conditions related to progressive cell damage, nervous system connections and neuronal death. These pathologies promote the loss of essential motor and cognitive functions, such as mobility, learning and sensation. Neurodegeneration affects millions of people worldwide, and no integral cure has been created yet. Here, bioactive compounds have been proven to exert numerous beneficial effects due to their remarkable bioactivity, so they could be considered as great options for the development of new neuroprotective strategies. Phenolic bioactives have been reported to be found in edible part of plants; however, over the last years, a large amount of research has focused on the phenolic richness that plant by-products possess, which sometimes even exceeds the content in the pulp. Thus, their possible application as an emergent neuroprotective technique could also be considered as an optimal strategy to revalorize these agricultural residues (those originated from plant processing). This review aims to summarize main triggers of neurodegeneration, revise the state of the art in plant extracts and their role in avoiding neurodegeneration and discuss how their main phenolic compounds could exert their neuroprotective effects. For this purpose, a diverse search of studies has been conducted, gathering a large number of papers where by-products were used as strong sources of phenolic compounds for their neuroprotective properties. Finally, although a lack of investigation is quite remarkable and greatly limits the use of these compounds, phenolics remain attractive for research into new multifactorial anti-neurodegenerative nutraceuticals.
Collapse
|
6
|
Preclinical activities of Cassia tora Linn against aging-related diseases. Expert Rev Mol Med 2022; 24:e43. [PMID: 36281483 DOI: 10.1017/erm.2022.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Globally, an aging population is increasing, and aging is a natural physiological process and a major risk factor for all age-related diseases. It seriously threatens personal health and imposes a great economic burden. Therefore, there is a growing scientific interest in strategies for well-aging with prevention and treatment of age-related diseases. The seed, root, stem or leaves of Cassia tora Linn. are useful for anti-bacteria, anti-hyperlipidemia and anti-obesity due to its pharmacological activities such as anti-inflammation and anti-oxidant both in vitro and in vivo. Nevertheless, no clinical trials have been attempted so far, therefore here we would like to understand the current preclinical activities for aging-related disease models including cataract, metabolic dysfunction and neurodegeneration, then discuss their preparation for clinical trials and perspectives.
Collapse
|
7
|
See WZC, Naidu R, Tang KS. Cellular and Molecular Events Leading to Paraquat-Induced Apoptosis: Mechanistic Insights into Parkinson’s Disease Pathophysiology. Mol Neurobiol 2022; 59:3353-3369. [PMID: 35306641 PMCID: PMC9148284 DOI: 10.1007/s12035-022-02799-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the cardinal features of tremor, bradykinesia, rigidity, and postural instability, in addition to other non-motor symptoms. Pathologically, PD is attributed to the loss of dopaminergic neurons in the substantia nigra pars compacta, with the hallmark of the presence of intracellular protein aggregates of α-synuclein in the form of Lewy bodies. The pathogenesis of PD is still yet to be fully elucidated due to the multifactorial nature of the disease. However, a myriad of studies has indicated several intracellular events in triggering apoptotic neuronal cell death in PD. These include oxidative stress, mitochondria dysfunction, endoplasmic reticulum stress, alteration in dopamine catabolism, inactivation of tyrosine hydroxylase, and decreased levels of neurotrophic factors. Laboratory studies using the herbicide paraquat in different in vitro and in vivo models have demonstrated the induction of many PD pathological features. The selective neurotoxicity induced by paraquat has brought a new dawn in our perspectives about the pathophysiology of PD. Epidemiological data have suggested an increased risk of developing PD in the human population exposed to paraquat for a long term. This model has opened new frontiers in the quest for new therapeutic targets for PD. The purpose of this review is to synthesize the relationship between the exposure of paraquat and the pathogenesis of PD in in vitro and in vivo models.
Collapse
Affiliation(s)
- Wesley Zhi Chung See
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
8
|
Ramadan S, Sabry MM, Saad MA, Angeloni S, Sabry OM, Caprioli G, El Zalabani SM. Dismantling Parkinson's disease with herbs: MAO-B inhibitory activity and quantification of chemical constituents using HPLC-MS/MS of Egyptian local market plants. Nat Prod Res 2021; 36:5766-5771. [PMID: 34894897 DOI: 10.1080/14786419.2021.2013836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Withania somnifera, Angelica sinensis, Glycyrrhiza glabra, and Simmondsia chinensis were acquired from the Egyptian market, profiled for their chemical constituents, screened for the in-vitro MAO-B inhibitory activity and evaluated for the total phenolic content. Thirty compounds were characterized in the selected herbs using HPLC-MS/MS. In-vitro MAO-B inhibitory activity and total phenolic content of the acquired herbs were compared with those of a prepared herbal formula consisting of a mixture of equal amounts of the four mentioned herbs. The most potent MAO-B inhibitory activity was exerted by the methanol extract of the prepared formula (IC50 of 712.19 ± 13.90 ng/mL) compared to selegiline (IC50 of 581.69 ± 11.35 ng/mL). The highest value of the total phenolic content was shown by Angelica sinensis methanolic extract (76.15 ± 0.1 mg/g) followed by Glycyrrhiza glabra methanolic extract (65.74 ± 0.1 mg/g), then the mixture's methanolic extract of the four herbs (37.04 ± 0.1 mg/g).
Collapse
Affiliation(s)
- Soha Ramadan
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Manal M Sabry
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, New Giza University, Giza, Egypt
| | - Simone Angeloni
- School of Pharmacy, University of Camerino, Camerino, Italy.,RICH - Research and Innovation Coffee Hub, Macerata, Italy
| | - Omar M Sabry
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Soheir M El Zalabani
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Neuroprotective Effect of Aurantio-Obtusin, a Putative Vasopressin V 1A Receptor Antagonist, on Transient Forebrain Ischemia Mice Model. Int J Mol Sci 2021; 22:ijms22073335. [PMID: 33805177 PMCID: PMC8037569 DOI: 10.3390/ijms22073335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been a rich source of novel drug discovery, and Cassia seed is one of the common TCMs with numerous biological effects. Based on the existing reports on neuroprotection by Cassia seed extract, the present study aims to search possible pharmacological targets behind the neuroprotective effects of the Cassia seeds by evaluating the functional effect of specific Cassia compounds on various G-protein-coupled receptors. Among the four test compounds (cassiaside, rubrofusarin gentiobioside, aurantio-obtusin, and 2-hydroxyemodin 1-methylether), only aurantio-obtusin demonstrated a specific V1AR antagonist effect (71.80 ± 6.0% inhibition at 100 µM) and yielded an IC50 value of 67.70 ± 2.41 μM. A molecular docking study predicted an additional interaction of the hydroxyl group at C6 and a methoxy group at C7 of aurantio-obtusin with the Ser341 residue as functional for the observed antagonist effect. In the transient brain ischemia/reperfusion injury C57BL/6 mice model, aurantio-obtusin attenuated the latency time that was reduced in the bilateral common carotid artery occlusion (BCCAO) groups. Likewise, compared to neuronal damage in the BCCAO groups, treatment with aurantio-obtusin (10 mg/kg, p.o.) significantly reduced the severity of damage in medial cornu ammonis 1 (mCA1), dorsal CA1, and cortex regions. Overall, the findings of this study highlight V1AR as a possible target of aurantio-obtusin for neuroprotection.
Collapse
|
10
|
Ravi SK, Narasingappa RB, Mundagaru R, Girish TK, Vincent B. Cassia tora extract alleviates Aβ 1-42 aggregation processes in vitro and protects against aluminium-induced neurodegeneration in rats. ACTA ACUST UNITED AC 2020; 72:1119-1132. [PMID: 32363579 DOI: 10.1111/jphp.13283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/04/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To examine the ability of Cassia tora extract to produce, in vitro and in vivo, beneficial effects with respect to events occurring during Alzheimer's disease. METHODS Previously characterised methanol extract of C. tora was tested for its ability to lessen Aβ42 aggregation processes in vitro and to alleviate aluminium-induced impairments in vivo in rats. KEY FINDINGS Cassia tora extract prevents the aggregation of monomeric, oligomeric and fibrillary Aβ1-42 in vitro. Moreover, the daily ingestion of 100 and 400 milligrams of the extract per kilogram of body weight for 60 days ameliorates the neurobehavioral and cognitive abilities of aluminium-treated rats in vivo. Importantly, treatments with the extract trigger a significant recovery of antioxidant enzymes function, a diminution of lipid peroxidation and acetylcholinesterase activity, a decrease of pro-inflammatory cytokines expression and an increase of brain-derived neurotrophic factor levels in both the hippocampus and the frontal cortex. Finally, we evidence that the extract is able to ameliorate the aluminium-dependent loss of neuronal integrity in the CA1 and CA3 regions of the hippocampus. CONCLUSIONS Altogether, our results reveal that methanol extract of C. tora is able to prevent typical AD-related events and therefore stands as a promising mild and natural anti-AD multitarget compound.
Collapse
Affiliation(s)
- Sunil K Ravi
- Department of Biotechnology, College of Agriculture, University of Agriculture Sciences, Bangalore, Hassan, India
| | - Ramesh B Narasingappa
- Department of Biotechnology, College of Agriculture, University of Agriculture Sciences, Bangalore, Hassan, India
| | - Ravi Mundagaru
- Pharmacology laboratory, SDM Centre for Research in Ayurveda and Allied Sciences, Kuthpady, Udupi, India
| | - Talakatta K Girish
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore, India
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
11
|
Paudel P, Seong SH, Fauzi FM, Bender A, Jung HA, Choi JS. Establishing GPCR Targets of hMAO Active Anthraquinones from Cassia obtusifolia Linn Seeds Using In Silico and In Vitro Methods. ACS OMEGA 2020; 5:7705-7715. [PMID: 32280914 PMCID: PMC7144155 DOI: 10.1021/acsomega.0c00684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/16/2020] [Indexed: 05/08/2023]
Abstract
The present study examines the effect of human monoamine oxidase active anthraquinones emodin, alaternin (=7-hydroxyemodin), aloe-emodin, and questin from Cassia obtusifolia Linn seeds in modulating human dopamine (hD1R, hD3R, and hD4R), serotonin (h5-HT1AR), and vasopressin (hV1AR) receptors that were predicted as prime targets from proteocheminformatics modeling via in vitro cell-based functional assays, and explores the possible mechanisms of action via in silico modeling. Emodin and alaternin showed a concentration-dependent agonist effect on hD3R with EC50 values of 21.85 ± 2.66 and 56.85 ± 4.59 μM, respectively. On hV1AR, emodin and alaternin showed an antagonist effect with IC50 values of 10.25 ± 1.97 and 11.51 ± 1.08 μM, respectively. Interestingly, questin and aloe-emodin did not have any observable effect on hV1AR. Only alaternin was effective in antagonizing h5-HT1AR (IC50: 84.23 ± 4.12 μM). In silico studies revealed that a hydroxyl group at C1, C3, and C8 and a methyl group at C6 of anthraquinone structure are essential for hD3R agonist and hV1AR antagonist effects, as well as for the H-bond interaction of 1-OH group with Ser192 at a proximity of 2.0 Å. Thus, based on in silico and in vitro results, hV1AR, hD3R, and h5-HT1AR appear to be prime targets of the tested anthraquinones.
Collapse
Affiliation(s)
- Pradeep Paudel
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Fazlin Mohd Fauzi
- Department
of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Andreas Bender
- Center
for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2
1EW Cambridge, United Kingdom
| | - Hyun Ah Jung
- Department
of Food Science and Human Nutrition, Jeonbuk
National University, Jeonju 54896, Republic of Korea
- . Tel: 82-63-270-4882. Fax: 82-63-270-3854
| | - Jae Sue Choi
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
- . Tel: +82-51-629-5845. Fax: +82-51-629 5842
| |
Collapse
|
12
|
Ravi SK, Narasingappa RB, Prasad M, Javagal MR, Vincent B. Cassia tora prevents Aβ 1-42 aggregation, inhibits acetylcholinesterase activity and protects against Aβ 1-42-induced cell death and oxidative stress in human neuroblastoma cells. Pharmacol Rep 2019; 71:1151-1159. [PMID: 31655280 DOI: 10.1016/j.pharep.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 06/15/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alzheimer's is a complex neurodegenerative disease and is characterized by extraneuronal accumulation of β-amyloid peptide. Because of its complex nature, multi-target directed ligands (MTDLs) are increasingly being considered as promising anti-Alzheimer therapeutic agents. This study is aimed at determining the effects of Cassia tora ethyl acetate fraction on several Alzheimer-associated deleterious events in test tubes as well as in human neuroblastoma SK-N-SH and SH-SY5Y cell lines. METHOD Ethyl acetate fraction of C. tora was purified by chromatography, characterized by 1H and 13C NMR, and tested for its ability to prevent Aβ 1-42 aggregation by thioflavin-T fluorescence and transmission electron microscopy. We also analyzed the intracellular ROS level and cytotoxicity in SK-N-SH and SH-SY5Y cell lines. RESULTS The extract inhibits the formation of Aβ 1-42 aggregation from monomers and oligomers, as also acetylcholinesterase activity, Aβ 1-42 -induced cell death, and Aβ 1-42 -dependent intracellular ROS production in both SK-N-SH and SH-SY5Y cells. In-depth chromatographic and spectroscopic analysis of the extract revealed that the active molecules are most likely triglycerides of oleic acid (C18H34O2). CONCLUSION We demonstrate for the first time that Cassia tora fraction prevents Aβ 1-42 aggregation, inhibits acetylcholinesterase and alleviates Aβ 1-42 -induced oxidative stress in human neuroblastoma cells. We further suggest the possible use of triglycerides of oleic acid as efficient anti-Alzheimer agents.
Collapse
Affiliation(s)
- Sunil K Ravi
- Department of Biotechnology, A constituent College of University of Agriculture Sciences, Bangalore, Karnataka, India
| | - Ramesh B Narasingappa
- Department of Biotechnology, A constituent College of University of Agriculture Sciences, Bangalore, Karnataka, India.
| | - Mahadesh Prasad
- Department of Biochemstry, Pooja Bhagavat Memorial Mahajana Post Graduate Centre, Metagalli, Mysuru, Karnataka, India
| | - Manjunath R Javagal
- Department of Plantation Products, Spices and Flavour Technology, Central Food Technological Research Institute, Mysore, India
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
13
|
da S. Hage-Melim LI, Ferreira JV, de Oliveira NK, Correia LC, Almeida MR, Poiani JG, Taft CA, de Paula da Silva CH. The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190327100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs) are characterized by a progressive deterioration of the motor and/or cognitive function, that are often accompanied by psychiatric disorders, caused by a selective loss of neurons in the central nervous system. Among the NDDs we can mention Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia 3 (SCA3), spinal and bulbar muscular atrophy (SBMA) and Creutzfeldt-Jakob disease (CJD). AD and HD are characterized mainly by massive neuronal loss. PD, ALS, SCA3 and SBMA are agerelated diseases which have characteristic motor symptoms. CJD is an NDD caused by prion proteins. With increasing life expectancy, elderly populations tend to have more health problems, such as chronic diseases related to age and disability. Therefore, the development of therapeutic strategies to treat or prevent multiple pathophysiological conditions in the elderly can improve the expectation and quality of life. The attention of researchers has been focused on bioactive natural compounds that represent important resources in the discovery and development of drug candidates against NDDs. In this review, we discuss the pathogenesis, symptoms, potential targets, treatment and natural compounds effective in the treatment of AD, PD, HD, ALS, SCA3, SBMA and CJD.
Collapse
Affiliation(s)
- Lorane I. da S. Hage-Melim
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Jaderson V. Ferreira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Nayana K.S. de Oliveira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Lenir C. Correia
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Marcos R.S. Almeida
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - João G.C. Poiani
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlton A. Taft
- Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos H.T. de Paula da Silva
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
14
|
Suntres ZE. Exploring the potential benefit of natural product extracts in paraquat toxicity. Fitoterapia 2018; 131:160-167. [PMID: 30359726 DOI: 10.1016/j.fitote.2018.10.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022]
Abstract
Paraquat dichloride, a herbicide used for weed and grass control, is extremely toxic to humans and animals. The mechanisms of toxicity involve the redox cycling of paraquat resulting in the generation of reactive oxygen species and the depletion of the cellular NADPH. The major cause of death in paraquat poisoning is respiratory failure due to its specific uptake by and oxidative insult to the alveolar epithelial cells and inflammation with subsequent obliterating fibrosis. Paraquat also causes selective degeneration of dopaminergic neurons in the substantia nigra pars compacta, reproducing an important pathological feature of Parkinson disease. Currently, there are no antidotes for the treatment of paraquat poisoning and therapeutic management is mostly supportive and directed towards changing the disposition of the poison. The lack of effective treatments against paraquat poisoning has led to the exploration of novel compounds with antioxidant and/or anti-inflammatory properties. Recently, there is an interest in plant compounds, particularly those used in traditional medicine. Phytochemicals have been highlighted as a possible therapeutic modality for a variety of diseases due to their putative efficacies and safety. In this review, the status of plant extracts and traditional medicines in ameliorating the toxicity of paraquat is discussed.
Collapse
Affiliation(s)
- Zacharias E Suntres
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada.
| |
Collapse
|
15
|
Chen L, Lin L, Dong Z, Zhang L, Du H. Comparison of neuroprotective effect of Forsythia suspensa leaf extract and forsythiaside, one of its metabolites. Nat Prod Res 2017; 32:2705-2708. [DOI: 10.1080/14786419.2017.1374266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Liqing Chen
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Lixia Lin
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhe Dong
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Liwei Zhang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Huizhi Du
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|