1
|
Oczkowicz J, Piasna-Słupecka E, Drozdowska M, Koronowicz A, Kopeć A. The Combination of Resveratrol and Conjugated Linoleic Acid Dienes Enhances the Individual Effects of These Molecules on De Novo Fatty Acid Biosynthesis in 3T3-L1 Adipocytes. Int J Mol Sci 2024; 25:13429. [PMID: 39769194 PMCID: PMC11677705 DOI: 10.3390/ijms252413429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Consuming food containing ingredients with a documented impact on lipid metabolism can help fight overweight and obesity. The simplest way to reduce the level of fatty acids is to block their synthesis or increase the rate of their degradation. This study aimed to determine the effect of resveratrol, cis-9, trans-11 conjugated linoleic acid (CLA), trans-10, cis-12 CLA, and various variants of their combinations on de novo fatty acid biosynthesis in 3T3-L1 adipocytes. The influence of the above-mentioned bioactive substances on cells grown under standard conditions and after induction of oxidative stress was measured. The effect of the tested compounds on the expression of selected genes related to the de novo fatty acid biosynthesis process (Fasn, Acc1, Acly, Prkaa1, Prkaa2, Prkaca, Srebp1) was evaluated. As part of the conducted experiments, how the level of the corresponding mRNA translates into the content of selected proteins (acetyl-CoA carboxylase 1 (ACC) and fatty acid synthase (FASN) was studied. It was found that the inhibition of fatty acid biosynthesis processes was stronger in the case of the combination of the tested CLA isomers (cis-9, trans-11 CLA, trans-10, cis-12 CLA) with resveratrol than in cases of their individual action.
Collapse
Affiliation(s)
| | | | | | | | - Aneta Kopeć
- Department of Human Nutrition and Dietetics, University of Agriculture, Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
2
|
Guo L, Huang Y, He J, Li D, Li W, Xiao H, Xu X, Zhang Y, Wang R. Associations of lifestyle characteristics with circulating immune markers in the general population based on NHANES 1999 to 2014. Sci Rep 2024; 14:13444. [PMID: 38862546 PMCID: PMC11166635 DOI: 10.1038/s41598-024-63875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Lifestyles maybe associated with the immune and inflammatory state of human body. We aimed to comprehensively explore the relationship between lifestyles and circulating immune-inflammatory markers in the general population. Data from NHANES 1999-2014 was used. Lifestyle factors included leisure-time physical activity (LTPA), diet quality (Healthy Eating Index-2015, HEI-2015), alcohol consumption, cigarettes smoking, sleep hour and sedentary time. Immune makers included C-reactive protein (CRP), neutrophil-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), platelet-lymphocyte ratio (PLR) and monocyte-lymphocyte ratio (MLR). Generalized linear regression models were used to adjust confounders. Regressions of restricted cubic splines were utilized to evaluate the potentially non-linear relationships between exposures and outcomes. As results, HEI was negatively associated with CRP (P < 0.001), SII (P < 0.001), and NLR (P < 0.001). Cigarettes per day was positively associated with CRP (P < 0.001), SII (P < 0.001), and NLR (P = 0.008). Alcohol consumption was negatively associated with CRP (P < 0.001), but positively associated with PLR (P = 0.012) and MLR (P < 0.001). Physical activity was negatively associated with CRP (P < 0.001), SII (P = 0.005), and NLR (P = 0.002), but positively associated with PLR (P = 0.010). Participants with higher healthy lifestyle score had significantly lower CRP, SII and NLR (all P values < 0.05). Most of the sensitivity analyses found similar results. In conclusion, we found significant associations between lifestyles and immune markers in the general population, which may reflect a systemic inflammatory response to unhealthy lifestyles.
Collapse
Affiliation(s)
- Linfen Guo
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Yating Huang
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Jing He
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Deng Li
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Wei Li
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Haitao Xiao
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Xuewen Xu
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Yange Zhang
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China.
| | - Ru Wang
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China.
| |
Collapse
|
3
|
Zhao Z, Wang J, Li C, Zhang Y, Sun X, Ma T, Ge Q. Effects of Seven Sterilization Methods on the Functional Characteristics and Color of Yan 73 ( Vitis vinifera) Grape Juice. Foods 2023; 12:3722. [PMID: 37893615 PMCID: PMC10606831 DOI: 10.3390/foods12203722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Yan 73 (Vitis vinifera) is a dyed grape variety cultivated in China. Currently, most studies have focused on the mechanism of anthocyanins or the impact of anthocyanins as auxiliary color varieties on wine color. There is little research on its direct use or direct processing of products such as juice. In order to investigate the effects of different processing methods on the juice of Yan 73 grapes, the physicochemical and functional properties, as well as the sensory indexes of the juice, were analyzed by using thermal pasteurization (TP), thermosonication (TS), TS combined with nisin (TSN), TS combined with ε-Polylysine (TSε), irradiation (IR), and high hydrostatic pressure (HHP). The physicochemical indexes, functional properties, and sensory indexes of Smoke 73 grape juice were determined and analyzed. The results of the study showed that among the seven sterilization methods, total polyphenol content (TPC) in juice was significantly increased in all treatments except HHP. TPC was the highest in TP (3773.33 mg GAE/L). Total anthocyanin content (TAC) was increased except IR5, and TSN (1202.67 mg/L) had the highest TAC. In terms of color, TP (a* = 36.57, b* = 19.70, L* = 14.81, C* = 41.55, h° = 28.30, ΔE = 5.9) promotes the dissolution of anthocyanins because of high temperatures, which basically improves all the color indicators of grape juice and makes the color of grape juice more vivid. After HHP treatment, the color (ΔE = 1.72) and aroma indicators are closer to the grape juice itself. The Entropy weight-TOPSIS, CRITIC-Topsis, and PCA integrated quality evaluation models showed that all selected TP as the best integrated quality.
Collapse
Affiliation(s)
- Zixian Zhao
- Quality Standards and Testing Institute of Agricultural Technology, Yinchuan 750002, China; (Z.Z.); (C.L.)
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Jiaqi Wang
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Caihong Li
- Quality Standards and Testing Institute of Agricultural Technology, Yinchuan 750002, China; (Z.Z.); (C.L.)
| | - Yuanke Zhang
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Xiangyu Sun
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qian Ge
- Quality Standards and Testing Institute of Agricultural Technology, Yinchuan 750002, China; (Z.Z.); (C.L.)
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
4
|
Zamanian MY, Parra RMR, Soltani A, Kujawska M, Mustafa YF, Raheem G, Al-Awsi L, Lafta HA, Taheri N, Heidari M, Golmohammadi M, Bazmandegan G. Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson's disease: an overview and update on new developments. Mol Biol Rep 2023; 50:5455-5464. [PMID: 37155008 DOI: 10.1007/s11033-023-08409-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) as a prevalent neurodegenerative condition impairs motor function and is caused by the progressive deterioration of nigrostriatal dopaminergic (DAergic) neurons. The current therapy solutions for PD are ineffective because they could not inhibit the disease's progression and they even have adverse effects. Natural polyphenols, a group of phytochemicals, have been found to offer various health benefits, including neuroprotection against PD. Among these, resveratrol (RES) has neuroprotective properties owing to its capacity to protect mitochondria and act as an antioxidant. An increase in the formation of reactive oxygen species (ROS) leads to oxidative stress (OS), which is responsible for cellular damage resulting in lipid peroxidation, oxidative protein alteration, and DNA damage. In PD models, it's been discovered that RES pretreatment can diminish oxidative stress by boosting endogenous antioxidant status and directly scavenging ROS. Several studies have examined the involvement of RES in the modulation of the transcriptional factor Nrf2 in PD models because this protein recognizes oxidants and controls the antioxidant defense. In this review, we have examined the molecular mechanisms underlying the RES activity and reviewed its effects in both in vitro and in vivo models of PD. The gathered evidence herein showed that RES treatment provides neuroprotection against PD by reducing OS and upregulation of Nrf2. Moreover, in the present study, scientific proof of the neuroprotective properties of RES against PD and the mechanism supporting clinical development consideration has been described.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | | | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, Poznan, 60-631, Poland
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ghaidaa Raheem
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Lateef Al-Awsi
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Holya A Lafta
- Department of Pharmacy, Al-Nisour University College, Baghdad, Iraq
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Bazmandegan
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
5
|
Suo H, Shishir MRI, Wang Q, Wang M, Chen F, Cheng KW. Red Wine High-Molecular-Weight Polyphenolic Complex Ameliorates High-Fat Diet-Induced Metabolic Dysregulation and Perturbation in Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6882-6893. [PMID: 37126594 DOI: 10.1021/acs.jafc.2c06459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Red wine polyphenolic complexes have attracted increasing attention as potential modulators of human metabolic disease risk. Our previous study discovered that red wine high-molecular-weight polymeric polyphenolic complexes (HPPCs) could inhibit key metabolic syndrome-associated enzymes and favorably modulate human gut microbiota (GM) in simulated colonic fermentation assay in vitro. In this work, the efficacy of HPPC supplementation (150 and 300 mg/kg/day, respectively) against high-fat diet (HFD)-induced metabolic disturbance in mice was investigated. HPPCs effectively attenuated HFD-induced obesity, insulin resistance, and lipid and glucose metabolic dysregulation and ameliorated inflammatory response and hepatic and colonic damage. It also improved the relative abundance of Bacteroidetes and Firmicutes, consistent with an anti-obesity phenotype. The favorable modulation of GM was further supported by improvement in the profile of fecal short-chain fatty acids. The higher dosage generally had a better performance in these effects than the low dosage. Moreover, serum metabolite profiling and pathway enrichment analysis revealed that HPPCs significantly modulated vitamin B metabolism-associated pathways and identified N-acetylneuraminic acid and 2-methylbutyroylcarnitine as potential biomarkers of the favorable effect on HFD-induced metabolic dysregulation. These findings highlight that dietary supplementation with red wine HPPCs is a promising strategy for the management of weight gain and metabolic dysregulation associated with HFD.
Collapse
Affiliation(s)
- Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Mohammad Rezaul Islam Shishir
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Deng H, Ji L, Han X, Wu T, Han B, Li C, Zhan J, Huang W, You Y. Research progress on the application of different controlling strategies to minimizing ethyl carbamate in grape wine. Compr Rev Food Sci Food Saf 2023; 22:1495-1516. [PMID: 36856535 DOI: 10.1111/1541-4337.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Ethyl carbamate (EC) is a probable carcinogenic compound commonly found in fermented foods and alcoholic beverages and has been classified as a category 2A carcinogen by the International Agency for Research on Cancer (IARC). Alcoholic beverages are one of the main sources of EC intake by humans. Therefore, many countries have introduced a standard EC limit in alcoholic beverages. Wine is the second largest alcoholic beverage in the world after beer and is loved by consumers for its rich taste. However, different survey results showed that the detection rate of EC in wine was almost 100%, while the maximum content was as high as 100 μg/L, necessitating EC content regulation in wine. The existing methods for controlling the EC level in wine mainly include optimizing raw fermentation materials and processes, using genetically engineered strains, and enzymatic methods (urease or urethanase). This review focused on introducing and comparing the advantages, disadvantages, and applicability of methods for controlling EC, and proposes two possible new techniques, that is, changing the fermentation strain and exogenously adding phenolic compounds. In the future, it is hoped that the feasibility of this prospect will be verified by pilot-scale or large-scale application to provide new insight into the regulation of EC during wine production. The formation mechanism and influencing factors of EC in wine were also introduced and the analytical methods of EC were summarized.
Collapse
Affiliation(s)
- Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China.,School of Advanced Agricultural Sciences, Peking University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Zhou Y, Hua J, Huang Z. Effects of beer, wine, and baijiu consumption on non-alcoholic fatty liver disease: Potential implications of the flavor compounds in the alcoholic beverages. Front Nutr 2023; 9:1022977. [PMID: 36687705 PMCID: PMC9852916 DOI: 10.3389/fnut.2022.1022977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease and its global incidence is estimated to be 24%. Beer, wine, and Chinese baijiu have been consumed worldwide including by the NAFLD population. A better understanding of the effects of these alcoholic beverages on NAFLD would potentially improve management of patients with NAFLD and reduce the risks for progression to fibrosis, cirrhosis, and hepatocellular carcinoma. There is evidence suggesting some positive effects, such as the antioxidative effects of bioactive flavor compounds in beer, wine, and baijiu. These effects could potentially counteract the oxidative stress caused by the metabolism of ethanol contained in the beverages. In the current review, the aim is to evaluate and discuss the current human-based and laboratory-based study evidence of effects on hepatic lipid metabolism and NAFLD from ingested ethanol, the polyphenols in beer and wine, and the bioactive flavor compounds in baijiu, and their potential mechanism. It is concluded that for the potential beneficial effects of wine and beer on NAFLD, inconsistence and contrasting data exist suggesting the need for further studies. There is insufficient baijiu specific human-based study for the effects on NAFLD. Although laboratory-based studies on baijiu showed the antioxidative effects of the bioactive flavor compounds on the liver, it remains elusive whether the antioxidative effect from the relatively low abundance of the bioactivate compounds could outweigh the oxidative stress and toxic effects from the ethanol component of the beverages.
Collapse
Affiliation(s)
- Yabin Zhou
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,Liquor-Making Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jin Hua
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Zhiguo Huang
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,Liquor-Making Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,*Correspondence: Zhiguo Huang,
| |
Collapse
|
8
|
Liu CX, Yin RX, Cao XL, Shi ZH, Huang F, Wei BL, Deng GX, Zheng PF, Guan YZ. EHBP1, TUBB, and WWOX SNPs, Gene-Gene and Gene-Environment Interactions on Coronary Artery Disease and Ischemic Stroke. Front Genet 2022; 13:843661. [PMID: 35559044 PMCID: PMC9086287 DOI: 10.3389/fgene.2022.843661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
The associations among the EH domain-binding protein 1 (EHBP1), tubulin beta class I (TUBB), and WW domain-containing oxidoreductase (WWOX) single nucleotide polymorphisms (SNPs) and coronary artery disease (CAD) and ischemic stroke (IS) are not yet understood. This study aimed to detect the associations of these SNPs, gene-gene and gene-environment interactions and CAD and IS in the Guangxi Han population. A total of 1853 unrelated subjects were recruited into normal control (n = 638), CAD (n = 622), and IS (n = 593) groups. Related genotypes were determined by high-throughput sequencing. The genotypic and minor allelic frequencies of rs2278075 were different between the CAD and control groups, and those of rs2710642, rs3130685, and rs2278075 were also different between the IS and control groups. The rs2278075T allele, rs3130685-rs2222896-rs2278075, rs3130685-rs2222896-diabetes, rs3130685-rs2222896-drinking, and haplotype rs2710642A-rs10496099C-diabetes interactions were associated with increased risk, while G-T-G-C-G-A and G-T-T-T-G-T-drinking were associated with reduced risk of CAD. The rs2278075T and rs2710642G alleles, rs2710642G-rs10496099C haplotype, rs3130685-rs2278075-rs2222896, and rs2710642-rs2278075-hypertension interactions aggravated the association with IS, whereas the rs3130685T allele, rs2710642A-rs10496099C haplotype and the interactions of H1 (s2710642A-rs10496099C)-H2 (rs2710642G-rs10496099C)-drinking and I1 (A-C-G-C-A-A)-I3 (A-C-G-T-A-A)-I4 (A-C-G-T-G-A)-I5 (G-T-G-C-G-A) diminished the association with IS. Carrying WWOX rs2278075T was strongly associated with CAD or IS, while EHBP1 rs2710642 and TUBB rs3130685 might alter the association of IS by modifying the serum lipid profile. This study demonstrates that the EHBP1, TUBB, and WWOX SNPs, gene-gene and gene-environment interactions are associated with the risk of CAD and IS in the Guangxi Han population.
Collapse
Affiliation(s)
- Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiao-Li Cao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Zong-Hu Shi
- Department of Prevention and Health Care, The Fourth Affiliated Hospital, Guangxi Medical University, Liuzhou, China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Junior JB, Arantes DAC, Siqueira Leite KC, de Souza Gil E, Rocha ML. Protective Effects of Grape Juice on Vascular Damage Induced by Chlorine Free Radical in Rats. Prev Nutr Food Sci 2021; 26:417-424. [PMID: 35047438 PMCID: PMC8747961 DOI: 10.3746/pnf.2021.26.4.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/06/2022] Open
Abstract
Grapes and their derivatives have antioxidant and cardioprotective properties. Therefore, we hypothesized that grape juice (GJ) could improve vascular oxidative damage caused by chlorine radicals (OCl−), which are excessively produced in vascular tissue during cardiovascular diseases (mainly diabetes and hypertension). The antioxidant capacity of GJ was analyzed by an electrochemical method, followed by administration in rats (100 or 300 mg/kg/d, via the oral) for seven days. Then, rats were sacrificed, and their aortas were isolated and subjected to isometric recordings or immuno-histochemical analyses with or without exposure to OCl− (5, 20, or 100 μM, 60 min). Concentration-effect curves for acetylcholine (ACh) and sodium nitroprusside (SNP) were derived to analyze endothelium-dependent or independent vasore-laxation. The GJ presented with high antioxidant capacity, and treatment with GJ did not alter vascular relaxation induced by ACh or SNP. After exposure to OCl−, endothelium-denuded arteries showed preserved relaxation with SNP, whereas endothelium-intact arteries showed reduced relaxation with ACh. OCl− at various concentrations induced significantly decreased relaxation of arteries (80.6±4.2%, 55.4±4.7%, and 28.1±5.9%, respectively) vs. control arteries (96.8±2.4%). However, treatment with GJ prevented loss in relaxation caused by 5 and 20 μM OCl− and improved relaxation after exposure to 100 μM OCl−. Exposure to OCl− induced increased nitrotyrosine immunostaining of endothelial cell layers, which was improved by GJ treatment. Altogether, vascular damage caused by OCl− was prevented by treatment with GJ, and GJ prevented nitrosative stress in these vessels.
Collapse
Affiliation(s)
- Jose Britto Junior
- Laboratory of Cardiovascular Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiânia 74605-220, Brazil
| | | | | | - Eric de Souza Gil
- Laboratory of Pharmaceutical Analysis, Faculty of Pharmacy, Federal University of Goias, Goiânia 74605-220, Brazil
| | - Matheus Lavorenti Rocha
- Laboratory of Cardiovascular Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiânia 74605-220, Brazil
| |
Collapse
|
10
|
Effect of High Fat and Fructo-Oligosaccharide Consumption on Immunoglobulin A in Saliva and Salivary Glands in Rats. Nutrients 2021; 13:nu13041252. [PMID: 33920202 PMCID: PMC8070188 DOI: 10.3390/nu13041252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Consumption of indigestible dietary fiber increases immunoglobulin A (IgA) levels in saliva. The purpose of this study is to clarify the synergistic effect of the intake of a high amount of fats and indigestible dietary fiber on IgA levels in saliva and submandibular glands (SMG). Seven-week-old Wistar rats were fed a low-fat (60 g/kg) fiberless diet, low-fat fructo-oligosaccharide (FOS, 30 g/kg) diet, high-fat (220 g/kg) fiberless diet, or high-fat FOS diet for 70 days. The IgA flow rate of saliva (IgA FR-saliva) was higher in the low-fat FOS group than in the other groups (p < 0.05). Furthermore, the concentration of tyrosine hydroxylase (a marker of sympathetic nerve activation) in the SMG was higher in the low-fat FOS group (p < 0.05) and positively correlated with the IgA FR-saliva (rs = 0.68. p < 0.0001. n = 32) in comparison to that in the other groups. These findings suggest that during low-fat FOS intake, salivary IgA levels may increase through sympathetic nerve activation.
Collapse
|
11
|
Zhang K, Meng J, Li X, Tang X, Ma S, Lv Y, Yang S. Noni (Morinda citrifolia L.) wine prevents the oxidative stress and obesity in mice induced by high-fat diet. J Food Biochem 2020; 44:e13460. [PMID: 32902870 DOI: 10.1111/jfbc.13460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
Noni (Morinda citrifolia L.) is rich in polyphenols, flavonoids, terpenoids, and iridoids. However, its bad taste and smell make noni fruit unsuitable for consumption. After fermentation, noni wine becomes free from the undesirable smell. Nevertheless, it is still unclear whether processed noni could retain its original nutrients and effects. Therefore, we conducted a series of evaluations on the nutritional composition and efficacy of noni wine. Our results showed that the polyphenol, flavonoid, and vitamin C contents in noni wine were 558.80, 234.42, and 0.30 mg/L, respectively. Our animal experiments showed that 40 ml kg-1 day-1 noni wine could reduce bodyweight, as well as the levels of body fat, serum triglycerides, total cholesterol, and low-density lipoprotein, while it simultaneously increased the amount of energy expenditure and activity, and improved the systemic antioxidant capacity in mice following a high-fat diet. The results of the gene expression and western blot analyses showed that 40 ml kg-1 day-1 noni wine could regulate the Nrf2 pathway and improve the antioxidant enzyme gene expression in mice maintained on a high-fat diet, thereby improving body lipid metabolism, reducing fatty acid synthesis, and promoting fatty acid β-oxidation. Our study indicated that drinking 40 ml kg-1 day-1 noni wine could effectively prevent high-fat diet-induced oxidative stress and obesity in mice. PRACTICAL APPLICATIONS: Noni fruit is rich in nutrients but its bad smell and hardship of processing make its commercialization difficult. Previous studies mainly focused on fresh noni juice and its primary processed products, while few noni products, of poor taste and low quality, are available in the market. Therefore, the fruit wine with both the nutritive values and the special flavor of noni has broad market prospects. Our work provides a valuable reference for the commercialization of noni wine.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Meng
- Zhuzhou Qianjin Pharmacy Co., Ltd., Hunan, China
| | - Xiaojuan Li
- Zhuzhou Qianjin Pharmacy Co., Ltd., Hunan, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuhua Ma
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yipin Lv
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shaojun Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|