1
|
Cai F, Wang C. Comprehensive review of the phytochemistry, pharmacology, pharmacokinetics, and toxicology of alkamides (2016-2022). PHYTOCHEMISTRY 2024; 220:114006. [PMID: 38309452 DOI: 10.1016/j.phytochem.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Alkamides refer to a class of natural active small-molecule products composed of fatty acids and amine groups. These compounds are widely distributed in plants, and their unique structures and various pharmacological activities have caught the attention of scholars. This review provides a collection of literatures related to the phytochemistry, pharmacological effects, pharmacokinetics, and toxicity of alkamides published in 2016-2022 and their summary to provide references for further development of this class of ingredients. A total of 234 components (including chiral isomers) were summarized, pharmacological activities, such as anti-inflammatory, antitumor, antidiabetic, analgesic, neuroprotective, insecticidal, antioxidant, and antibacterial, and miscellaneous properties of alkamides were discussed. In addition, the pharmacokinetic characteristics and toxicity of alkamides were reviewed. However, information on the pharmacological mechanisms of the action, drug safety, and pharmacokinetics of alkamides is limited and thus requires further investigation and evaluation.
Collapse
Affiliation(s)
- Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Deep Eutectic Solvent-Based Ultrasound-Assisted Strategy for Simultaneous Extraction of Five Macamides from Lepidium meyenii Walp and In Vitro Bioactivities. Foods 2023; 12:foods12020248. [PMID: 36673339 PMCID: PMC9858098 DOI: 10.3390/foods12020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
This study aimed to develop an integrated approach of deep eutectic solvent-based ultrasound-assisted extraction (DES-UAE) to simultaneously extract five major bioactive macamides from the roots of Lepidium meyenii Walp. Ten different DESs containing choline chloride and selected hydrogen-bond donors were prepared and evaluated based on the extracted macamide content determination using high-performance liquid chromatography (HPLC). Choline chloride/1,6-hexanediol in a 1:2 molar ratio with 20% water exhibited the most promising extraction efficiencies under the optimized parameters verified using single-factor optimization as well as Box-Behnken design. Using the optimized DES-UAE method, the extraction efficiencies of the five macamides were up to 40.3% higher compared to those using the most favorable organic solvent petroleum ether and were also superior to those of the other extraction methods, such as heating and combination of heating and stirring. Furthermore, using the macroporous resin HPD-100, the recoveries of the five target macamides from the DES extraction reached 85.62-92.25%. The 20 μg/mL group of the five macamide extracts showed superior neuroprotective activity against PC12 cell injury than that of the positive drug nimodipine. The macamide extracts also showed higher NO inhibition in LPS-stimulated RAW264.7 cells. Thus, the developed approach was a green and potential alternative that can be used to extract bioactive macamide constituents from L. meyenii in the pharmaceutical and food industries.
Collapse
|
3
|
Yang X, Wang M, Zhou Q, Bai Y, Liu J, Yang J, Li L, Li G, Luo L. Macamide B Pretreatment Attenuates Neonatal Hypoxic-Ischemic Brain Damage of Mice Induced Apoptosis and Regulates Autophagy via the PI3K/AKT Signaling Pathway. Mol Neurobiol 2022; 59:2776-2798. [PMID: 35190953 DOI: 10.1007/s12035-022-02751-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/16/2022] [Indexed: 01/19/2023]
Abstract
Lepidium meyenii (maca) is an annual or biennial herb from South America that is a member of the genus Lepidium L. in the family Cruciferae. This herb possesses antioxidant and antiapoptotic activities, enhances autophagy functions, prevents cell death, and protects neurons from ischemic damage. Macamide B, an effective active ingredient of maca, exerts a neuroprotective effect on neonatal hypoxic-ischemic brain damage (HIBD), but the mechanism underlying its neuroprotective effect is not yet known. The purpose of this study was to explore the effect of macamide B on HIBD-induced autophagy and apoptosis and its potential neuroprotective mechanism. The modified Rice-Vannucci method was used to induce HIBD in 7-day-old (P7) macamide B- and vehicle-pretreated pups. TTC staining was performed to evaluate the cerebral infarct volume in pups, the brain water content was measured to evaluate the neurological function of pups, neurobehavioural testing was conducted to assess functional recovery after HIBD, TUNEL and FJC staining was performed to detect cellular autophagy and apoptosis, and Western blot analysis was used to detect the levels of proteins in the pro-survival phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway and autophagy and apoptosis-related proteins. Macamide B pretreatment significantly decreases brain damage and improves the recovery of neural function after HIBD. At the same time, macamide B pretreatment activates the PI3K/AKT signaling pathway after HIBD, enhances autophagy, and reduces hypoxic-ischemic (HI)-induced apoptosis. In addition, 3-methyladenine (3-MA), an inhibitor of the PI3K/AKT signaling pathway, significantly inhibits the increase in autophagy levels, aggravates HI-induced apoptosis, and reverses the neuroprotective effect of macamide B on HIBD. Our data indicate that a macamide B pretreatment might regulate autophagy through the PI3K/AKT signaling pathway, thereby reducing HIBD-induced apoptosis and exerting neuroprotective effects on neonatal HIBD. Macamide B may become a new drug for the prevention and treatment of HIBD.
Collapse
Affiliation(s)
- Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, People's Republic of China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yanxian Bai
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jing Liu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Guoying Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Medical Association, Guangzhou, 510180, Guangdong, People's Republic of China.
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Medical Association, Guangzhou, 510180, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Apaza Ticona L, Peña-Rojas G, Andía-Ayme V, Durán García B, Rumbero Sánchez A. Anti-glycative and anti-inflammatory effects of macamides isolated from Tropaeolum tuberosum in skin cells. Nat Prod Res 2021; 36:5803-5807. [PMID: 34935571 DOI: 10.1080/14786419.2021.2016751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tropaeolum tuberosum, commonly known as Mashua, is an herbal remedy used on the skin in order to treat local pain and to heal wounds. This study aimed to evaluate the extracts and isolated compounds from T. tuberosum with anti-glycative and anti-inflammatory activities. Guided isolation by bioassay led to the isolation and characterisation by NMR and MS of (S)-(-)-N-(α-methylbenzyl)-oleamide (1) and (S)-(-)-N-(α-methylbenzyl)-linoleamide (2). Both compounds inhibited the production of TNF-α with IC50 values of 9.38 µM (NIH/3T3 cells) and 10.06 µM (PA317 cells) for compound 1, and 5.3 µM (NIH/3T3 cells) and 6.48 µM (PA317 cells) for compound 2. Compounds 1 and 2 showed the inhibitory effect on the BSA-MGO formation at concentrations of 9.38 µM (3.39%) and 5.30 µM (8.53%), respectively. Moreover, both compounds showed significant breaking properties on the MGO-AGE-protein crosslink with percent modification of 6.58% (9.38 µM) and 18.08% (5.30 µM), respectively.
Collapse
Affiliation(s)
- L Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - G Peña-Rojas
- Laboratory of Cellular and Molecular Biology, University National of San Cristóbal de Huamanga, Ayacucho, Peru
| | - V Andía-Ayme
- Laboratory of Food Microbiology, University National of San Cristóbal de Huamanga, Ayacucho, Peru
| | - B Durán García
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - A Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Macathiohydantoin L, a Novel Thiohydantoin Bearing a Thioxohexahydroimidazo [1,5-a] Pyridine Moiety from Maca ( Lepidium meyenii Walp.). Molecules 2021; 26:molecules26164934. [PMID: 34443522 PMCID: PMC8398295 DOI: 10.3390/molecules26164934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Five new thiohydantoin derivatives (1–5) were isolated from the rhizomes of Lepidium meyenii Walp. NMR (1H and 13C NMR, 1H−1H COSY, HSQC, and HMBC), HRESIMS, and ECD were employed for the structure elucidation of new compounds. Significantly, the structure of compound 1 was the first example of thiohydantoins with thioxohexahydroimidazo [1,5-a] pyridine moiety. Additionally, compounds 2 and 3 possess rare disulfide bonds. Except for compound 4, all isolates were assessed for neuroprotective activities in corticosterone (CORT)-stimulated PC12 cell damage. Among them, compound (−)-3 exhibited moderate neuroprotective activity (cell viability: 68.63%, 20 μM) compared to the positive control desipramine (DIM) (cell viability: 88.49%, 10 μM).
Collapse
|
6
|
Antioxidant and antitumoral activities of isolated macamide and macaene fractions from Lepidium meyenii (Maca). Talanta 2021; 221:121635. [DOI: 10.1016/j.talanta.2020.121635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
|
7
|
Macamides: A review of structures, isolation, therapeutics and prospects. Food Res Int 2020; 138:109819. [DOI: 10.1016/j.foodres.2020.109819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
|
8
|
Tafuri S, Cocchia N, Vassetti A, Carotenuto D, Esposito L, Maruccio L, Avallone L, Ciani F. Lepidium meyenii (Maca) in male reproduction. Nat Prod Res 2019; 35:4550-4559. [PMID: 31805775 DOI: 10.1080/14786419.2019.1698572] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lepidium meyenii (Maca) is an edible root plant that grows in the Andean region of Peru. For centuries, the plant has been used as a dietary supplement for its nutritional and therapeutic properties. Maca are rich in high value nutritional elements and secondary metabolites (macaridine, macamides and glucosinolates) with high biological activity. Several studies demonstrated various biological effects of Maca mainly in the field of fertility. The aim of this review is to summarize the state of knowledge on the properties of Maca on male reproduction. Literature data was performed in PubMed with researches published from 2000 to 2019. The research showed results related to the effects of Maca on the quality and quantity of the semen, sexual behaviour and disorders of the male genital tract. Despite the numerous studies carried out on different animal species, further research is needed to clarify the mechanisms of action of Maca.
Collapse
Affiliation(s)
- Simona Tafuri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Anastasia Vassetti
- Institute for Sustainable Plant Protection, National Research Council, Portici (Na), Italy
| | - Domenico Carotenuto
- Facultad de Ciencias Biologicas, UNMSM, Universidad Nacional Mayor San Marcos, Lima, Peru
| | - Luigi Esposito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|