1
|
Krishnan S, Venkatachalam P, Shanmugam SR, Paramasivam N. Fractional inhibitory concentration of bio-actives from agricultural waste disassembles biofilms and quenches virulence of nosocomial pathogens. J Med Microbiol 2025; 74. [PMID: 40100248 PMCID: PMC11920071 DOI: 10.1099/jmm.0.001980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Introduction. The contact surfaces in hospitals serve as reservoirs for pathogens and account for 20-40% of hospital-acquired infections. This resistance is mainly attributed to the biofilm-forming ability of the microbes. These biofilms restrict the entry of the antibiotics to penetrate them, thus giving rise to drug resistance. Hence, there is a renewed interest in formulating an environmentally friendly, non-allergic, quick mode of action, broad-spectrum disinfectant.Hypothesis. We hypothesize that the pure compounds present in the pyrolysis aqueous phase could act as an anti-infective and anti-biofilm agent.Aim. The present work investigates the effectiveness of furfuryl alcohol, 2-methyl-2-cyclopentenone and guaiacol as effective anti-infective agent followed by testing its biofilm eradication potential against the mixed species of multidrug-resistant pathogens such as Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus and Candida auris.Methodology. The MIC and fractional inhibitory concentrations (FIC) of the pure compounds were determined using checkerboard assay for two-compound and three-compound combinations. The biofilm eradication concentration was performed on stainless coupons, followed by RNA isolation and quantitative PCR (qPCR) analysis to elucidate virulence gene downregulation.Results. The individual MICs of furfuryl alcohol, 2-methyl-2-cyclopentenone and guaiacol were found to be 8%, 9% and 2% (v/v), respectively. The two-compound combination FIC index of 0.75 showed partial synergy between the compounds, while the three-compound combination showed an additive effect with a FIC index of 0.87. Further, at ½ FIC (biofilm inhibitory concentration), the compounds showed 52% eradication of preformed biofilms on the hospital contact surfaces (stainless steel). The growth and time-to-kill curve showed that the compounds were not lethal to planktonic cells at BIC. Finally, the qPCR analysis showed a reduction in the expression levels of biofilm and adhesion genes, while the Quorum sensing (QS) genes were affected much more, elucidating a possible eradication mechanism.Conclusion. From this study, we have found a new class of compounds that have potential disinfecting ability. With the current knowledge, the future lead would be to effectively use them in disinfectant formulations.
Collapse
Affiliation(s)
- Srividhya Krishnan
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
- Biomass, Bioenergy and Bioproducts Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
| | - Ponnusami Venkatachalam
- Biomass, Bioenergy and Bioproducts Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
| | - Saravanan Ramiah Shanmugam
- Biomass, Bioenergy and Bioproducts Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
- Present address: Department of Biosystems Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TN, 613401, India
| |
Collapse
|
2
|
Ren XM, Wu KY, Qi SH. Three new terpenoid derivatives from the deep-sea-derived fungus Aspergillus sydowii DFFSCS007. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-8. [PMID: 39731575 DOI: 10.1080/10286020.2024.2443086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024]
Abstract
Three new terpenoid derivatives (1S,6R,7S)-hydrobenzosydowic acid (1), (1 R,6S,7S)-hydrobenzosydowic acid (2), and (7 R,10R)-11-dehydroxy-iso-10-hydroxysydowic acid (3), along with the known analogues (S)-2-(1-(4-nitrobenzoyl)pyrrolidine-2-carboxamido)benzoic acid (4) and trihydroxybutyl ester of 4-carboxydiorcinol (5) were isolated from the deep-sea-derived fungus Aspergillus sydowii DFFSCS007. Their structures were determined by spectroscopic analysis. Compound 4 with a nitrobenzene group was isolated from nature for the first time. The antibacterial activities of 1-5 and cytotoxicity of 1-3 were also evaluated.
Collapse
Affiliation(s)
- Xu-Meng Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ke-Yue Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
3
|
Li H, Long J, Wang X, She J, Liu Y, Li Y, Yang B. Bioactive secondary metabolites isolated from the soft coral derived Penicillium sp. SCSIO 41038. Nat Prod Res 2024; 38:2996-3003. [PMID: 37129009 DOI: 10.1080/14786419.2023.2207133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Chemical investigation of the Penicillium sp. SCSIO 41038 led to the isolation and characterization of one new cyclopiazonic acid-type alkaloid, speradine I (1), and one new phloroglucinol derivative, speradine J (8), along with 13 known compounds. Their structures were determined on the basis of extensive spectroscopic analysis, and by a comparison with data from the literature. All the compounds were evaluated for their antitumor (22Rv1 and PC-3) and enzyme inhibitory activity against acetylcholinesterase (AChE) in vitro.
Collapse
Affiliation(s)
- Huimin Li
- Pharmacy School of Guilin Medical University, Guilin, P. R. China
| | - Jieyi Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Xueni Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Yunqiu Li
- Pharmacy School of Guilin Medical University, Guilin, P. R. China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
| |
Collapse
|
4
|
Zhang X, Dong Y, Liu X, Wang R, Lu J, Song F. New bisabolane-type sesquiterpenoid from Aspergillus sydowii BTBU20213012. Nat Prod Res 2024; 38:2792-2799. [PMID: 37480345 DOI: 10.1080/14786419.2023.2236764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/22/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
A new bisabolane-type sesquiterpenoid, named (+)-8-dehydroxylaustrosene (1), along with ten known compounds, penicibisabolanes E (2) and G (3), (+)-austrosene (4), (S)-(+)-11-dehydrosydonic acid (5), sydonic acid (6), (7S,11S)-(+)-12-hydroxysydonic acid (7), (-)-(R)-hydroxysydonic acid (8), pseudaboydin A (9), (-)-(7 R,10R)-iso-10-hydroxysydowic acid (10), lumichrome (11), were identified from the fungus Aspergillus sydowii BTBU20213012 isolated from a marine sediment sample from the Western Pacific. The structures of the compounds were identified by HRESIMS and NMR data analysis. Compound 11 showed weak antimicrobial activity against Staphylococcus aureus with MIC value of 200 μg/mL.
Collapse
Affiliation(s)
- Xinjun Zhang
- Institute of Tibet Plateau Ecology, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education of China, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, P. R. China
| | - Yifei Dong
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China; School of Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Xinyu Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China; School of Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education of China, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, P. R. China
| | - Jie Lu
- Institute of Tibet Plateau Ecology, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education of China, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, P. R. China
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China; School of Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| |
Collapse
|
5
|
Gribble GW. A Survey of Recently Discovered Naturally Occurring Organohalogen Compounds. JOURNAL OF NATURAL PRODUCTS 2024; 87:1285-1305. [PMID: 38375796 DOI: 10.1021/acs.jnatprod.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The discovery of naturally occurring organohalogen compounds has increased astronomically in the 55 years since they were first discovered─from fewer than 50 in 1968 to a combined 7,958 described examples in three comprehensive reviews. The present survey, which covers the period 2021-2023, brings the number of known natural organohalogens to approximately 8,400. The organization is according to species origin, and coverage includes marine and terrestrial plants, fungi, bacteria, marine sponges, corals, cyanobacteria, tunicates, and other marine organisms.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
6
|
Chang JL, Gan YT, Zhou YH, Peng XG, Xie ZY, Meng X, Li SM, Ruan HL. Asperustins A-J: Austocystins with Immunosuppressive and Cytotoxic Activities from Aspergillus ustus NRRL 5856. JOURNAL OF NATURAL PRODUCTS 2024; 87:966-975. [PMID: 38441877 DOI: 10.1021/acs.jnatprod.3c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Ten new (1-10) and nine known (11-19) austocystins, along with four known anthraquinones (20-23), were isolated from the culture of Aspergillus ustus NRRL 5856 by bioactivity-guided fractionation. The structures of the new compounds were elucidated by spectroscopic data analysis, X-ray crystallographic study, the modified Mosher's method, [Rh2(OCOCF3)4]-induced ECD spectral analysis, and comparison of the experimental ECD spectra with those of the similar analogues. Compounds 1-8 represent the first examples of austocystins with a C-4' oxygenated substitution. The absolute configuration of 1″-hydroxy austocystin D (11) was determined by single-crystal X-ray diffraction and consideration of its biosynthetic origin. Compounds 5, 9, and 11 exhibited significant inhibitory effects against the proliferation of ConA-induced T cells with IC50 values of 1.1, 1.0, and 0.93 μM, respectively. Furthermore, these compounds suppressed the expression of IL-6 in a dose-dependent manner. Compounds 10-12 and 14 showed pronounced cytotoxicities against MCF-7 with IC50 values of 3.9, 1.3, 0.46, and 2.3 μM, respectively.
Collapse
Affiliation(s)
- Jin-Ling Chang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Yu-Tian Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
- Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang 441000, People's Republic of China
| | - Yin-Hui Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Xiao-Gang Peng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Zuo-Ye Xie
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Xianggao Meng
- College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Han-Li Ruan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| |
Collapse
|
7
|
Arslan NP, Dawar P, Albayrak S, Doymus M, Azad F, Esim N, Taskin M. Fungi-derived natural antioxidants. Crit Rev Food Sci Nutr 2023; 65:1593-1616. [PMID: 38156661 DOI: 10.1080/10408398.2023.2298770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In humans, exogenous antioxidants aid the endogenous antioxidant system to detoxify excess ROS generated during oxidative stress, thereby protecting the body against various diseases and stressful conditions. The majority of natural antioxidants available on the consumer market are plant-based; however, fungi are being recognized as alternative sources of various natural antioxidants such as polysaccharides, pigments, peptides, sterols, phenolics, alkaloids, and flavonoids. In addition, some exogenous antioxidants are exclusively found in fungi. Fungi-derived antioxidants exhibit scavenging activities against DPPH, ABTS, hydroxyl, superoxide, hydrogen peroxide, and nitric oxide radicals in vitro. Furthermore, in vivo models, application of fungal-derived antioxidants increase the level of various antioxidant enzymes, such as catalases, superoxide dismutases, and glutathione peroxidases, and reduce the level of malondialdehyde. Therefore, fungi-derived antioxidants have potential to be used in the food, cosmetic, and pharmaceutical industries. This review summarizes the antioxidant potential of different fungi (mushrooms, yeasts, and molds)-derived natural compounds such as polysaccharides, pigments, peptides, ergothioneine, ergosterol, phenolics, alkaloids, etc.
Collapse
Affiliation(s)
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Seyda Albayrak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Meryem Doymus
- Vocational School of Health Services of Hinis, Ataturk University, Erzurum, Turkey
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
8
|
Asmaey MA. Unravelling the Secrets of α-Pyrones from Aspergillus Fungi: A Comprehensive Review of Their Natural Sources, Biosynthesis, and Biological Activities. Chem Biodivers 2023; 20:e202301185. [PMID: 37823671 DOI: 10.1002/cbdv.202301185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Aspergillus, one of the most product-rich and genetically robust genera, contains a diverse range of species with potential economic and ecological implications. Chemically, Aspergillus is one of the essential sources of polyketides, alkaloids, diphenyl ethers, diketopiperazines, and other miscellaneous compounds, displaying a variety of pharmacological activities. The α-pyrones are unsaturated six-membered lactones. Although α-pyrone has a small structure, it is responsible for the structural diversity of several natural and synthetic compounds and multiple biological activities. In this review, we have summarized approximately 178 α-pyrone containing metabolites derivatives identified/reported from terrestrial, marine, endophytic, and filamentous Aspergillus species, including their sources, biological properties, and biosynthetic pathways until mid-2023, for the first time. This review is the first to compile and analyze the available data on α-pyrone metabolites from Aspergillus, which could facilitate further research and innovation in this field. Additionally, it offers a valuable source of scaffolds for future bioactive drug development, as some of these metabolites have shown potent antimicrobial, anti-inflammatory, and anticancer effects. Therefore, this review has significant implications for the advancement of natural product chemistry, pharmacology, biotechnology, and medicine.
Collapse
Affiliation(s)
- Mostafa A Asmaey
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
9
|
Chen Y, He Y, Pang X, Zhou X, Liu Y, Yang B. Secondary Metabolites from the Coral-Derived Fungus Aspergillus austwickii SCSIO41227 with Pancreatic Lipase and Neuraminidase Inhibitory Activities. Mar Drugs 2023; 21:567. [PMID: 37999391 PMCID: PMC10672402 DOI: 10.3390/md21110567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
The coral-derived fungus Aspergillus austwickii SCSIO41227 from Beibu Gulf yielded four previously uncharacterized compounds, namely asperpentenones B-E (1-4), along with twelve known compounds (5-16). Their structures were elucidated using HRESIMS and NMR (1H and 13C NMR, HSQC, HMBC), among which the stereo-structure of compounds 1-3 was determined by calculated ECD. Furthermore, compounds 1-16 were evaluated in terms of their enzyme (acetylcholinesterase (AChE), pancreatic lipase (PL), and neuraminidase (NA)) inhibitory activities. These bioassay results revealed that compounds 2 and 14 exerted noticeable NA inhibitory effects, with IC50 values of 31.28 and 73.64 μM, respectively. In addition, compound 3 exhibited a weak inhibitory effect against PL. Furthermore, these compounds showed the potential of inhibiting enzymes in silico docking analysis to demonstrate the interactions between compounds and proteins.
Collapse
Affiliation(s)
- Ying Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.C.); (Y.H.); (X.P.); (X.Z.)
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yanchun He
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.C.); (Y.H.); (X.P.); (X.Z.)
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.C.); (Y.H.); (X.P.); (X.Z.)
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.C.); (Y.H.); (X.P.); (X.Z.)
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.C.); (Y.H.); (X.P.); (X.Z.)
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.C.); (Y.H.); (X.P.); (X.Z.)
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
Ibrahim SRM, Mohamed SGA, Alsaadi BH, Althubyani MM, Awari ZI, Hussein HGA, Aljohani AA, Albasri JF, Faraj SA, Mohamed GA. Secondary Metabolites, Biological Activities, and Industrial and Biotechnological Importance of Aspergillus sydowii. Mar Drugs 2023; 21:441. [PMID: 37623723 PMCID: PMC10455642 DOI: 10.3390/md21080441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Marine-derived fungi are renowned as a source of astonishingly significant and synthetically appealing metabolites that are proven as new lead chemicals for chemical, pharmaceutical, and agricultural fields. Aspergillus sydowii is a saprotrophic, ubiquitous, and halophilic fungus that is commonly found in different marine ecosystems. This fungus can cause aspergillosis in sea fan corals leading to sea fan mortality with subsequent changes in coral community structure. Interestingly, A. sydowi is a prolific source of distinct and structurally varied metabolites such as alkaloids, xanthones, terpenes, anthraquinones, sterols, diphenyl ethers, pyrones, cyclopentenones, and polyketides with a range of bioactivities. A. sydowii has capacity to produce various enzymes with marked industrial and biotechnological potential, including α-amylases, lipases, xylanases, cellulases, keratinases, and tannases. Also, this fungus has the capacity for bioremediation as well as the biocatalysis of various chemical reactions. The current work aimed at focusing on the bright side of this fungus. In this review, published studies on isolated metabolites from A. sydowii, including their structures, biological functions, and biosynthesis, as well as the biotechnological and industrial significance of this fungus, were highlighted. More than 245 compounds were described in the current review with 134 references published within the period from 1975 to June 2023.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | | | - Baiaan H. Alsaadi
- Department of Clinical Service, Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (B.H.A.); (M.M.A.)
| | - Maryam M. Althubyani
- Department of Clinical Service, Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (B.H.A.); (M.M.A.)
| | - Zainab I. Awari
- Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Hazem G. A. Hussein
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
| | - Abrar A. Aljohani
- Pharmaceutical Care Services, Medina Cardiac Center, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Jumanah Faisal Albasri
- Pharmacy Department, Home Health Care, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Salha Atiah Faraj
- Pharmacy Department, King Salman Medical City, MOH, Almadinah Almunawarah 11176, Saudi Arabia;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
11
|
Krishnan S, Sivaraman S, Jothipandiyan S, Venkatachalam P, Ramiah Shanmugam S, Paramasivam N. Bioprospecting of aqueous phase from pyrolysis of plant waste residues to disrupt MRSA biofilms. BIOFOULING 2023; 39:231-243. [PMID: 37144617 DOI: 10.1080/08927014.2023.2207461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) infections have increased at an alarming rate, recently. In India, stubble burning and air pollution due to the burning of agricultural and forest residues have also increased over the past decade causing environmental and health hazards. This work evaluates the anti-biofilm property of the aqueous phase obtained from pyrolysis of wheat straw (WS AQ) and pine cone (PC AQ) against an MRSA isolate. The WS AQ and PC AQ compositions were determined by GC-MS analysis. The minimum inhibitory concentration was found to be 8% (v v-1) and 5% (v v-1) for WS AQ and PC AQ, respectively. The eradication of biofilms was performed on hospital contact surfaces namely, stainless steel and polypropylene and found to be 51% and 52% for WS AQ and PC AQ, respectively. Compounds identified from the aqueous phase of WS and PC docked against AgrA protein showed good binding scores.
Collapse
Affiliation(s)
- Srividhya Krishnan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Biomass, Bioenergy and Bioproducts Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Subramaniyasharma Sivaraman
- Biomass, Bioenergy and Bioproducts Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Ponnusami Venkatachalam
- Biomass, Bioenergy and Bioproducts Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Saravanan Ramiah Shanmugam
- Biomass, Bioenergy and Bioproducts Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
12
|
Sawant AM, Navale VD, Vamkudoth KR. Isolation and Molecular Characterization of Indigenous Penicillium chrysogenum/ rubens Strain Portfolio for Penicillin V Production. Microorganisms 2023; 11:1132. [PMID: 37317105 PMCID: PMC10221864 DOI: 10.3390/microorganisms11051132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023] Open
Abstract
Beta (β)-lactam antibiotic is an industrially important molecule produced by Penicillium chrysogenum/rubens. Penicillin is a building block for 6-aminopenicillanic acid (6-APA), an important active pharmaceutical intermediate (API) used for semi-synthetic antibiotics biosynthesis. In this investigation, we isolated and identified Penicillium chrysogenum, P. rubens, P. brocae, P. citrinum, Aspergillus fumigatus, A. sydowii, Talaromyces tratensis, Scopulariopsis brevicaulis, P. oxalicum, and P. dipodomyicola using the internal transcribed spacer (ITS) region and the β-tubulin (BenA) gene for precise species identification from Indian origin. Furthermore, the BenA gene distinguished between complex species of P. chrysogenum and P. rubens to a certain extent which partially failed by the ITS region. In addition, these species were distinguished by metabolic markers profiled by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Secalonic acid, Meleagrin, and Roquefortine C were absent in P. rubens. The crude extract evaluated for PenV production by antibacterial activities by well diffusion method against Staphylococcus aureus NCIM-2079. A high-performance liquid chromatography (HPLC) method was developed for simultaneous detection of 6-APA, phenoxymethyl penicillin (PenV), and phenoxyacetic acid (POA). The pivotal objective was the development of an indigenous strain portfolio for PenV production. Here, a library of 80 strains of P. chrysogenum/rubens was screened for PenV production. Results showed 28 strains capable of producing PenV in a range from 10 to 120 mg/L when 80 strains were screened for its production. In addition, fermentation parameters, precursor concentration, incubation period, inoculum size, pH, and temperature were monitored for the improved PenV production using promising P. rubens strain BIONCL P45. In conclusion, P. chrysogenum/rubens strains can be explored for the industrial-scale PenV production.
Collapse
Affiliation(s)
- Amol M. Sawant
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishwambar D. Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
14
|
Victoria-Miguel J, García-Santos WH, Cordero-Vargas A. A Visible Light Ru-Catalyzed Photoredox Access to Substituted Dihydrofurans. J Org Chem 2022; 87:9088-9099. [PMID: 35737852 DOI: 10.1021/acs.joc.2c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient, visible light Ru(bpy)3Cl2-catalyzed method for the preparation of 2,3-dihydrofurans is reported. This approach employs 2-bromoketoesters as radical precursors and alkyl enol ethers as acceptors. The photoredox cycle furnishes an oxonium ion that is captured by an internal nucleophile to render the corresponding dihydrofurans. Moreover, the obtained products contain a versatile acetal moiety at C-2, allowing its transformation into a diverse variety of heteroaromatic and nonaromatic compounds. This method could serve as an important tool in the synthesis of complex tetrahydro- and dihydrofurans as well as heteroaromatic structures.
Collapse
Affiliation(s)
- Jorge Victoria-Miguel
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| | - William H García-Santos
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| | - Alejandro Cordero-Vargas
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
15
|
Liu Z, Li S, Chen Y, Li M, Liu H, Zhang W. Cytotoxic polyketides from the deep-sea-derived fungus Aspergillus fischeri FS452. Nat Prod Res 2021; 36:5701-5707. [PMID: 34905421 DOI: 10.1080/14786419.2021.2015595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Six globoscin derivatives (1‒6) including two new ones fischerins A (1) and B (2) were isolated from the deep-sea-derived fungus Aspergillus fischeri FS452. Their structures were elucidated by comprehensive spectroscopic analysis and the absolute configurations were determined by the quantum chemical ECD calculations. The in vitro cytotoxicity assays indicated that fischerin B (2) exhibited potential activities against the four tested human cancer cell lines (SF-268, MCF-7, HepG-2 and A549) with the IC50 values in the range of 7-10 µM.
Collapse
Affiliation(s)
- Zhaoming Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Saini Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuchan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mingqiong Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hongxin Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weimin Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
16
|
Choi BK, Cho DY, Choi DK, Trinh PTH, Shin HJ. Two New Phomaligols from the Marine-Derived Fungus Aspergillus flocculosus and Their Anti-Neuroinflammatory Activity in BV-2 Microglial Cells. Mar Drugs 2021; 19:65. [PMID: 33513937 PMCID: PMC7911895 DOI: 10.3390/md19020065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Two new phomaligols, deketo-phomaligol A (1) and phomaligol E (2), together with six known compounds (3-8) were isolated from the culture broth of the marine-derived fungus Aspergillus flocculosus. Compound 1 was first isolated as a phomaligol derivative possessing a five-membered ring. The structures and absolute configurations of the new phomaligols were determined by detailed analyses of mass spectrometry (MS), nuclear magnetic resonance (NMR) data, optical rotation values and electronic circular dichroism (ECD). In addition, the absolute configurations of the known compounds 3 and 4 were confirmed by chemical oxidation and comparison of optical rotation values. Isolated compounds at a concentration of 100 μM were screened for inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Among the compounds, 4 showed moderate anti-neuroinflammatory effects with an IC50 value of 56.6 μM by suppressing the production of pro-inflammatory mediators in activated microglial cells without cytotoxicity.
Collapse
Affiliation(s)
- Byeoung-Kyu Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea;
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (D.-Y.C.); (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (D.-Y.C.); (D.-K.C.)
| | - Phan Thi Hoai Trinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam;
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea;
| |
Collapse
|
17
|
Niu S, Yang L, Chen T, Hong B, Pei S, Shao Z, Zhang G. New Monoterpenoids and Polyketides from the Deep-Sea Sediment-Derived Fungus Aspergillus sydowii MCCC 3A00324. Mar Drugs 2020; 18:E561. [PMID: 33212800 PMCID: PMC7696626 DOI: 10.3390/md18110561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022] Open
Abstract
Chemical study of the secondary metabolites of a deep-sea-derived fungus Aspergillus sydowii MCCC 3A00324 led to the isolation of eleven compounds (1-11), including one novel (1) and one new (2) osmane-related monoterpenoids and two undescribed polyketides (3 and 4). The structures of the metabolites were determined by comprehensive analyses of the NMR and HRESIMS spectra, in association with quantum chemical calculations of the 13C NMR, ECD, and specific rotation data for the configurational assignment. Compound 1 possessed a novel monoterpenoid skeleton, biogenetically probably derived from the osmane-type monoperpenoid after the cyclopentane ring cleavage and oxidation reactions. Additionally, compound 3 was the first example of the α-pyrone derivatives bearing two phenyl units at C-3 and C-5, respectively. The anti-inflammatory activities of 1-11 were tested. As a result, compound 6 showed potent inhibitory nitric oxide production in lipopolysaccharide (LPS)-activated BV-2 microglia cells with an inhibition rate of 94.4% at the concentration of 10 µM. In addition, a plausible biosynthetic pathway for 1 and 2 was also proposed.
Collapse
Affiliation(s)
- Siwen Niu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.P.); (Z.S.)
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (L.Y.); (T.C.)
| | - Longhe Yang
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (L.Y.); (T.C.)
| | - Tingting Chen
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (L.Y.); (T.C.)
| | - Bihong Hong
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (L.Y.); (T.C.)
| | - Shengxiang Pei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.P.); (Z.S.)
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.P.); (Z.S.)
| | - Gaiyun Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.P.); (Z.S.)
| |
Collapse
|