1
|
Lasch P, Beyer W, Bosch A, Borriss R, Drevinek M, Dupke S, Ehling-Schulz M, Gao X, Grunow R, Jacob D, Klee SR, Paauw A, Rau J, Schneider A, Scholz HC, Stämmler M, Thanh Tam LT, Tomaso H, Werner G, Doellinger J. A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria. Sci Data 2025; 12:187. [PMID: 39890826 PMCID: PMC11785946 DOI: 10.1038/s41597-025-04504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods.
Collapse
Affiliation(s)
- Peter Lasch
- Robert Koch Institute, ZBS 6 - Proteomics and Spectroscopy, Seestraße 10, Berlin, D-13353, Germany.
| | - Wolfgang Beyer
- Advisory Panel of the Medical Academy of the German Armed Forces, Bundeswehr Institute of Microbiology, Munich, Germany
| | - Alejandra Bosch
- CINDEFI-UNLP-CONICET, CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Rainer Borriss
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| | - Michal Drevinek
- National Institute for Nuclear, Chemical and Biological Protection, Milin, Czech Republic
| | - Susann Dupke
- Robert Koch Institute, ZBS 2 - Highly Pathogenic Microorganisms, Berlin, Germany
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing, People's Republic of China
| | - Roland Grunow
- Robert Koch Institute, ZBS 2 - Highly Pathogenic Microorganisms, Berlin, Germany
| | - Daniela Jacob
- Robert Koch Institute, ZBS 2 - Highly Pathogenic Microorganisms, Berlin, Germany
| | - Silke R Klee
- Robert Koch Institute, ZBS 2 - Highly Pathogenic Microorganisms, Berlin, Germany
| | - Armand Paauw
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Rijswijk, The Netherlands
| | - Jörg Rau
- Chemisches und Veterinäruntersuchungsamt Stuttgart (CVUAS), Fellbach, Germany
| | - Andy Schneider
- Robert Koch Institute, ZBS 6 - Proteomics and Spectroscopy, Seestraße 10, Berlin, D-13353, Germany
| | - Holger C Scholz
- Robert Koch Institute, ZBS 2 - Highly Pathogenic Microorganisms, Berlin, Germany
| | - Maren Stämmler
- Robert Koch Institute, ZBS 6 - Proteomics and Spectroscopy, Seestraße 10, Berlin, D-13353, Germany
| | - Le Thi Thanh Tam
- Division of Plant Pathology and Phyto-Immunology, Plant Protection Research Institute, Hanoi, Vietnam
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Jena, Germany
| | - Guido Werner
- Robert Koch Institute, Nosocomial Pathogens and Antibiotic Resistances (FG13) and National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Joerg Doellinger
- Robert Koch Institute, ZBS 6 - Proteomics and Spectroscopy, Seestraße 10, Berlin, D-13353, Germany
| |
Collapse
|
2
|
Zhang Y, Fan F, Wang X, Zhu J, Dong S. Establishment and application of a rapid new detection method for antimicrobial susceptibility testing of Klebsiella pneumoniae based on MALDI-TOF MS. Microbiol Spectr 2025; 13:e0134624. [PMID: 39656012 PMCID: PMC11705933 DOI: 10.1128/spectrum.01346-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
The earlier appropriate treatment of Klebsiella pneumoniae infections according to the antimicrobial susceptibility profile based on the minimum inhibitory concentration (MIC) has a great clinical benefit. Our objective was to establish a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based antimicrobial susceptibility test (AST) for K. pneumoniae that produces reliable results within a few hours. Our rapid method is similar to the classical turbidity-based microdilution method. We confirmed, theoretically and experimentally, that MALDI-TOF MS can replace the naked eye in judging the results (MICMS) by "seeing" the bacterial growth in the presence of different concentrations of antibiotics, including determination of the lower limit of bacterial count detection (4 × 105 cfu), the optimal period of incubation (2 h), and bacterial growth curve assay. Based on the study mentioned above, we determined the susceptibility of K. pneumoniae to imipenem. The MICMS and MIC data agreed over 85% (40/46) within 1 dilution range. Susceptibility profiles determined with our rapid method and the reference broth microdilution method were also compared. MICMS resulted in 97.9% (45/46) category agreement, 2.2% minor discrepancies, no major discrepancies, and no very major discrepancies. The summarized category agreement resulted in a kappa coefficient of almost 1 for weighted Cohen's kappa, which could be considered a nearly perfect agreement. It took just 2 h to produce a susceptibility profile with a low failure rate using our new rapid AST method, a work day earlier than the broth microdilution method.IMPORTANCEEmpirical antimicrobial use before antimicrobial susceptibility test (AST) is necessary but risks patient harm and excess costs. It is particularly worrying that the inappropriate use of carbapenems has allowed carbapenem-resistant Klebsiella pneumoniae to become the commonest transmissible carbapenem-resistant Enterobacterales worldwide. Guidelines recommend targeted therapy based on minimum inhibitory concentration results, which directly reflect the effectiveness of antibacterial drugs. The gold standard method of AST relies on visible bacterial growth, causing long turnaround times. Current rapid AST techniques are hampered by factors such as high costs, technological complexities, and limited detection capabilities. We present a novel rapid method and applied to the determination of the susceptibility of K. pneumoniae to imipenem. It took just 2 h to produce a susceptibility profile with a low failure rate, a work day earlier than the standard method. Our method is potentially a faster, more precise, cost-efficient, and user-friendly AST method that can enhance the effectiveness of treatment strategies.
Collapse
Affiliation(s)
- Yapei Zhang
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Fanghua Fan
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Xuan Wang
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Jie Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Kalizang'oma A, Richard D, Kwambana-Adams B, Coelho J, Broughton K, Pichon B, Hopkins KL, Chalker V, Beleza S, Bentley SD, Chaguza C, Heyderman RS. Population genomics of Streptococcus mitis in UK and Ireland bloodstream infection and infective endocarditis cases. Nat Commun 2024; 15:7812. [PMID: 39242612 PMCID: PMC11379897 DOI: 10.1038/s41467-024-52120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Streptococcus mitis is a leading cause of infective endocarditis (IE). However, our understanding of the genomic epidemiology and pathogenicity of IE-associated S. mitis is hampered by low IE incidence. Here we use whole genome sequencing of 129 S. mitis bloodstream infection (BSI) isolates collected between 2001-2016 from clinically diagnosed IE cases in the UK to investigate genetic diversity, antimicrobial resistance, and pathogenicity. We show high genetic diversity of IE-associated S. mitis with virtually all isolates belonging to distinct lineages indicating no predominance of specific lineages. Additionally, we find a highly variable distribution of known pneumococcal virulence genes among the isolates, some of which are overrepresented in disease when compared to carriage strains. Our findings suggest that S. mitis in patients with clinically diagnosed IE is not primarily caused by specific hypervirulent or antimicrobial resistant lineages, highlighting the accidental pathogenic nature of S. mitis in patients with clinically diagnosed IE.
Collapse
Affiliation(s)
- Akuzike Kalizang'oma
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK. akuzike.kalizang'
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi. akuzike.kalizang'
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences, Blantyre, Malawi. akuzike.kalizang'
| | - Damien Richard
- UCL Genetics Institute, University College London, London, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Juliana Coelho
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Karen Broughton
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Bruno Pichon
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Katie L Hopkins
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | | | - Sandra Beleza
- University of Leicester, Department of Genetics and Genome Biology, Leicester, UK
| | | | - Chrispin Chaguza
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
4
|
Chen D, Mirski MA, Chen S, Bryden WA, McLoughlin M, Kiser KM, Caton ER, Haddaway CR, Cetta MS, Pan Y. A breath-based in vitro diagnostic assay for the detection of lower respiratory tract infections. PNAS NEXUS 2024; 3:pgae350. [PMID: 39319329 PMCID: PMC11421151 DOI: 10.1093/pnasnexus/pgae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024]
Abstract
An accurate diagnosis is critical to reducing mortality in people with lower respiratory tract infections (LRTIs). Current microbiological culture is time-consuming, and nucleic acid amplification-based molecular technologies cannot distinguish between colonization and infection. Previously, we described developing a sampling system for effectively capturing biomolecules from human breath. We identified a new class of proteoform markers of protease activation, termed proteolytic products of infection, for detecting LRTIs in people with mechanical ventilation. Here, we further developed an in vitro assay by designing a specific substrate sensor for human neutrophil elastase (HNE) to detect LRTIs in breath samples. In the proof-of-concept study, we then applied this in vitro assay to breath samples collected from intubated patients and healthy volunteers. The findings revealed that the LRTI group demonstrated a significant mean differential, showing a 9.8-fold elevation in measured HNE activity compared with the non-LRTI group and a 9.2-fold compared with healthy volunteers. The in vitro assay's diagnostic potential was assessed by constructing a receiver operating characteristic curve, resulting in an area under the curve of 0.987. Using an optimal threshold for HNE at 0.2 pM, the sensitivity was determined to be 1.0 and the specificity to be 0.867. Further correlation analysis revealed a strong positive relationship between the measured HNE activity and the protein concentration in the breath samples. Our results demonstrate that this breath-based in vitro assay provides high diagnostic performance for LRTIs, suggesting that the technology may be useful in the near term for the accurate diagnosis of LRTIs.
Collapse
Affiliation(s)
| | - Marek A Mirski
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuo Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD 21205, USA
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | - Yezhi Pan
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Stastna M. The Role of Proteomics in Identification of Key Proteins of Bacterial Cells with Focus on Probiotic Bacteria. Int J Mol Sci 2024; 25:8564. [PMID: 39201251 PMCID: PMC11354107 DOI: 10.3390/ijms25168564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
Probiotics can affect human health, keep the balance between beneficial and pathogenic bacteria, and their colonizing abilities enable the enhancement of the epithelial barrier, preventing the invasion of pathogens. Health benefits of probiotics were related to allergy, depression, eczema, cancer, obesity, inflammatory diseases, viral infections, and immune regulation. Probiotic bacterial cells contain various proteins that function as effector molecules, and explaining their roles in probiotic actions is a key to developing efficient and targeted treatments for various disorders. Systematic proteomic studies of probiotic proteins (probioproteomics) can provide information about the type of proteins involved, their expression levels, and the pathological changes. Advanced proteomic methods with mass spectrometry instrumentation and bioinformatics can point out potential candidates of next-generation probiotics that are regulated under pharmaceutical frameworks. In addition, the application of proteomics with other omics methods creates a powerful tool that can expand our understanding about diverse probiotic functionality. In this review, proteomic strategies for identification/quantitation of the proteins in probiotic bacteria were overviewed. The types of probiotic proteins investigated by proteomics were described, such as intracellular proteins, surface proteins, secreted proteins, and the proteins of extracellular vesicles. Examples of pathological conditions in which probiotic bacteria played crucial roles were discussed.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00 Brno, Czech Republic
| |
Collapse
|
6
|
López-Cortés XA, Manríquez-Troncoso JM, Hernández-García R, Peralta D. MSDeepAMR: antimicrobial resistance prediction based on deep neural networks and transfer learning. Front Microbiol 2024; 15:1361795. [PMID: 38694798 PMCID: PMC11062410 DOI: 10.3389/fmicb.2024.1361795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a global health problem that requires early and effective treatments to prevent the indiscriminate use of antimicrobial drugs and the outcome of infections. Mass Spectrometry (MS), and more particularly MALDI-TOF, have been widely adopted by routine clinical microbiology laboratories to identify bacterial species and detect AMR. The analysis of AMR with deep learning is still recent, and most models depend on filters and preprocessing techniques manually applied on spectra. Methods This study propose a deep neural network, MSDeepAMR, to learn from raw mass spectra to predict AMR. MSDeepAMR model was implemented for Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus under different antibiotic resistance profiles. Additionally, a transfer learning test was performed to study the benefits of adapting the previously trained models to external data. Results MSDeepAMR models showed a good classification performance to detect antibiotic resistance. The AUROC of the model was above 0.83 in most cases studied, improving the results of previous investigations by over 10%. The adapted models improved the AUROC by up to 20% when compared to a model trained only with external data. Discussion This study demonstrate the potential of the MSDeepAMR model to predict antibiotic resistance and their use on external MS data. This allow the extrapolation of the MSDeepAMR model to de used in different laboratories that need to study AMR and do not have the capacity for an extensive sample collection.
Collapse
Affiliation(s)
- Xaviera A. López-Cortés
- Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, Chile
- Centro de Innovación en Ingeniería Aplicada (CIIA), Universidad Católica del Maule, Talca, Chile
| | | | - Ruber Hernández-García
- Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, Chile
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Chile
| | - Daniel Peralta
- IDLab, Department of Information Technology, Ghent University-imec, Ghent, Belgium
| |
Collapse
|
7
|
Mirzaei R, Campoccia D, Ravaioli S, Arciola CR. Emerging Issues and Initial Insights into Bacterial Biofilms: From Orthopedic Infection to Metabolomics. Antibiotics (Basel) 2024; 13:184. [PMID: 38391570 PMCID: PMC10885942 DOI: 10.3390/antibiotics13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Bacterial biofilms, enigmatic communities of microorganisms enclosed in an extracellular matrix, still represent an open challenge in many clinical contexts, including orthopedics, where biofilm-associated bone and joint infections remain the main cause of implant failure. This study explores the scenario of biofilm infections, with a focus on those related to orthopedic implants, highlighting recently emerged substantial aspects of the pathogenesis and their potential repercussions on the clinic, as well as the progress and gaps that still exist in the diagnostics and management of these infections. The classic mechanisms through which biofilms form and the more recently proposed new ones are depicted. The ways in which bacteria hide, become impenetrable to antibiotics, and evade the immune defenses, creating reservoirs of bacteria difficult to detect and reach, are delineated, such as bacterial dormancy within biofilms, entry into host cells, and penetration into bone canaliculi. New findings on biofilm formation with host components are presented. The article also delves into the emerging and critical concept of immunometabolism, a key function of immune cells that biofilm interferes with. The growing potential of biofilm metabolomics in the diagnosis and therapy of biofilm infections is highlighted, referring to the latest research.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Stefano Ravaioli
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| |
Collapse
|
8
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Becker K, Lupetti A. Editorial: MALDI-TOF MS in microbiological diagnostics: future applications beyond identification. Front Microbiol 2023; 14:1204452. [PMID: 37180259 PMCID: PMC10167274 DOI: 10.3389/fmicb.2023.1204452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Affiliation(s)
- Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| |
Collapse
|
10
|
Cai X, Peng Y, Li M, Qiu Y, Wang Y, Xu L, Hou Q. Comparative genomic analyses of the clinically-derived Winkia strain NY0527: the reassignment of W. neuii subsp. neuii and W. neuii subsp. antitratus into two separate species and insights into their virulence characteristics. Front Microbiol 2023; 14:1147469. [PMID: 37152761 PMCID: PMC10160630 DOI: 10.3389/fmicb.2023.1147469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Winkia neuii, previously known as Actinomyces neuii, is increasingly recognized as a causative agent of various human infections, while its taxonomy and genomic insights are still understudied. METHODS A Winkia strain NY0527 was isolated from the hip abscess of a patient, and its antibiotic susceptibility was assessed. The genome was hybrid assembled from long-reads and short-reads sequencing. Whole-genome-based analyses on taxa assignment, strain diversity, and pathogenesis were conducted. RESULTS The strain was found to be highly susceptible to beta-lactam antibiotics, but resistant to erythromycin, clindamycin, and amikacin. The complete genome sequences of this strain were assembled and found to consist of a circular chromosome and a circular plasmid. Sequence alignment to the NCBI-nt database revealed that the plasmid had high sequence identity (>90%) to four Corynebacterium plasmids, with 40-50% query sequence coverage. Furthermore, the plasmid was discovered to possibly originate from the sequence recombination events of two Corynebacterium plasmid families. Phylogenomic tree and genomic average nucleotide identity analyses indicated that many Winkia sp. strains were still erroneously assigned as Actinomyces sp. strains, and the documented subspecies within W. neuii should be reclassified as two separate species (i.e., W. neuii and W. anitratus). The core genome of each species carried a chromosome-coded beta-lactamase expression repressor gene, which may account for their broadly observed susceptibility to beta-lactam antibiotics in clinical settings. Additionally, an ermX gene that expresses fluoroquinolone resistance was shared by some W. neuii and W. anitratus strains, possibly acquired by IS6 transposase-directed gene transfer events. In contrast, tetracycline resistance genes were exclusively carried by W. neuii strains. In particular, W. neuii was found to be more pathogenic than W. anitratus by encoding more virulence factors (i.e., 35-38 in W. neuii vs 27-31 in W. anitratus). Moreover, both species encoded two core pathogenic virulence factors, namely hemolysin and sialidase, which may facilitate their infections by expressing poreformation, adhesion, and immunoglobulin deglycosylation activities. CONCLUSION This study highlights the underappreciated taxonomic diversity of Winkia spp. and provides populational genomic insights into their antibiotic susceptibility and pathogenesis for the first time, which could be helpful in the clinical diagnosis and treatment of Winkia spp. infections.
Collapse
Affiliation(s)
- Xunchao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Meng Li
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Yifeng Qiu
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Yuhan Wang
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Long Xu
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Qi Hou
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Cuénod A, Aerni M, Bagutti C, Bayraktar B, Boz ES, Carneiro CB, Casanova C, Coste AT, Damborg P, van Dam DW, Demirci M, Drevinek P, Dubuis O, Fernandez J, Greub G, Hrabak J, Hürkal Yiğitler G, Hurych J, Jensen TG, Jost G, Kampinga GA, Kittl S, Lammens C, Lang C, Lienhard R, Logan J, Maffioli C, Mareković I, Marschal M, Moran-Gilad J, Nolte O, Oberle M, Pedersen M, Pflüger V, Pranghofer S, Reichl J, Rentenaar RJ, Riat A, Rodríguez-Sánchez B, Schilt C, Schlotterbeck AK, Schrenzel J, Troib S, Willems E, Wootton M, Ziegler D, Egli A. Quality of MALDI-TOF mass spectra in routine diagnostics: results from an international external quality assessment including 36 laboratories from 12 countries using 47 challenging bacterial strains. Clin Microbiol Infect 2023; 29:190-199. [PMID: 35623578 DOI: 10.1016/j.cmi.2022.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is a widely used method for bacterial species identification. Incomplete databases and mass spectral quality (MSQ) still represent major challenges. Important proxies for MSQ are the number of detected marker masses, reproducibility, and measurement precision. We aimed to assess MSQs across diagnostic laboratories and the potential of simple workflow adaptations to improve it. METHODS For baseline MSQ assessment, 47 diverse bacterial strains, which are challenging to identify by MALDI-TOF MS, were routinely measured in 36 laboratories from 12 countries, and well-defined MSQ features were used. After an intervention consisting of detailed reported feedback and instructions on how to acquire MALDI-TOF mass spectra, measurements were repeated and MSQs were compared. RESULTS At baseline, we observed heterogeneous MSQ between the devices, considering the median number of marker masses detected (range = [2-25]), reproducibility between technical replicates (range = [55%-86%]), and measurement error (range = [147 parts per million (ppm)-588 ppm]). As a general trend, the spectral quality was improved after the intervention for devices, which yielded low MSQs in the baseline assessment as follows: for four out of five devices with a high measurement error, the measurement precision was improved (p-values <0.001, paired Wilcoxon test); for six out of ten devices, which detected a low number of marker masses, the number of detected marker masses increased (p-values <0.001, paired Wilcoxon test). DISCUSSION We have identified simple workflow adaptations, which, to some extent, improve MSQ of poorly performing devices and should be considered by laboratories yielding a low MSQ. Improving MALDI-TOF MSQ in routine diagnostics is essential for increasing the resolution of bacterial identification by MALDI-TOF MS, which is dependent on the reproducible detection of marker masses. The heterogeneity identified in this external quality assessment (EQA) requires further study.
Collapse
Affiliation(s)
- Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
| | | | | | - Banu Bayraktar
- University of Health Sciences, Sisli Hamidiye Etfal Teaching and Research Hospital, Istanbul, Turkey
| | - Efe Serkan Boz
- Department of Medical Microbiology, University of Health Sciences, Haydarpasa Numune Teaching and Research Hospital, Istanbul, Turkey
| | | | - Carlo Casanova
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Alix T Coste
- Institute of Microbiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Mehmet Demirci
- Department of Medical Microbiology, Kirklareli University, Kirklareli, Turkey
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - José Fernandez
- Division of Laboratory Medicine, Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Jaroslav Hrabak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Gülen Hürkal Yiğitler
- University of Health Sciences, Sisli Hamidiye Etfal Teaching and Research Hospital, Istanbul, Turkey
| | - Jakub Hurych
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Thøger Gorm Jensen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | | | - Greetje A Kampinga
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sonja Kittl
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | | | | | - Julie Logan
- Reference Services Division, UK Health Security Agency, London, United Kingdom
| | | | - Ivana Mareković
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Matthias Marschal
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Jacob Moran-Gilad
- School of Public Health, Ben Gurion University of the Negev and Soroka University Medical Center, Beer Sheva, Israel
| | - Oliver Nolte
- Center for Laboratory Medicine, St. Gallen, Switzerland
| | | | - Michael Pedersen
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | | | | | - Julia Reichl
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | - Arnaud Riat
- Division of Laboratory Medicine, Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | | | | | | | - Jacques Schrenzel
- Division of Laboratory Medicine, Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | - Shani Troib
- School of Public Health, Ben Gurion University of the Negev and Soroka University Medical Center, Beer Sheva, Israel
| | - Elise Willems
- Clinical Laboratory AZNikolaas, Sint-Niklaas, Belgium
| | - Mandy Wootton
- University Hospital of Wales, Cardiff, United Kingdom
| | | | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
12
|
ESBL Displace: A Protocol for an Observational Study to Identify Displacing Escherichia coli Strain Candidates from ESBL-Colonized Travel Returners Using Phenotypic, Genomic Sequencing and Metagenome Analysis. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Introduction: Invading extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-PE), non-ESBL E. coli, and other bacteria form a complex environment in the gut. The duration and dynamics of ESBL-PE colonization varies among individuals. Understanding the factors associated with colonization may lead to decolonization strategies. In this study, we aim to identify (i) single E. coli strains and (ii) microbiome networks that correlate with retention or decline of colonization, and (iii) pan-sensitive E. coli strains that potentially could be used to displace ESBL-PE during colonization. Methods and analysis: We recruit healthy travellers to Southeast Asia for a one-year prospective observational follow-up study. We collect and biobank stool, serum, and peripheral blood mononuclear cells (PBMCs) at predefined timepoints. Additional information is collected with questionnaires. We determine the colonization status with ESBL-PE and non-ESBL E. coli and quantify cell densities in stools and ratios over time. We characterize multiple single bacterial isolates per patient and timepoint using whole genome sequencing (WGS) and 16S/ITS amplicon-based and shotgun metagenomics. We determine phylogenetic relationships between isolates, antimicrobial resistance (AMR; phenotypic and genotypic), and virulence genes. We describe the bacterial and fungal stool microbiome alpha and beta diversity on 16S/ITS metagenomic data. We describe patterns in microbiome dynamics to identify features associated with protection or risk of ESBL-PE colonization. Ethics and dissemination: The study is registered (clinicaltrials.gov; NCT04764500 on 09/02/2019) and approved by the Ethics Committee (EKNZ project ID 2019-00044). We will present anonymized results at conferences and in scientific journals. Bacterial sequencing data will be shared via publicly accessible databases according to FAIR principles.
Collapse
|
13
|
Elbehiry A, Marzouk E, Aldubaib M, Abalkhail A, Anagreyyah S, Anajirih N, Almuzaini AM, Rawway M, Alfadhel A, Draz A, Abu-Okail A. Helicobacter pylori Infection: Current Status and Future Prospects on Diagnostic, Therapeutic and Control Challenges. Antibiotics (Basel) 2023; 12:191. [PMID: 36830102 PMCID: PMC9952126 DOI: 10.3390/antibiotics12020191] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection, which affects approximately half of the world's population, remains a serious public health problem. As H. pylori infection leads to a number of gastric pathologies, including inflammation, gastroduodenal ulcers, and malignancies, early detection and treatment are crucial to preventing the spread of the infection. Multiple extragastric complications, such as iron deficiency anaemia, immune thrombocytopenic purpura, vitamin B12 deficiency, diabetes mellitus, cardiovascular diseases, and certain neurological disorders, have also been linked to H. pylori infection. An awareness of H. pylori and associated health hazards is necessary to minimize or even eradicate the infection. Therefore, there is an urgent need to raise the standards for the currently employed diagnostic, eradication, alternative treatment strategies. In addition, a brief overview of traditional and cutting-edge approaches that have proven effective in identifying and managing H. pylori is needed. Based on the test and laboratory equipment available and patient clinical characteristics, the optimal diagnostic approach requires weighing several factors. The pathophysiology and pathogenic mechanisms of H. pylori should also be studied, focusing more on the infection-causing virulence factors of this bacterium. Accordingly, this review aims to demonstrate the various diagnostic, pathophysiological, therapeutic, and eradication tactics available for H. pylori, emphasizing both their advantages and disadvantages. Invasive methods (such as quick urease testing, biopsy, or culture) or noninvasive methods (such as breath tests, stool investigations, or serological tests) can be used. We also present the most recent worldwide recommendations along with scientific evidence for treating H. pylori. In addition to the current antibiotic regimens, alternative therapies may also be considered. It is imperative to eradicate the infections caused by H. pylori as soon as possible to prevent problems and the development of stomach cancer. In conclusion, significant advances have been made in identifying and treating H. pylori. To improve eradication rates, peptide mass fingerprinting can be used as a diagnostic tool, and vaccines can also eliminate the infection.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Musaad Aldubaib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Sulaiman Anagreyyah
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Nuha Anajirih
- Medical Emergency Services Department, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah P.O. Box 1109, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut 71524, Egypt
| | - Abdulmajeed Alfadhel
- Performance Excellence and Quality, Qassim Health Cluster, Buraydah 52367, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
14
|
Sevestre J, Lemrabott MAO, Bérenger JM, Zan Diarra A, Ould Mohamed Salem Boukhary A, Parola P. Detection of Arthropod-Borne Bacteria and Assessment of MALDI-TOF MS for the Identification of Field-Collected Immature Bed Bugs from Mauritania. INSECTS 2023; 14:69. [PMID: 36661997 PMCID: PMC9864073 DOI: 10.3390/insects14010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Human infestations by bed bugs have upsurged globally in recent decades, including in African countries, where recent reports pointed out an increase in infestation. Sympatric dwelling has been described for two species of bed bug parasitizing humans: Cimex hemipterus (the tropical bed bug) and C. lectularius. Identification of these two species is based on morphological characteristics, and gene sequencing, and may also rely on Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS). The present work aimed to assess whether MALDI-TOF MS was applicable for species level identification of immature stages of Cimex. Arthropods were collected in domestic settings in Nouakchott, Mauritania. Identification used morphological keys and MALDI-TOF MS identification was assessed for immature stages. Quantitative PCR and sequencing assays were used to detect arthropod-associated bacteria in each specimen. A total of 92 arthropods were collected, all morphologically identified as C. hemipterus (32 males, 14 females and 45 immature stages). A total of 35/45 specimens produced good quality MALDI-TOF MS spectra. Analysis allowed species level identification of all immature C. hemipterus after their spectra were entered into our in-house MALDI-TOF MS arthropod spectra database. Molecular screening allowed detection of Wolbachia DNA in each specimen. These results suggested that MALDI-TOF MS is a reliable tool for species level identification of Cimex specimens, including immature specimens. Future studies should assess this approach on larger panels of immature specimens for different Cimex species and focus on the precise staging of their different immature developmental stages.
Collapse
Affiliation(s)
- Jacques Sevestre
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Mohamed Aly Ould Lemrabott
- Unité de Recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott BP 880, Mauritania
| | - Jean-Michel Bérenger
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Adama Zan Diarra
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott BP 880, Mauritania
| | - Philippe Parola
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| |
Collapse
|
15
|
Sy I, Conrad L, Becker SL. Recent Advances and Potential Future Applications of MALDI-TOF Mass Spectrometry for Identification of Helminths. Diagnostics (Basel) 2022; 12:3035. [PMID: 36553043 PMCID: PMC9777230 DOI: 10.3390/diagnostics12123035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Helminth infections caused by nematodes, trematodes, and cestodes are major neglected tropical diseases and of great medical and veterinary relevance. At present, diagnosis of helminthic diseases is mainly based on microscopic observation of different parasite stages, but microscopy is associated with limited diagnostic accuracy. Against this background, recent studies described matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry as a potential, innovative tool for helminth identification and differentiation. MALDI-TOF mass spectrometry is based on the analysis of spectra profiles generated from protein extracts of a given pathogen. It requires an available spectra database containing reference spectra, also called main spectra profiles (MSPs), which are generated from well characterized specimens. At present, however, there are no commercially available databases for helminth identification using this approach. In this narrative review, we summarize recent developments and published studies between January 2019 and September 2022 that report on the use of MALDI-TOF mass spectrometry for helminths. Current challenges and future research needs are identified and briefly discussed.
Collapse
Affiliation(s)
- Issa Sy
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Lucie Conrad
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Sören L. Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
16
|
Feucherolles M, Frache G. MALDI Mass Spectrometry Imaging: A Potential Game-Changer in a Modern Microbiology. Cells 2022; 11:cells11233900. [PMID: 36497158 PMCID: PMC9738593 DOI: 10.3390/cells11233900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is routinely implemented as the reference method for the swift and straightforward identification of microorganisms. However, this method is not flawless and there is a need to upgrade the current methodology in order to free the routine lab from incubation time and shift from a culture-dependent to an even faster independent culture system. Over the last two decades, mass spectrometry imaging (MSI) gained tremendous popularity in life sciences, including microbiology, due to its ability to simultaneously detect biomolecules, as well as their spatial distribution, in complex samples. Through this literature review, we summarize the latest applications of MALDI-MSI in microbiology. In addition, we discuss the challenges and avenues of exploration for applying MSI to solve current MALDI-TOF MS limits in routine and research laboratories.
Collapse
|
17
|
Wendel AF, Peter D, Mattner F, Weiss M, Hoppenz M, Wolf S, Bader B, Peter S, Liese J. Surveillance of Enterobacter cloacae complex colonization and comparative analysis of different typing methods on a neonatal intensive care unit in Germany. Antimicrob Resist Infect Control 2022; 11:54. [PMID: 35365217 PMCID: PMC8973561 DOI: 10.1186/s13756-022-01094-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Enterobacter cloacae complex is a group of common opportunistic pathogens on neonatal intensive care units. Active microbiological screening to guide empirical antimicrobial treatment or to detect transmission events is recommended in high-risk preterm neonates. A rise in colonization with E. cloacae complex was observed in a German perinatal centre. The aim of this study was to evaluate the performance of different typing techniques using whole genome sequencing (WGS) as a reference.
Methods
Enterobacter cloacae complex isolates from clinical and screening specimens with an epidemiological link to the neonatal intensive care units were further assessed. Identification and antibiotic susceptibility testing was performed by a combination of VITEK2 (bioMérieux) and MALDI-TOF (Bruker Daltonics), followed by RAPD/rep-PCR and PFGE (XbaI). Retrospectively, all isolates were analyzed by Fourier-transform infrared (FTIR) spectroscopy (IR Biotyper, Bruker Daltonics). Whole genome sequencing with SNP-based clustering was used as the reference method. Furthermore, resistome analysis, sequence type and species identification were derived from the WGS data. Transmission analysis was based on epidemiological and typing data.
Results
Between September 2017 and March 2018 32 mostly preterm neonates were found to be colonized with E. cloacae complex and 32 isolates from 24 patients were available for further typing. RAPD/rep-PCR and PFGE showed good concordance with WGS whereas FTIR displayed mediocre results [adjusted rand index (ARI) = 0.436]. A polyclonal increase and two dominant and overlapping clonal clusters of two different E. hormaechei subspecies were detected. Overall, four different species were identified. Genotyping confirmed third-generation cephalosporin resistance development in isolates of the same patient. During the six-month period several infection prevention interventions were performed and no E. cloacae complex isolates were observed during the following months.
Conclusions
Interpretation of the microbiological results alone to detect transmission events is often challenging and bacterial typing is of utmost importance to implement targeted infection control measures in an epidemic occurrence of E. cloacae complex. WGS is the most discriminatory method. However, traditional methods such as PFGE or RAPD/rep-PCR can provide reliable and quicker results in many settings. Furthermore, research is needed to quickly identify E. cloacae complex to the species level in the microbiological laboratory.
Collapse
|
18
|
Zheng ZJ, Cui ZH, Diao QY, Ye XQ, Zhong ZX, Tang T, Wu SB, He HL, Lian XL, Fang LX, Wang XR, Liang LJ, Liu YH, Liao XP, Sun J. MALDI-TOF MS for rapid detection and differentiation between Tet(X)-producers and non-Tet(X)-producing tetracycline-resistant Gram-negative bacteria. Virulence 2022; 13:77-88. [PMID: 34951562 PMCID: PMC9794003 DOI: 10.1080/21505594.2021.2018768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The extensive use of tetracycline antibiotics has led to the widespread presence of tetracycline-resistance genes in Gram-negative bacteria and this poses serious threats to human and animal health. In our previous study, we reported a method for rapid detection of Tet(X)-producers using MALDI-TOF MS. However, there have been multiple machineries involved in tetracycline resistance including efflux pump, and ribosomal protection protein. Our previous demonstrated the limitation in probing the non-Tet(X)-producing tetracycline-resistant strains. In this regard, we further developed a MALDI-TOF MS method to detect and differentiate Tet(X)-producers and non-Tet(X)-producing tetracycline-resistant strains. Test strains were incubated with tigecycline and oxytetracycline in separate tubes for 3 h and then analyzed spectral peaks of tigecycline, oxytetracycline, and their metabolite. Strains were distinguished using MS ratio for [metabolite/(metabolite+ tigecycline or oxytetracycline)]. Four control strains and 319 test strains were analyzed and the sensitivity was 98.90% and specificity was 98.34%. This was consistent with the results obtained from LC-MS/MS analysis. Interestingly, we also found that the reactive oxygen species (ROS) produced by tetracycline-susceptible strains were able to promote the degradation of oxytetracycline. Overall, the MALDITet(X)-plus test represents a rapid and reliable method to detect Tet(X)-producers, non-Tet(X)-producing tetracycline-resistant strains, and tetracycline-susceptible strains.
Collapse
Affiliation(s)
- Zi-Jian Zheng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ze-Hua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Qiu-Yue Diao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xin-Qing Ye
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zi-Xing Zhong
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Tian Tang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Shuai-Bin Wu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Hui-Ling He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xin-Lei Lian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xi-Ran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Li-Jie Liang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China,CONTACT Jian Sun National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Hleba L, Hlebova M, Kovacik A, Petrova J, Maskova Z, Cubon J, Massanyi P. Use of MALDI-TOF MS to Discriminate between Aflatoxin B1-Producing and Non-Producing Strains of Aspergillus flavus. Molecules 2022; 27:molecules27227861. [PMID: 36431961 PMCID: PMC9692738 DOI: 10.3390/molecules27227861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins. One of the producers of AFB1 is Aspergillus flavus. Therefore, its rapid identification plays a key role in various sectors of the food and feed industry. MALDI-TOF mass spectrometry is one of the fastest and most accurate methods today. Therefore, the aim of this research was to develop the rapid identification of producing and non-producing strains of A. flavus based on the entire mass spectrum. To accomplish the main goal a different confirmatory MALDI-TOF MS and TLC procedures such as direct AFB1 identification by scraping from TLC plates, A. flavus mycelium, nutrient media around A. flavus growth, and finally direct AFB1 identification from infected wheat and barley grains had to be conducted. In this experiment, MALDI-TOF mass spectrometry with various modifications was the main supporting technology. All confirmatory methods confirmed the presence of AFB1 in the samples of aflatoxin-producing strains of A. flavus and vice versa; AFB1 was not detected in the case of non-producing strains. Entire mass spectra (from 2 to 20 kDa) of aflatoxin-producing and non-producing A. flavus strains were collected, statistically analyzed and clustered. An in-depth analysis of the obtained entire mass spectra showed differences between AFB1-producing and non-producing strains of A. flavus. Statistical and cluster analysis divided AFB1-producing and non-producing strains of A. flavus into two monasteries. The results indicate that it is possible to distinguish between AFB1 producers and non-producers by comparing the entire mass spectra using MALDI-TOF MS. Finally, we demonstrated that if there are established local AFB1-producing and non-producing strains of A. flavus, the entire mass spectrum database identification of aflatoxigenic A. flavus strains can be even faster and cheaper, without the need to identify the toxin itself.
Collapse
Affiliation(s)
- Lukas Hleba
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence:
| | - Miroslava Hlebova
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Anton Kovacik
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Jana Petrova
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Zuzana Maskova
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Juraj Cubon
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Peter Massanyi
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
20
|
Elbehiry A, Aldubaib M, Abalkhail A, Marzouk E, ALbeloushi A, Moussa I, Ibrahem M, Albazie H, Alqarni A, Anagreyyah S, Alghamdi S, Rawway M. How MALDI-TOF Mass Spectrometry Technology Contributes to Microbial Infection Control in Healthcare Settings. Vaccines (Basel) 2022; 10:1881. [PMID: 36366389 PMCID: PMC9699604 DOI: 10.3390/vaccines10111881] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 08/01/2023] Open
Abstract
Healthcare settings have been utilizing matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) since 2010. MALDI-TOF MS has various benefits over the conventional method of biochemical identification, including ease of use, speed, accuracy, and low cost. This approach can solve many of the obstacles to identifying bacteria, fungi and viruses. As technology advanced, more and more databases kept track of spectra, allowing species with similar morphological, genotypic, and biochemical traits to be identified. Using MALDI-TOF MS for identification has become more accurate and quicker due to advances in sample preparation and database enrichment. Rapid sample detection and colony identification using MALDI-TOF MS have produced promising results. A key application of MALDI-TOF MS is quickly identifying highly virulent and drug-resistant diseases. Here, we present a review of the scientific literature assessing the effectiveness of MALDI-TOF MS for locating clinically relevant pathogenic bacteria, fungi, and viruses. MALDI-TOF MS is a useful strategy for locating clinical pathogens, however, it also has some drawbacks. A small number of spectra in the database and inherent similarities among organisms can make it difficult to distinguish between different species, which can result in misidentifications. The majority of the time additional testing may correct these problems, which happen very seldom. In conclusion, infectious illness diagnosis and clinical care are being revolutionized by the use of MALDI-TOF MS in the clinical microbiology laboratory.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Musaad Aldubaib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Ahmad ALbeloushi
- Al Bukayriyah General Hospital, Qassim, Al Bukayriyah 52725, Saudi Arabia
| | - Ihab Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Hamad Albazie
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Abdullah Alqarni
- Department of Support Service, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Sulaiman Anagreyyah
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Saleh Alghamdi
- Department of Biomedical Engineering, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
21
|
Thompson JE. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in veterinary medicine: Recent advances (2019-present). Vet World 2022; 15:2623-2657. [PMID: 36590115 PMCID: PMC9798047 DOI: 10.14202/vetworld.2022.2623-2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) has become a valuable laboratory tool for rapid diagnostics, research, and exploration in veterinary medicine. While instrument acquisition costs are high for the technology, cost per sample is very low, the method requires minimal sample preparation, and analysis is easily conducted by end-users requiring minimal training. Matrix-assisted laser desorption ionization-time-of-flight MS has found widespread application for the rapid identification of microorganisms, diagnosis of dermatophytes and parasites, protein/lipid profiling, molecular diagnostics, and the technique demonstrates significant promise for 2D chemical mapping of tissue sections collected postmortem. In this review, an overview of the MALDI-TOF technique will be reported and manuscripts outlining current uses of the technology for veterinary science since 2019 will be summarized. The article concludes by discussing gaps in knowledge and areas of future growth.
Collapse
Affiliation(s)
- Jonathan E. Thompson
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas 79106, United States,Corresponding author: Jonathan E. Thompson, e-mail:
| |
Collapse
|
22
|
Gao SQ, Zhao JH, Guan Y, Tang YS, Li Y, Liu LY. Mass Spectrometry Imaging technology in metabolomics: a systematic review. Biomed Chromatogr 2022:e5494. [PMID: 36044038 DOI: 10.1002/bmc.5494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/11/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful label-free analysis technique that can provide simultaneous spatial distribution of multiple compounds in a single experiment. By combining the sensitive and rapid screening of high-throughput mass spectrometry with spatial chemical information, metabolite analysis and morphological characteristics are presented in a single image. MSI can be used for qualitative and quantitative analysis of metabolic profiles and it can provide visual analysis of spatial distribution information of complex biological and microbial systems. Matrix assisted laser desorption ionization, laser ablation electrospray ionization and desorption electrospray ionization are commonly used in MSI. Here, we summarize and compare these three technologies, as well as the applications and prospects of MSI in metabolomics.
Collapse
Affiliation(s)
- Si-Qi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Jin-Hui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Yue Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Ying-Shu Tang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Li-Yan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
23
|
Hamidi H, Bagheri Nejad R, Es-Haghi A, Ghassempour A. A Combination of MALDI-TOF MS Proteomics and Species-Unique Biomarkers' Discovery for Rapid Screening of Brucellosis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1530-1540. [PMID: 35816556 DOI: 10.1021/jasms.2c00110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brucellosis is considered to be a zoonotic infection with a predominant incidence in most parts of Iran that may even simply involve diagnostic laboratory personnel. In the present study, we apply matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for rapid and reliable discrimination of Brucella abortus and Brucella melitensis, based on proteomic mass patterns from chemically treated whole-cell analyses. Biomarkers of the low molecular weight proteome in the MALDI-TOF MS spectra were assigned to conserved ribosomal and structural protein families that were found in genome assemblies of B. abortus and B. melitensis in the NCBI database. Significant protein mass signals successfully mapped to ribosomal proteins and structural proteins, such as integration host factor subunit alpha, cold-shock proteins, HU family DNA-binding protein, ATP synthase subunit C, and GNAT family N-acetyltransferase, with specific biomarker peaks that have been identified for each virulent and vaccine strain. Web-accessible bioinformatics algorithms, with a robust data analysis workflow, followed by ribosomal and structural protein mapping, significantly enhanced the reliable assignment of key proteins and accurate identification of Brucella species. Furthermore, clinical samples were analyzed to confirm the most dominant protein biomarker candidates and their relevance for the identifications of B. melitensis and B. abortus. With proper optimization, we envision that the presented MALDI-TOF MS proteomics analyses, coupled with special usage of bioinformatics, could be used as a cost-efficient strategy for the diagnostics of brucellosis and introduce a reliable identification protocol for species of dangerous bacteria.
Collapse
Affiliation(s)
- Hamideh Hamidi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 19839-69411 Tehran, Iran
| | - Ramin Bagheri Nejad
- Department of Physico Chemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), 31975/148 Karaj, Iran
| | - Ali Es-Haghi
- Department of Physico Chemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), 31975/148 Karaj, Iran
| | - Alireza Ghassempour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 19839-69411 Tehran, Iran
| |
Collapse
|
24
|
Differentiation of Bacillus cereus and Bacillus thuringiensis Using Genome-Guided MALDI-TOF MS Based on Variations in Ribosomal Proteins. Microorganisms 2022; 10:microorganisms10050918. [PMID: 35630362 PMCID: PMC9146703 DOI: 10.3390/microorganisms10050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Bacillus cereus and B. thuringiensis are closely related species that are relevant to foodborne diseases and biopesticides, respectively. Unambiguous differentiation of these two species is crucial for bacterial taxonomy. As genome analysis offers an objective but time-consuming classification of B. cereus and B. thuringiensis, in the present study, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to accelerate this process. By combining in silico genome analysis and MALDI-TOF MS measurements, four species-specific peaks of B. cereus and B. thuringiensis were screened and identified. The species-specific peaks of B. cereus were m/z 3211, 6427, 9188, and 9214, and the species-specific peaks of B. thuringiensis were m/z 3218, 6441, 9160, and 9229. All the above peaks represent ribosomal proteins, which are conserved and consistent with the phylogenetic relationship between B. cereus and B. thuringiensis. The specificity of the peaks was robustly verified using common foodborne pathogens. Thus, we concluded that genome-guided MALDI-TOF MS allows high-throughput differentiation of B. cereus and B. thuringiensis and provides a framework for differentiating other closely related species.
Collapse
|
25
|
Chung CR, Wang Z, Weng JM, Wang HY, Wu LC, Tseng YJ, Chen CH, Lu JJ, Horng JT, Lee TY. MDRSA: A Web Based-Tool for Rapid Identification of Multidrug Resistant Staphylococcus aureus Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Front Microbiol 2021; 12:766206. [PMID: 34925273 PMCID: PMC8678511 DOI: 10.3389/fmicb.2021.766206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/28/2021] [Indexed: 11/19/2022] Open
Abstract
As antibiotics resistance on superbugs has risen, more and more studies have focused on developing rapid antibiotics susceptibility tests (AST). Meanwhile, identification of multiple antibiotics resistance on Staphylococcus aureus provides instant information which can assist clinicians in administrating the appropriate prescriptions. In recent years, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool in clinical microbiology laboratories for the rapid identification of bacterial species. Yet, lack of study devoted on providing efficient methods to deal with the MS shifting problem, not to mention to providing tools incorporating the MALDI-TOF MS for the clinical use which deliver the instant administration of antibiotics to the clinicians. In this study, we developed a web tool, MDRSA, for the rapid identification of oxacillin-, clindamycin-, and erythromycin-resistant Staphylococcus aureus. Specifically, the kernel density estimation (KDE) was adopted to deal with the peak shifting problem, which is critical to analyze mass spectra data, and machine learning methods, including decision trees, random forests, and support vector machines, which were used to construct the classifiers to identify the antibiotic resistance. The areas under the receiver operating the characteristic curve attained 0.8 on the internal (10-fold cross validation) and external (independent testing) validation. The promising results can provide more confidence to apply these prediction models in the real world. Briefly, this study provides a web-based tool to provide rapid predictions for the resistance of antibiotics on Staphylococcus aureus based on the MALDI-TOF MS data. The web tool is available at: http://fdblab.csie.ncu.edu.tw/mdrsa/.
Collapse
Affiliation(s)
- Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Zhuo Wang
- School of Life and Health Sciences, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China
| | - Jing-Mei Weng
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Li-Ching Wu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Yi-Ju Tseng
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Information Management, National Central University, Taoyuan, Taiwan
| | - Chun-Hsien Chen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Information Management, Chang Gung University, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
| | - Tzong-Yi Lee
- School of Life and Health Sciences, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
26
|
Comparison of bacteria disintegration methods and their influence on data analysis in metabolomics. Sci Rep 2021; 11:20859. [PMID: 34675363 PMCID: PMC8531443 DOI: 10.1038/s41598-021-99873-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolomic experiments usually contain many different steps, each of which can strongly influence the obtained results. In this work, metabolic analyses of six bacterial strains were performed in light of three different bacterial cell disintegration methods. Three strains were gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae), and three were gram-positive (Corynebacterium glutamicum, Bacillus cereus, and Enterococcus faecalis). For extraction, the methanol–water extraction method (1:1) was chosen. To compare the efficiency of different cell disintegration methods, sonication, sand mill, and tissue lyser were used. For bacterial extract metabolite analysis, 1H NMR together with univariate and multivariate analyses were applied. The obtained results showed that metabolite concentrations are strongly dependent on the cell lysing methodology used and are different for various bacterial strains. The results clearly show that one of the disruption methods gives the highest concentration for most identified compounds (e. g. sand mill for E. faecalis and tissue lyser for B. cereus). This study indicated that the comparison of samples prepared by different procedures can lead to false or imprecise results, leaving an imprint of the disintegration method. Furthermore, the presented results showed that NMR might be a useful bacterial strain identification and differentiation method. In addition to disintegration method comparison, the metabolic profiles of each elaborated strain were analyzed, and each exhibited its metabolic profile. Some metabolites were identified by the 1H NMR method in only one strain. The results of multivariate data analyses (PCA) show that regardless of the disintegration method used, the strain group can be identified. Presented results can be significant for all types of microbial studies containing the metabolomic targeted and non-targeted analysis.
Collapse
|
27
|
Topić Popović N, Kazazić SP, Bojanić K, Strunjak-Perović I, Čož-Rakovac R. Sample preparation and culture condition effects on MALDI-TOF MS identification of bacteria: A review. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34642960 DOI: 10.1002/mas.21739] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an excellent tool for bacterial identification. It allows high throughput, sensitive and specific applications in clinical diagnostics and environmental research. Currently, there is no optimal standardized protocol for sample preparation and culture conditions to profile bacteria. The performance of MALDI-TOF MS is affected by several variables, such as sample preparation, culture media and culture conditions, incubation time/growth stage, incubation temperature, high salt content, blood in the culture media, and others. This review thus aims to clarify why a uniformed protocol is not plausible, to assess the effects these factors have on MALDI-TOF MS identification score, and discuss possible optimizations for its methodology, in relation to specific bacterial representatives and strain requirements.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Snježana P Kazazić
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Krunoslav Bojanić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
28
|
Metabolomics Comparison of Drug-Resistant and Drug-Susceptible Pseudomonas aeruginosa Strain (Intra- and Extracellular Analysis). Int J Mol Sci 2021; 22:ijms221910820. [PMID: 34639158 PMCID: PMC8509183 DOI: 10.3390/ijms221910820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a common human pathogen belonging to the ESKAPE group. The multidrug resistance of bacteria is a considerable problem in treating patients and may lead to increased morbidity and mortality rate. The natural resistance in these organisms is caused by the production of specific enzymes and biofilm formation, while acquired resistance is multifactorial. Precise recognition of potential antibiotic resistance on different molecular levels is essential. Metabolomics tools may aid in the observation of the flux of low molecular weight compounds in biochemical pathways yielding additional information about drug-resistant bacteria. In this study, the metabolisms of two P. aeruginosa strains were compared-antibiotic susceptible vs. resistant. Analysis was performed on both intra- and extracellular metabolites. The 1H NMR method was used together with multivariate and univariate data analysis, additionally analysis of the metabolic pathways with the FELLA package was performed. The results revealed the differences in P. aeruginosa metabolism of drug-resistant and drug-susceptible strains and provided direct molecular information about P. aeruginosa response for different types of antibiotics. The most significant differences were found in the turnover of amino acids. This study can be a valuable source of information to complement research on drug resistance in P. aeruginosa.
Collapse
|
29
|
MALDI-TOF MS: Foundations and a Practical Approach to the Clinically Relevant Filamentous Fungi Identification. CURRENT FUNGAL INFECTION REPORTS 2021. [DOI: 10.1007/s12281-021-00423-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Ozana V, Hruška K. Instrumental analytical tools for mycobacteria characterisation. CZECH JOURNAL OF FOOD SCIENCES 2021; 39:235-264. [DOI: 10.17221/69/2021-cjfs] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Van Belkum A, Gros MF, Ferry T, Lustig S, Laurent F, Durand G, Jay C, Rochas O, Ginocchio CC. Novel strategies to diagnose prosthetic or native bone and joint infections. Expert Rev Anti Infect Ther 2021; 20:391-405. [PMID: 34384319 DOI: 10.1080/14787210.2021.1967745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Bone and Joint Infections (BJI) are medically important, costly and occur in native and prosthetic joints. Arthroplasties will increase significantly in absolute numbers over time as well as the incidence of Prosthetic Joint Infections (PJI). Diagnosis of BJI and PJI is sub-optimal. The available diagnostic tests have variable effectiveness, are often below standard in sensitivity and/or specificity, and carry significant contamination risks during the collection of clinical samples. Improvement of diagnostics is urgently needed. AREAS COVERED We provide a narrative review on current and future diagnostic microbiology technologies. Pathogen identification, antibiotic resistance detection, and assessment of the epidemiology of infections via bacterial typing are considered useful for improved patient management. We confirm the continuing importance of culture methods and successful introduction of molecular, mass spectrometry-mediated and next-generation genome sequencing technologies. The diagnostic algorithms for BJI must be better defined, especially in the context of diversity of both disease phenotypes and clinical specimens rendered available. EXPERT OPINION Whether interventions in BJI or PJI are surgical or chemo-therapeutic (antibiotics and bacteriophages included), prior sensitive and specific pathogen detection remains a therapy-substantiating necessity. Innovative tests for earlier and more sensitive and specific detection of bacterial pathogens in BJI are urgently needed.
Collapse
Affiliation(s)
- Alex Van Belkum
- bioMérieux, Open Innovation and Partnerships, 3 Route De Port Michaud, La Balme Les Grottes, France
| | | | - Tristan Ferry
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre Interrégional De Référence Pour La Prise En Charge Des Infections Ostéo-articulaires Complexes (Crioac Lyon), Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | - Sebastien Lustig
- Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Service De Chirurgie Orthopédique, Hôpital De La Croix-Rousse, Lyon, France
| | - Frédéric Laurent
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | | | - Corinne Jay
- bioMérieux, BioFire Development Emea, Grenoble, France
| | - Olivier Rochas
- Corporate Business Development, bioMérieux, Marcy-l'Étoile, France
| | | |
Collapse
|
32
|
Jia Khor M, Broda A, Kostrzewa M, Drobniewski F, Larrouy-Maumus G. An Improved Method for Rapid Detection of Mycobacterium abscessus Complex Based on Species-Specific Lipid Fingerprint by Routine MALDI-TOF. Front Chem 2021; 9:715890. [PMID: 34386482 PMCID: PMC8353234 DOI: 10.3389/fchem.2021.715890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Rapid diagnostics of bacterial infection is the key to successful recovery and eradication of the disease. Currently, identification of bacteria is based on the detection of highly abundant proteins, mainly ribosomal proteins, by routine MALDI-TOF mass spectrometry. However, relying solely on proteins is limited in subspecies typing for some pathogens. This is the case for, for example, the mycobacteria belonging to the Mycobacterium abscessus (MABS) complex, which is classified into three subspecies, namely, M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Being able to detect bacteria accurately and rapidly at the subspecies level could not only reliably identify the pathogen causing the disease but also enable better antibiotic stewardship. For instance, M. abscessus subsp. abscessus and M. abscessus subsp. bolletii possess a functional erm41 (erythromycin ribosomal methylation gene 41) gene, whilst M. abscessus subsp. massiliense does not, resulting in differences in macrolide antibiotic (e.g., clarithromycin and azithromycin) susceptibilities. This presents a challenge for physicians when designing an appropriate treatment regimen. To address this challenge, in addition to proteins, species-specific lipids have now been considered as a game changer in clinical microbiology diagnostics. However, their extraction can be time-consuming, and analysis requires the use of apolar toxic organic solvents (e.g., chloroform). Here, we present a new method to accurately detect species and subspecies, allowing the discrimination of the mycobacteria within the MABS complex and relying on the use of ethanol. We found that a combination of the matrix named super-DHB with 25% ethanol with a bacterial suspension at McFarland 20 gave robust and reproducible data, allowing the discrimination of the bacteria within the MABS complex strains tested in this study (n = 9). Further investigations have to be conducted to validate the method on a larger panel of strains for its use in diagnostic laboratories.
Collapse
Affiliation(s)
- Min Jia Khor
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Agnieszka Broda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Francis Drobniewski
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Hu Y, Wang Z, Liu L, Zhu J, Zhang D, Xu M, Zhang Y, Xu F, Chen Y. Mass spectrometry-based chemical mapping and profiling toward molecular understanding of diseases in precision medicine. Chem Sci 2021; 12:7993-8009. [PMID: 34257858 PMCID: PMC8230026 DOI: 10.1039/d1sc00271f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Precision medicine has been strongly promoted in recent years. It is used in clinical management for classifying diseases at the molecular level and for selecting the most appropriate drugs or treatments to maximize efficacy and minimize adverse effects. In precision medicine, an in-depth molecular understanding of diseases is of great importance. Therefore, in the last few years, much attention has been given to translating data generated at the molecular level into clinically relevant information. However, current developments in this field lack orderly implementation. For example, high-quality chemical research is not well integrated into clinical practice, especially in the early phase, leading to a lack of understanding in the clinic of the chemistry underlying diseases. In recent years, mass spectrometry (MS) has enabled significant innovations and advances in chemical research. As reported, this technique has shown promise in chemical mapping and profiling for answering "what", "where", "how many" and "whose" chemicals underlie the clinical phenotypes, which are assessed by biochemical profiling, MS imaging, molecular targeting and probing, biomarker grading disease classification, etc. These features can potentially enhance the precision of disease diagnosis, monitoring and treatment and thus further transform medicine. For instance, comprehensive MS-based biochemical profiling of ovarian tumors was performed, and the results revealed a number of molecular insights into the pathways and processes that drive ovarian cancer biology and the ways that these pathways are altered in correspondence with clinical phenotypes. Another study demonstrated that quantitative biomarker mapping can be predictive of responses to immunotherapy and of survival in the supposedly homogeneous group of breast cancer patients, allowing for stratification of patients. In this context, our article attempts to provide an overview of MS-based chemical mapping and profiling, and a perspective on their clinical utility to improve the molecular understanding of diseases for advancing precision medicine.
Collapse
Affiliation(s)
- Yechen Hu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Zhongcheng Wang
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Liang Liu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Jianhua Zhu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Dongxue Zhang
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Mengying Xu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Yuanyuan Zhang
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular & Cerebrovascular Medicine Nanjing 210029 China
| |
Collapse
|
34
|
Ying J, Gao W, Huang D, Ding C, Ling L, Pan T, Yu S. Application of MALDI-TOF MS Profiling Coupled With Functionalized Magnetic Enrichment for Rapid Identification of Pathogens in a Patient With Open Fracture. Front Chem 2021; 9:672744. [PMID: 33996766 PMCID: PMC8120279 DOI: 10.3389/fchem.2021.672744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/19/2021] [Indexed: 01/17/2023] Open
Abstract
Posttraumatic infections can occur in orthopedic trauma patients, especially in open fractures. Rapid and accurate identification of pathogens in orthopedic trauma is important for clinical diagnosis and antimicrobial treatment. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been successfully used for first-line identification of pathogens grown on culture plates. However, for direct analysis of liquid clinical specimens, pre-purification of the sample is necessary. Herein, we investigated the feasibility of coupling Fc-MBL@Fe3O4 enrichment with MALDI-TOF MS profiling in the identification of pathogens in liquid-cultured samples. This method is successfully used for the identification of pathogens in a patient with an open-leg fracture obtained at sea. Pathogens were enriched by Fc-MBL@Fe3O4 from briefly pre-cultured liquid media and identified by MALDI-TOF MS. We identified an opportunistic pathogen, Vibrio alginolyticus, which is uncommon in clinical orthopedic trauma infection but exists widely in the sea. Therefore, combining Fc-MBL@Fe3O4 enrichment and MALDI-TOF MS profiling has great potential for direct identification of microbes in clinical samples.
Collapse
Affiliation(s)
| | - Wenjing Gao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | | | - Chuanfan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Tao Pan
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
35
|
Lopes Gonçalves JP, Bollwein C, Weichert W, Schwamborn K. Implementation of Mass Spectrometry Imaging in Pathology: Advances and Challenges. Clin Lab Med 2021; 41:173-184. [PMID: 34020758 DOI: 10.1016/j.cll.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mass spectrometry imaging (MSI) combines the excellence in molecular characterization of mass spectrometry with microscopic imaging capabilities of hematoxylin- and eosin-stained samples, enabling the precise location of several analytes in the tissue. Especially in the field of pathology, MSI may have an impactful role in tumor diagnosis, biomarker identification, prognostic prediction, and characterization of tumor margins during tumor resection procedures. This article discusses the recent developments in the field that are paving the way for this technology to become accepted as an analytical tool in the clinical setting, its current limitations, and future directions.
Collapse
Affiliation(s)
| | - Christine Bollwein
- Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany
| | - Kristina Schwamborn
- Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany.
| |
Collapse
|
36
|
Girard V, Monnin V, Giraud D, Polsinelli S, Caillé M, Procop GW, Tuohy M, Wilson D, Richter SS, Kiss K, Clem K, Tolli N, Bridon L, Bradford C, Blamey S, Li J, Pincus DH. Multicenter evaluation of the VITEK MS matrix-assisted laser desorption/ionization-time of flight mass spectrometry system for identification of bacteria, including Brucella, and yeasts. Eur J Clin Microbiol Infect Dis 2021; 40:1909-1917. [PMID: 33837878 DOI: 10.1007/s10096-021-04242-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The use of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry has proven to be rapid and accurate for the majority of clinical isolates. Some gaps remain concerning rare, emerging, or highly pathogenic species, showing the need to continuously expand the databases. In this multicenter study, we evaluated the accuracy of the VITEK MS v3.2 database in identifying 1172 unique isolates compared to identification by DNA sequence analysis. A total of 93.6% of the isolates were identified to species or group/complex level. A remaining 5.2% of the isolates were identified to the genus level. Forty tests gave a result of no identification (0.9%) and 12 tests (0.3%) gave a discordant identification compared to the reference identification. VITEK MS is also the first MALDI-TOF MS system that is able to delineate the four members of the Acinetobacter baumannii complex at species level without any specific protocol or special analysis method. These findings demonstrate that the VITEK MS v3.2 database is highly accurate for the identification of bacteria and fungi encountered in the clinical laboratory as well as emerging species like Candida auris and the highly pathogenic Brucella species.
Collapse
Affiliation(s)
- Victoria Girard
- R&D Microbiology, bioMérieux sa, La Balme les Grottes, France.
| | - Valérie Monnin
- R&D Microbiology, bioMérieux sa, La Balme les Grottes, France
| | - Delphine Giraud
- R&D Microbiology, bioMérieux sa, La Balme les Grottes, France
| | | | - Marion Caillé
- R&D Microbiology, bioMérieux sa, La Balme les Grottes, France.,MSD, Clermont-Ferrand, France
| | - Gary W Procop
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Marion Tuohy
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Deborah Wilson
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sandra S Richter
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.,Medical Affairs, bioMérieux, Inc., Durham, NC, USA
| | | | | | | | | | | | - Sara Blamey
- Clinical Affairs, bioMérieux, Inc., St. Louis, MO, USA
| | - Jay Li
- R&D US Data Science, bioMérieux, Inc., Durham, NC, USA
| | | |
Collapse
|
37
|
MALDI-TOF mass spectrometry in the 21st century clinical microbiology laboratory. Enferm Infecc Microbiol Clin 2021; 39:192-200. [DOI: 10.1016/j.eimc.2020.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023]
|
38
|
Deulofeu M, García-Cuesta E, Peña-Méndez EM, Conde JE, Jiménez-Romero O, Verdú E, Serrando MT, Salvadó V, Boadas-Vaello P. Detection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence. Front Med (Lausanne) 2021; 8:661358. [PMID: 33869258 PMCID: PMC8047105 DOI: 10.3389/fmed.2021.661358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
The high infectivity of SARS-CoV-2 makes it essential to develop a rapid and accurate diagnostic test so that carriers can be isolated at an early stage. Viral RNA in nasopharyngeal samples by RT-PCR is currently considered the reference method although it is not recognized as a strong gold standard due to certain drawbacks. Here we develop a methodology combining the analysis of from human nasopharyngeal (NP) samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with the use of machine learning (ML). A total of 236 NP samples collected in two different viral transport media were analyzed with minimal sample preparation and the subsequent mass spectra data was used to build different ML models with two different techniques. The best model showed high performance in terms of accuracy, sensitivity and specificity, in all cases reaching values higher than 90%. Our results suggest that the analysis of NP samples by MALDI-TOF MS and ML is a simple, safe, fast and economic diagnostic test for COVID-19.
Collapse
Affiliation(s)
- Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| | - Esteban García-Cuesta
- Science, Computation, and Technology Department, School of Architecture, Design, and Engineering, European University of Madrid, Madrid, Spain.,Instant Biosensing Technologies, Carson, NV, United States
| | - Eladia María Peña-Méndez
- Analytical Chemistry Division, Department of Chemistry, Faculty of Science, University of La Laguna, La Laguna, Spain
| | - José Elías Conde
- Analytical Chemistry Division, Department of Chemistry, Faculty of Science, University of La Laguna, La Laguna, Spain
| | - Orlando Jiménez-Romero
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - María Teresa Serrando
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| | - Victoria Salvadó
- Department of Chemistry, Faculty of Science, University of Girona, Girona, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| |
Collapse
|
39
|
The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Microorganisms 2021; 9:microorganisms9020442. [PMID: 33672663 PMCID: PMC7924381 DOI: 10.3390/microorganisms9020442] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Since 2015, the discovery of colistin resistance genes has been limited to the characterization of new mobile colistin resistance (mcr) gene variants. However, given the complexity of the mechanisms involved, there are many colistin-resistant bacterial strains whose mechanism remains unknown and whose exploitation requires complementary technologies. In this review, through the history of colistin, we underline the methods used over the last decades, both old and recent, to facilitate the discovery of the main colistin resistance mechanisms and how new technological approaches may help to improve the rapid and efficient exploration of new target genes. To accomplish this, a systematic search was carried out via PubMed and Google Scholar on published data concerning polymyxin resistance from 1950 to 2020 using terms most related to colistin. This review first explores the history of the discovery of the mechanisms of action and resistance to colistin, based on the technologies deployed. Then we focus on the most advanced technologies used, such as MALDI-TOF-MS, high throughput sequencing or the genetic toolbox. Finally, we outline promising new approaches, such as omics tools and CRISPR-Cas9, as well as the challenges they face. Much has been achieved since the discovery of polymyxins, through several innovative technologies. Nevertheless, colistin resistance mechanisms remains very complex.
Collapse
|
40
|
Ling J, Li G, Shao H, Wang H, Yin H, Zhou H, Song Y, Chen G. Helix Matrix Transformation Combined With Convolutional Neural Network Algorithm for Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry-Based Bacterial Identification. Front Microbiol 2020; 11:565434. [PMID: 33304324 PMCID: PMC7693542 DOI: 10.3389/fmicb.2020.565434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis is a rapid and reliable method for bacterial identification. Classification algorithms, as a critical part of the MALDI-TOF MS analysis approach, have been developed using both traditional algorithms and machine learning algorithms. In this study, a method that combined helix matrix transformation with a convolutional neural network (CNN) algorithm was presented for bacterial identification. A total of 14 bacterial species including 58 strains were selected to create an in-house MALDI-TOF MS spectrum dataset. The 1D array-type MALDI-TOF MS spectrum data were transformed through a helix matrix transformation into matrix-type data, which was fitted during the CNN training. Through the parameter optimization, the threshold for binarization was set as 16 and the final size of a matrix-type data was set as 25 × 25 to obtain a clean dataset with a small size. A CNN model with three convolutional layers was well trained using the dataset to predict bacterial species. The filter sizes for the three convolutional layers were 4, 8, and 16. The kernel size was three and the activation function was the rectified linear unit (ReLU). A back propagation neural network (BPNN) model was created without helix matrix transformation and a convolution layer to demonstrate whether the helix matrix transformation combined with CNN algorithm works better. The areas under the receiver operating characteristic (ROC) curve of the CNN and BPNN models were 0.98 and 0.87, respectively. The accuracies of the CNN and BPNN models were 97.78 ± 0.08 and 86.50 ± 0.01, respectively, with a significant statistical difference (p < 0.001). The results suggested that helix matrix transformation combined with the CNN algorithm enabled the feature extraction of the bacterial MALDI-TOF MS spectrum, which might be a proposed solution to identify bacterial species.
Collapse
Affiliation(s)
- Jin Ling
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, China.,Department of Biochemical Drugs and Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Gaomin Li
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, China.,Department of Biochemical Drugs and Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Hong Shao
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, China.,Department of Biochemical Drugs and Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Hong Wang
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, China.,Department of Biochemical Drugs and Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Hongrui Yin
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, China.,Department of Biochemical Drugs and Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Hu Zhou
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yufei Song
- Department of Gastroenterology, Lihuili Hospital of Ningbo Medical Center, Ningbo, China
| | - Gang Chen
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, China.,Department of Biochemical Drugs and Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| |
Collapse
|
41
|
Lasch P, Schneider A, Blumenscheit C, Doellinger J. Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS 1) and in Silico Peptide Mass Libraries. Mol Cell Proteomics 2020; 19:2125-2139. [PMID: 32998977 PMCID: PMC7710138 DOI: 10.1074/mcp.tir120.002061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
Over the past decade, modern methods of MS (MS) have emerged that allow reliable, fast and cost-effective identification of pathogenic microorganisms. Although MALDI-TOF MS has already revolutionized the way microorganisms are identified, recent years have witnessed also substantial progress in the development of liquid chromatography (LC)-MS based proteomics for microbiological applications. For example, LC-tandem MS (LC-MS2) has been proposed for microbial characterization by means of multiple discriminative peptides that enable identification at the species, or sometimes at the strain level. However, such investigations can be laborious and time-consuming, especially if the experimental LC-MS2 data are tested against sequence databases covering a broad panel of different microbiological taxa. In this proof of concept study, we present an alternative bottom-up proteomics method for microbial identification. The proposed approach involves efficient extraction of proteins from cultivated microbial cells, digestion by trypsin and LC-MS measurements. Peptide masses are then extracted from MS1 data and systematically tested against an in silico library of all possible peptide mass data compiled in-house. The library has been computed from the UniProt Knowledgebase covering Swiss-Prot and TrEMBL databases and comprises more than 12,000 strain-specific in silico profiles, each containing tens of thousands of peptide mass entries. Identification analysis involves computation of score values derived from correlation coefficients between experimental and strain-specific in silico peptide mass profiles and compilation of score ranking lists. The taxonomic positions of the microbial samples are then determined by using the best-matching database entries. The suggested method is computationally efficient - less than 2 mins per sample - and has been successfully tested by a test set of 39 LC-MS1 peak lists obtained from 19 different microbial pathogens. The proposed method is rapid, simple and automatable and we foresee wide application potential for future microbiological applications.
Collapse
Affiliation(s)
- Peter Lasch
- Robert Koch-Institute, ZBS6, Proteomics and Spectroscopy, Berlin, Germany.
| | - Andy Schneider
- Robert Koch-Institute, ZBS6, Proteomics and Spectroscopy, Berlin, Germany
| | | | - Joerg Doellinger
- Robert Koch-Institute, ZBS6, Proteomics and Spectroscopy, Berlin, Germany
| |
Collapse
|
42
|
Grossegesse M, Hartkopf F, Nitsche A, Schaade L, Doellinger J, Muth T. Perspective on Proteomics for Virus Detection in Clinical Samples. J Proteome Res 2020; 19:4380-4388. [PMID: 33090795 PMCID: PMC7640980 DOI: 10.1021/acs.jproteome.0c00674] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 12/29/2022]
Abstract
One of the most widely used methods to detect an acute viral infection in clinical specimens is diagnostic real-time polymerase chain reaction. However, because of the COVID-19 pandemic, mass-spectrometry-based proteomics is currently being discussed as a potential diagnostic method for viral infections. Because proteomics is not yet applied in routine virus diagnostics, here we discuss its potential to detect viral infections. Apart from theoretical considerations, the current status and technical limitations are considered. Finally, the challenges that have to be overcome to establish proteomics in routine virus diagnostics are highlighted.
Collapse
Affiliation(s)
- Marica Grossegesse
- Centre
for Biological Threats and Special Pathogens, Highly Pathogenic Viruses
(ZBS 1), Robert Koch Institute, Seestr. 10, Berlin 13353, Germany
| | - Felix Hartkopf
- Microbial
Genomics (NG 1), Robert Koch Institute, Berlin 13353, Germany
- Section
eScience (S.3), Federal Institute for Materials
Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| | - Andreas Nitsche
- Centre
for Biological Threats and Special Pathogens, Highly Pathogenic Viruses
(ZBS 1), Robert Koch Institute, Seestr. 10, Berlin 13353, Germany
| | - Lars Schaade
- Centre
for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany
| | - Joerg Doellinger
- Centre
for Biological Threats and Special Pathogens, Proteomics and Spectroscopy
(ZBS 6), Robert Koch Institute, Berlin 13353, Germany
| | - Thilo Muth
- Section
eScience (S.3), Federal Institute for Materials
Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| |
Collapse
|
43
|
Doellinger J, Schneider A, Stark TD, Ehling-Schulz M, Lasch P. Evaluation of MALDI-ToF Mass Spectrometry for Rapid Detection of Cereulide From Bacillus cereus Cultures. Front Microbiol 2020; 11:511674. [PMID: 33329410 PMCID: PMC7709880 DOI: 10.3389/fmicb.2020.511674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Bacillus cereus plays an often unrecognized role in food borne diseases. Food poisoning caused by this pathogen is manifested by either diarrhea or emesis. Due to the relatively high prevalence of emetic toxin cereulide associated food poisoning, methods for simple and reliable detection of cereulide producing strains are of utmost importance. Recently, two different studies reported on the application of MALDI-ToF MS for either the differentiation of emetic and non-emetic strains of B. cereus or for direct detection of cereulide from bacterial colony smears. However, for implementation of cereulide detection using MALDI-ToF MS in routine microbiological diagnostics additional investigations on the sensitivity and specificity as well as on the fitting into common workflows for bacterial identification are needed. These aspects prompted us to investigate open issues and to test sample preparation methods, commonly used for microbial identification for their suitability to detect the emetic toxin from bacteria. Based on our experimental findings we propose a workflow that allows identification of B. cereus and sensitive detection of cereulide in parallel, using linear-mode MALDI-ToF MS equipment. The protocol was validated in a blinded study and is based on the well-established ethanol/formic acid extraction method. Cereulide is detected in the ethanol wash solution of samples identified as B. cereus as peaks at m/z 1175 and 1191. Peak position difference of 16 Th (Thomson) indicates detection of the sodium and potassium adducts of cereulide. This sample treatment offers possibilities for further characterization by more sophisticated LC-MS-based methods. In summary, the ease of use and the achieved level of analytical sensitivity as well as the wide-spread availability of MALDI-ToF MS equipment in clinical microbiological laboratories provides a promising tool to improve and to facilitate routine diagnostics of B. cereus associated food intoxications.
Collapse
Affiliation(s)
- Joerg Doellinger
- Proteomics and Spectroscopy Unit (ZBS 6), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andy Schneider
- Proteomics and Spectroscopy Unit (ZBS 6), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Timo D Stark
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Munich, Germany
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Lasch
- Proteomics and Spectroscopy Unit (ZBS 6), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
44
|
Rcheulishvili N, Zhang Y, Papukashvili D, Deng YL. Survey and Evaluation of Spacecraft-Associated Aluminum-Degrading Microbes and Their Rapid Identification Methods. ASTROBIOLOGY 2020; 20:925-934. [PMID: 32783563 DOI: 10.1089/ast.2019.2078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aluminum corrosion has become a major obstacle in spacecraft construction given that aluminum is used extensively throughout the construction process. Despite its many attributes in strength and durability, aluminum is susceptible to corrosion, in particular, corrosion due to microbial contamination. Scientists have encountered a number of problems with microbial aluminum corrosion within spacecraft components. Here, we summarize recent findings with regard to the phenomenon of microbiologically influenced corrosion (MIC) on space stations in the context of microbial strains isolated from the Mir space station (Mir) and the International Space Station (ISS). Given that strains found on spacecraft are of terrestrial origin, an understanding of the contribution of Al-corrosive microbes to corrosion and related risks to space travel and astronaut health is essential for implementation of prevention strategies. Accordingly, an efficient rapid identification method of microbes with the capability to degrade aluminum is proposed. In particular, onboard implementation of a matrix-assisted laser desorption/ionization-time of flight mass spectrometer (MALDI-TOF MS) is addressed. The use of a MALDI-TOF MS on board spacecraft will be crucial to future successes in space travel given that traditional methods of identifying corrosive species are far more time-consuming. Identification of microbes by way of a MALDI-TOF MS may also aid in the study of microbial corrosion and be a valuable asset for MIC prevention.
Collapse
Affiliation(s)
- Nino Rcheulishvili
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China
| | - Ying Zhang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China
| | - Dimitri Papukashvili
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China
| | - Yu-Lin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
45
|
Yee WLS, Drum CL. Increasing Complexity to Simplify Clinical Care: High Resolution Mass Spectrometry as an Enabler of AI Guided Clinical and Therapeutic Monitoring. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Loong Sherman Yee
- Yong Loo Lin School of MedicineDepartment of MedicineNational University of Singapore Singapore 119077 Singapore
- Cardiovascular Research Institute (CVRI)National University Health System Singapore 119228 Singapore
| | - Chester Lee Drum
- Yong Loo Lin School of MedicineDepartment of MedicineNational University of Singapore Singapore 119077 Singapore
- Cardiovascular Research Institute (CVRI)National University Health System Singapore 119228 Singapore
- Yong Loo Lin School of MedicineDepartment of BiochemistryNational University of Singapore Singapore 119077 Singapore
- The N.1 Institute for Health (N.1)National University of Singapore Singapore 119077 Singapore
| |
Collapse
|
46
|
García López E, Martín-Galiano AJ. The Versatility of Opportunistic Infections Caused by Gemella Isolates Is Supported by the Carriage of Virulence Factors From Multiple Origins. Front Microbiol 2020; 11:524. [PMID: 32296407 PMCID: PMC7136413 DOI: 10.3389/fmicb.2020.00524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
The molecular basis of the pathogenesis of the opportunistic invasive infections caused by isolates of the Gemella genus remains largely unknown. Moreover, inconsistencies in the current species assignation were detected after genome-level comparison of 16 public Gemella isolates. A literature search detected that, between the two most pathogenic species, Gemella morbillorum causes about twice the number of cases compared to Gemella haemolysans. These two species shared their mean diseases - sepsis and endocarditis - but differed in causing other syndromes. A number of well-known virulence factors were harbored by all species, such as a manganese transport/adhesin sharing 83% identity from oral endocarditis-causing streptococci. Likewise, all Gemellae carried the genes required for incorporating phosphorylcholine into their cell walls and encoded some choline-binding proteins. In contrast, other proteins were species-specific, which may justify the known epidemiological differences. G. haemolysans, but not G. morbillorum, harbor a gene cluster potentially encoding a polysaccharidic capsule. Species-specific surface determinants also included Rib and MucBP repeats, hemoglobin-binding NEAT domains, peptidases of C5a complement factor and domains that recognize extracellular matrix molecules exposed in damaged heart valves, such as collagen and fibronectin. Surface virulence determinants were associated with several taxonomically dispersed opportunistic genera of the oral microbiota, such as Granulicatella, Parvimonas, and Streptococcus, suggesting the existence of a horizontally transferrable gene reservoir in the oral environment, likely facilitated by close proximity in biofilms and ultimately linked to endocarditis. The identification of the Gemella virulence pool should be implemented in whole genome-based protocols to rationally predict the pathogenic potential in ongoing clinical infections caused by these poorly known bacterial pathogens.
Collapse
Affiliation(s)
- Ernesto García López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Antonio J. Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| |
Collapse
|
47
|
Welker M, van Belkum A. One System for All: Is Mass Spectrometry a Future Alternative for Conventional Antibiotic Susceptibility Testing? Front Microbiol 2019; 10:2711. [PMID: 31849870 PMCID: PMC6901965 DOI: 10.3389/fmicb.2019.02711] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
The two main pillars of clinical microbiological diagnostics are the identification of potentially pathogenic microorganisms from patient samples and the testing for antibiotic susceptibility (AST) to allow efficient treatment with active antimicrobial agents. While routine microbial species identification is increasingly performed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), routine AST still largely relies on conventional and molecular techniques such as broth microdilution or disk and gradient diffusion tests, PCR and automated variants thereof. However, shortly after the introduction of MALDI-TOF MS based routine identification, first attempts to perform AST on the same instruments were reported. Today, a number of different approaches to perform AST with MALDI-TOF MS and other MS techniques have been proposed, some restricted to particular microbial taxa and resistance mechanisms while others being more generic. Further, while some of the methods are in a stage of proof of principles, others are already commercialized. In this review we discuss the different principal approaches of mass spectrometry based AST and evaluate the advantages and disadvantages compared to conventional and molecular techniques. At present, the possibility that MS will soon become a routine tool for AST seems unlikely – still, the same was true for routine microbial identification a mere 15 years ago.
Collapse
Affiliation(s)
- Martin Welker
- Microbiology Research Unit, BioMérieux SA, La Balme-les-Grottes, France
| | - Alex van Belkum
- Microbiology Research Unit, BioMérieux SA, La Balme-les-Grottes, France
| |
Collapse
|
48
|
Feucherolles M, Cauchie HM, Penny C. MALDI-TOF Mass Spectrometry and Specific Biomarkers: Potential New Key for Swift Identification of Antimicrobial Resistance in Foodborne Pathogens. Microorganisms 2019; 7:E593. [PMID: 31766422 PMCID: PMC6955786 DOI: 10.3390/microorganisms7120593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/16/2023] Open
Abstract
Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is today the reference method for direct identification of microorganisms in diagnostic laboratories, as it is notably time- and cost-efficient. In the context of increasing cases of enteric diseases with emerging multi-drug resistance patterns, there is an urgent need to adopt an efficient workflow to characterize antimicrobial resistance (AMR). Current approaches, such as antibiograms, are time-consuming and directly impact the "patient-physician" workflow. Through this mini-review, we summarize how the detection of specific patterns by MALDI-TOF MS, as well as bioinformatics, become more and more essential in research, and how these approaches will help diagnostics in the future. Along the same lines, the idea to export more precise biomarker identification steps by MALDI-TOF(/TOF) MS data towards AMR identification pipelines is discussed. The study also critically points out that there is currently still a lack of research data and knowledge on different foodborne pathogens as well as several antibiotics families such as macrolides and quinolones, and many questions are still remaining. Finally, the innovative combination of whole-genome sequencing and MALDI-TOF MS could be soon the future for diagnosis of antimicrobial resistance in foodborne pathogens.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, 4422 Belvaux, Luxembourg;
- Faculté des Sciences, de la Technologie et de la Communication (FSTC), Doctoral School in Science and Engineering (DSSE), University of Luxembourg, 2 avenue de l’Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, 4422 Belvaux, Luxembourg;
| | - Christian Penny
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, 4422 Belvaux, Luxembourg;
| |
Collapse
|