1
|
Budzyńska S, Rudnicki K, Budka A, Niedzielski P, Mleczek M. Dendroremediation of soil contaminated by mining sludge: A three-year study on the potential of Tilia cordata and Quercus robur in remediation of multi-element pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173941. [PMID: 38880152 DOI: 10.1016/j.scitotenv.2024.173941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
The vast amounts of mining and metallurgical wastes containing unimaginable quantities of toxic metal(loid)s require searching for managed ways. The study aimed to long-term assess the growth, elements accumulation (As, Cd, Hg, In, Mn, Mo, Pb, Sb, Sn, Ti, Tl, Zn) and proline content in 2-year-old Tilia cordata Mill. and Quercus robur L. seedlings growing under 1 and 3% extremely polluted mining sludge (MS) after 1, 2 and 3 years. Both species were able to grow efficiently without significant differences resulting from the impact of MS. The overall rise was higher for T. cordata than for Q. robur. The accumulation ability for As, Hg, In, Mn, Mo, Pb, Ti, and Zn in the whole plant was significantly higher for T. cordata, while Cd, Sb, Sn and Tl did not differ considerably between species. The highest content was found for As, Mn and Zn (68.7, 158, and 157 mg per plant, respectively) for T. cordata after 3 years of growth. The calculated Bioconcentration Factors were the highest for Cu (1.23), In (6.86), and Zn (38.4) for Q. robur, as well as for As (1.55), Hg (3.24), Mn (32.8), Mo (1.64) and Ti (18.0) for T. cordata after 3 years. The highest Translocation Factors were observed for In (1.35) and Sn (1.25) after 3 years, as well as for Mn (2.72, 3.38, and 3.03 after 1, 2, and 3 years) for Q. robur seedlings. The proline content was higher for Q. robur, regardless of which organ was examined, and the differences increased with the time of the experiment and the amount of MS addition (possibly more sensitive to stress). Young T. cordata seedlings show much greater potential than Q. robur. This is the first time that a demonstration of the high potential of long-living trees in multi-element MS remediation has been described.
Collapse
Affiliation(s)
- Sylwia Budzyńska
- Poznań University of Life Sciences, Faculty of Forestry and Wood Technology, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland.
| | - Konrad Rudnicki
- University of Łódź, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91-403 Łódź, Poland
| | - Anna Budka
- Poznań University of Life Sciences, Faculty of Environmental and Mechanical Engineering, Department of Construction and Geoengineering, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Przemysław Niedzielski
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Mirosław Mleczek
- Poznań University of Life Sciences, Faculty of Forestry and Wood Technology, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|
2
|
Keskin F, Sarikurkcu C, Demirak A, Akata I, Sihoglu Tepe A. Wild mushrooms from Ilgaz Mountain National Park (Western Black Sea, Turkey): element concentrations and their health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31923-31942. [PMID: 35013958 DOI: 10.1007/s11356-021-18011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to determine Fe, Cd, Cr, Se, P, Cu, Mn, Zn, Al, Ca, Mg, and K contents of some edible (Chlorophyllum rhacodes, Clavariadelphus truncatus, Clitocybe nebularis, Hydnum repandum, Hygrophorus pudorinus, Infundibulicybe gibba, Lactarius deliciosus, L. piperatus, L. salmonicolor, Macrolepiota mastoidea, Russula grata, Suillus granulatus, and Tricholoma imbricatum), inedible (Amanita pantherina, Geastrum triplex, Gloeophyllum sepiarium, Hypholoma fasciculare, Phellinus vorax, Pholiota limonella, Russula anthracina, and Tapinella atrotomentosa), and poisonous mushroom species (Amanita pantherina and Hypholoma fasciculare) collected from Ilgaz Mountain National Park (Western Black Sea, Turkey). The element contents of the mushrooms were determined to be 18.0-1239.1, 0.2-4.6, 0.1-3.4, 0.2-3.2, 1.0-8.9, 3.3-59.9, 3.7-220.4, 21.3-154.1, 6.4-754.3, 15.8-17,473.0, 413.0-5943.0, and 2803.0-24,490.0 mg·kg-1, respectively. In addition to metal contents, the daily intakes of metal (DIM) and Health Risk Index (HRI) values of edible mushrooms were also calculated. Both DIM and HRI values of mushroom species except L. salmanicolor, M. mastoidea, and R. grata were within the legal limits. However, it was determined that the Fe content of L. salmanicolor and M. mastoidea and Cd content of R. grata were above the legal limits.
Collapse
Affiliation(s)
- Feyyaz Keskin
- Environmental Problems Research and Application Center, Mugla Sıtkı Koçman University, TR-48000, Mugla, Turkey
| | - Cengiz Sarikurkcu
- Faculty of Pharmacy, Department of Analytical Chemistry, Afyonkarahisar Health Sciences University, TR-03100, Afyonkarahisar, Turkey.
| | - Ahmet Demirak
- Environmental Problems Research and Application Center, Mugla Sıtkı Koçman University, TR-48000, Mugla, Turkey
| | - Ilgaz Akata
- Faculty of Science, Department of Biology, Ankara University, TR-06100, Ankara, Turkey
| | - Arzuhan Sihoglu Tepe
- Department of Pharmacy Services, Kilis 7 Aralik University, Vocational High School of Health Services, TR-79000, Kilis, Turkey
| |
Collapse
|
3
|
Kalisz S, Kibort K, Mioduska J, Lieder M, Małachowska A. Waste management in the mining industry of metals ores, coal, oil and natural gas - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114239. [PMID: 34902687 DOI: 10.1016/j.jenvman.2021.114239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Waste generated due to mining activity poses a serious issue due to the large amounts generated, even up to 65 billion tons per year, and is often associated with the risk posed by its storage and environmental management. This work aims to review waste management in the mining industry of metals ores, coal, oil and natural gas. It includes an analysis and discussion on the possibilities for reuse of certain types of wastes generated from mining activity, and discusses the benefits, disadvantages and the impact of waste management on the environment. The article presents current methods of waste management arising during the extraction and processing of raw materials and the threats resulting from its application. Furthermore, the potential methods of mining waste management are discussed through an in-depth characterization of the properties and composition of various types of rocks. The presented work addresses not only the issues of more sustainable management of waste from the mining industry, but also responds to the current efforts to implement the assumptions of a circular economy, which is aimed at closing the loop. The methods of recycling by-products and treating waste as a resource more and more often not only meet environmental expectations, but also become a legal requirement. In this respect, the presented work can serve as a valuable support in decision-making about waste management.
Collapse
Affiliation(s)
- Szymon Kalisz
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Poland.
| | - Katarzyna Kibort
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Poland.
| | - Joanna Mioduska
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Poland.
| | - Marek Lieder
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Poland.
| | - Aleksandra Małachowska
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Poland.
| |
Collapse
|
4
|
Mleczek M, Gąsecka M, Budka A, Siwulski M, Mleczek P, Magdziak Z, Budzyńska S, Niedzielski P. Mineral composition of elements in wood-growing mushroom species collected from of two regions of Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4430-4442. [PMID: 32940836 PMCID: PMC7835311 DOI: 10.1007/s11356-020-10788-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 05/13/2023]
Abstract
The study monitored the content of 55 elements in 21 wood-growing mushroom species collected between 2013 and 2019 from Lower and Upper Silesia in Poland. Only 27 of the elements (Ag, Al, Ba, Ca, Cd, Cu, Fe, In, K, La, Mg, Mn, Na, Nd, Ni, P, Pb, Pr, Pt, Rh, Sr, Ti, Tm, V, Y, Zn, and Zr) were detected in all mushroom species, while others (As, Au, B, Be, Bi, Ce, Co, Cr, Dy, Er, Eu, Ga, Gd, Ge, Hf, Ho, Ir, Li, Lu, Mo, Os, Pb, Rb, Re, Ru, Sb, Sc, Se, Sm, Tb, Te, Th, Tl, Tm, U, and Yb) were below the limit of detection in the fruit bodies of at least one species. Wide ranges for major elements in the whole population of all the mushroom species were as follows: 15.4-470 (Ca), 6580-44,600 (K), 314-2150 (Mg), 38.0-319 (Na), and 1100-15,500 (P) mg kg-1 dm, respectively. The rank sum revealed that M. giganteus fruit bodies were the most enriched with all detectable elements, while A. mellea had the lowest content of the majority of elements. Mushrooms belonging to the Hymenochaetaceae family were characterized as some of the most enriched with the studied elements, while mushrooms of the Fomitopsidaceae family had the lowest content of elements. Similarities as well as differences between the obtained results and the available literature data confirm the important role of both mushroom species and the tree on which the fungus has grown.
Collapse
Affiliation(s)
- Mirosław Mleczek
- Department of Chemistry, Poznan University of Life Sciences, Poznań, Poland.
| | - Monika Gąsecka
- Department of Chemistry, Poznan University of Life Sciences, Poznań, Poland
| | - Anna Budka
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Poznań, Poland
| | - Marek Siwulski
- Department of Vegetable Crops, Poznan University of Life Sciences, Poznań, Poland
| | - Patrycja Mleczek
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94c, 60-649, Poznań, Poland
| | - Zuzanna Magdziak
- Department of Chemistry, Poznan University of Life Sciences, Poznań, Poland
| | - Sylwia Budzyńska
- Department of Chemistry, Poznan University of Life Sciences, Poznań, Poland
| | | |
Collapse
|
5
|
Magdziak Z, Gąsecka M, Budka A, Goliński P, Mleczek M. Profile and concentration of the low molecular weight organic acids and phenolic compounds created by two-year-old Acer platanoides seedlings growing under different As forms. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122280. [PMID: 32066021 DOI: 10.1016/j.jhazmat.2020.122280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Two-year-old seedlings of Acer platanoides were cultivated during a three-month hydroponic experiment in modified Knop solution enriched with inorganic (As(III), As(V)) and organic (dimethylarsinic acid - DMA) arsenic forms at 0.06 mM, 0.6 mM and their combinations. The profile and content of low molecular weight organic acids (LMWOAs) and phenolic compounds were also determined in the rhizosphere, roots and leaves. Arsenic (As) treatment caused an elevated creation of the above mentioned metabolites, which was higher in leaves than in the rhizosphere or roots, and their overall content was correlated with the concentration of As in A. platanoides organs. The addition of all As forms strongly induced the exudation of citric and oxalic acids into the rhizosphere, while malonic, acetic, citric and malic acids were formed in the roots. The most differential profile of roots was confirmed for As(V) 0.06 mM (4-hydroxybenzoic (4-HBA), syringic, 2,5 dihydroxybenzoic (2,5-DHBA), caffeic, chlorogenic, ferulic, p-coumaric and sinapic acids and catechin). The obtained results indicate that the presence of particular As forms has a significant impact on the content and profile of exuded and created LMWOAs and phenolic compounds, and can also have a decisive influence on the activation of appropriate detoxification mechanisms.
Collapse
Affiliation(s)
- Zuzanna Magdziak
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Monika Gąsecka
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Anna Budka
- Poznań University of Life Sciences, Department of Mathematical and Statistical Methods, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Piotr Goliński
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Mirosław Mleczek
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland.
| |
Collapse
|
6
|
Budzyńska S, Mleczek P, Szostek M, Goliński P, Niedzielski P, Kaniuczak J, Rissmann I, Rymaniak E, Mleczek M. Phytoextraction of arsenic forms in selected tree species growing in As-polluted mining sludge. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:933-942. [PMID: 31084458 DOI: 10.1080/10934529.2019.1609322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to determine the phytoextraction of inorganic (As(III), As(V)) and organic arsenic (Asorg) forms in six tree species: Acer platanoides, Acer pseudoplatanus, Betula pendula, Quercus robur, Tilia cordata and Ulmus laevis. Plants were grown in a pot experiment using As-polluted mining sludge for 90 days. Arsenic (Astotal) was accumulated mainly in the roots of all six tree species, which were generally thinner, shorter and/or black after the experiment. The highest concentration of As(III) and As(V) was determined in the roots of A. pseudoplatanus and A. platanoides (174 and 420 mg kg-1, respectively). High concentrations of As(III) were also recorded in the shoots of B. pendula (11.9 mg kg-1) and As(V) in the aerial parts of U. laevis and A. pseudoplatanus (77.4 and 70.1 mg kg-1). With some exceptions, the dominant form in the tree organs was Asorg, present in mining sludge in low concentration. This form has a decisive influence on As phytoextraction by young tree seedlings even though its BCF value was the only one lower than 1. The obtained results highlight the important role of speciation studies in assessing the response of plants growing in heavily polluted mining sludge.
Collapse
Affiliation(s)
- Sylwia Budzyńska
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | - Patrycja Mleczek
- b Department of Ecology and Environmental Protection , Poznan University of Life Sciences , Poznań , Poland
| | - Małgorzata Szostek
- c Department of Soil Science, Environmental Chemistry and Hydrology , University of Rzeszów , Rzeszów , Poland
| | - Piotr Goliński
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | | | - Janina Kaniuczak
- c Department of Soil Science, Environmental Chemistry and Hydrology , University of Rzeszów , Rzeszów , Poland
| | - Iwona Rissmann
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | - Ewa Rymaniak
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | - Mirosław Mleczek
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| |
Collapse
|
7
|
Budzyńska S, Krzesłowska M, Niedzielski P, Goliński P, Mleczek M. Arsenate phytoextraction abilities of one-year-old tree species and its effects on the nutritional element content in plant organs. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1019-1031. [PMID: 31020852 DOI: 10.1080/15226514.2019.1594684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of the study was to evaluate the As phytoextraction potential of four tree species: Acer pseudoplatanus L., Betula pendula Roth., Quercus robur L., and Ulmus laevis Pall. in light of their prospective use in the phytoremediation of arsenate [As(V)] contaminated soils. The content of nutritional elements: B, Ca, K, Mg, Na, Si, P, and S was also analyzed. The trees were grown for 1 month in hydroponic cultures (Knop medium) supplemented with As(V), (1 mM). The results showed that the highest As accumulation efficiency was characterized by B. pendula (BCF = 0.87) and Q. robur (BCF = 0.5). Betula pendula accumulated about 80% of As in its roots (TF = 0.22) whereas Q. robur accumulated more than 60% of As in its shoots (TF = 1.60). The other tree species accumulated significantly lower amounts of As, more than 60% of which collected in their shoots. As(V) phytoextraction led to a significantly lower level of P and S in the roots of all tested tree species. Betula pendula seems promising for phytostabilisation and Q. robur for phytoextraction of As(V) from contaminated soils. The obtained results confirm the accumulation and translocation of As(V), as well as the acquisition of nutritional elements by the selected tree species.
Collapse
Affiliation(s)
- Sylwia Budzyńska
- a Department of Chemistry, Poznań University of Life Sciences , Poznań , Poland
| | - Magdalena Krzesłowska
- b Faculty of Biology, Laboratory of General Botany, Adam Mickiewicz University , Poznań , Poland
| | | | - Piotr Goliński
- a Department of Chemistry, Poznań University of Life Sciences , Poznań , Poland
| | - Mirosław Mleczek
- a Department of Chemistry, Poznań University of Life Sciences , Poznań , Poland
| |
Collapse
|
8
|
Budzyńska S, Magdziak Z, Goliński P, Niedzielski P, Mleczek M. Arsenic forms in phytoextraction of this metalloid in organs of 2-year-old Acer platanoides seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27260-27273. [PMID: 30030760 PMCID: PMC6132397 DOI: 10.1007/s11356-018-2739-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
The aim of the study was to estimate the significance of the role of arsenite (As(III)), arsenate (As(V)), and dimethylarsinic acid (DMA) presence in modified Knop medium in the efficiency of phytoextraction of arsenic (As) in Acer platanoides root, stem, and leaves. The addition of particular As forms in single, double, and triple experimental systems was associated with a lower increase of seedling biomass compared to control plants (system free of As forms addition). Depending on As forms and their concentration in solution, negative symptoms from slight visible changes (inorganic forms separately or jointly), through smaller and discolored leaves (after DMA addition), and finally to their withering (after high DMA addition) were observed. Changes of color and shape for root systems exposed to particular As forms separately or jointly were also observed, in spite of the fact that there were no significant changes in biomass of seedlings growing in all experimental systems. The highest mean concentrations of As in root, stem, and leaves (590, 70, and 140 mg kg-1 dry weight (DW), respectively) were observed in plants growing under different experimental systems. The highest bioconcentration factor values were 10.8 for plants exposed to 0.06 mM of As(III) and DMA, while the highest translocation factor (1.0) was recorded for plants growing under the same As forms (0.6 and 0.06 mM, respectively). The obtained results indicate that the presence of particular As forms not only determines As phytoextraction and transport of this metalloid form but also has a decisive influence on plant morphology and survivability. As regards the practical aspects of phytoremediation, the kind of As forms present in substrate are more important than their total concentration.
Collapse
Affiliation(s)
- Sylwia Budzyńska
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland.
| | - Zuzanna Magdziak
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Piotr Goliński
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Przemysław Niedzielski
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614, Poznań, Poland
| | - Mirosław Mleczek
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| |
Collapse
|
9
|
Mleczek P, Borowiak K, Budka A, Niedzielski P. Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23695-23711. [PMID: 29872986 PMCID: PMC6096544 DOI: 10.1007/s11356-018-2428-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/28/2018] [Indexed: 04/16/2023]
Abstract
Rare earth elements (REEs) are a group of elements whose concentration in numerous environmental matrices continues to increase; therefore, the use of biological methods for their removal from soil would seem to be a safe and reasonable approach. The aim of this study was to estimate the phytoextraction efficiency and distribution of light and heavy (LREEs and HREEs) rare earth elements by three herbaceous plant species: Artemisia vulgaris L., Taraxacum officinale F.H. Wigg. and Trifolium repens L., growing at a distance of 1, 10, and 25 m from the edge of a frequented road in Poland. The concentration of REEs in soil and plants was highly correlated (r > 0.9300), which indicates the high potential of the studied plant species to phytoextraction of these elements. The largest proportion of REEs was from the group of LREEs, whereas HREEs comprised only an inconsiderable portion of the REEs group. The dominant elements in the group of LREEs were Nd and Ce, while Er was dominant in the HREEs group. Differences in the amounts of these elements influenced the total concentration of LREEs, HREEs, and finally REEs and their quantities which decreased with distance from the road. According to the Friedman rank sum test, significant differences in REEs concentration, mainly between A. vulgaris L., and T. repens L. were observed for plants growing at all three distances from the road. The same relation between A. vulgaris L. and T. officinale was observed. The efficiency of LREEs and REEs phytoextraction in the whole biomass of plants growing at all distances from the road was A. vulgaris L. > T. officinale L. > T. repens L. For HREEs, the same relationship was recorded only for plants growing at the distance 1 m from the road. Bioconcentration factor (BCF) values for LREEs and HREEs were respectively higher and lower than 1 for all studied plant species regardless of the distance from the road. The studied herbaceous plant species were able to effectively phytoextract LREEs only (BCF > 1); therefore, these plants, which are commonly present near roads, could be a useful tool for removing this group of REEs from contaminated soil.
Collapse
Affiliation(s)
- Patrycja Mleczek
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94C, 60-649, Poznań, Poland.
| | - Klaudia Borowiak
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94C, 60-649, Poznań, Poland
| | - Anna Budka
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Poznań, Poland
| | - Przemysław Niedzielski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89B, 61-614, Poznań, Poland
| |
Collapse
|
10
|
Mleczek M, Goliński P, Waliszewska B, Mocek A, Gąsecka M, Zborowska M, Magdziak Z, Cichy WJ, Mazela B, Kozubik T, Mocek-Płóciniak A, Moliński W, Niedzielski P. The importance of substrate compaction and chemical composition in the phytoextraction of elements by Pinus sylvestris L. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:1029-1038. [PMID: 29775396 DOI: 10.1080/10934529.2018.1471116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Trees of Scots pine (Pinus sylvestris L.) are known for their effective phytoextraction capabilities. The results obtained in this study point to the significant role of substrate composition and chemical characteristics in the phytoextraction potential of this species. A multi-elemental (53 elements) analysis of pines from unpolluted (soil) and polluted (post-flotation tailings) sites was performed using inductively coupled plasma optical emission spectrometry. The analyzed flotation tailings were characterized by alkaline pH (7.19 ± 0.06) and significantly higher conductivity (277.7 ± 2.9 µS cm-1) than the soil (pH = 5.11 ± 0.09; 81.3 ± 4.9 µS cm-1). The two substrates also differed with respect to the contribution of the clay fraction (0% in the unpolluted and 8% in the polluted substrate). The specimens of P. sylvestris growing on flotation tailings had significantly smaller height (381 ± 58 cm) and total aboveground biomass (4.78 ± 0.66 kg) than the trees growing in soil (699 ± 80 cm and 10.24 ± 2.10 kg). The biomass of the trunk, twigs and branches, and needles of the trees from polluted sites was between 40.0% and 48.7% of the biomass of the same organs of the control trees. Generally, the organs (trunk, twigs and branches, needles) of the P. sylvestris specimens from polluted sites had significantly higher concentrations of Au, Al, Ba, Cd, Co, La, Lu, Ni, Pd, Sc, Zn, and lower concentrations of B, Bi, Ca, Ce, Er, In, K, Mg, Na, Nd, P, Pr, Re, Se, Sr, Te than in the control plants, these metals being accumulated effectively in the whole of the aboveground biomass (BCF>1). Although the concentration of the majority of elements was significantly higher in the flotation tailings, significantly higher concentrations of these elements were observed in the tree organs from unpolluted sites, which points to the important role of substrate characteristics in the phytoextraction efficiency of P. sylvestris.
Collapse
Affiliation(s)
- Mirosław Mleczek
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | - Piotr Goliński
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | - Bogusława Waliszewska
- b Institute of Chemical Wood Technology, University of Life Sciences in Poznań , Poznań , Poland
| | - Andrzej Mocek
- c Department of Soil Science and Land Protection , University of Life Sciences in Poznań , Poznań , Poland
| | - Monika Gąsecka
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | - Magdalena Zborowska
- b Institute of Chemical Wood Technology, University of Life Sciences in Poznań , Poznań , Poland
| | - Zuzanna Magdziak
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | | | - Bartłomiej Mazela
- b Institute of Chemical Wood Technology, University of Life Sciences in Poznań , Poznań , Poland
| | - Tomisław Kozubik
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | - Agnieszka Mocek-Płóciniak
- e Department of General and Environmental Microbiology , University of Life Sciences in Poznań , Poznań , Poland
| | - Waldemar Moliński
- f Department of Wood Science , University of Life Sciences in Poznań , Poznań , Poland
| | - Przemysław Niedzielski
- g Department of Analytical Chemistry, Adam Mickiewicz University in Poznań , Poznań , Poland
| |
Collapse
|
11
|
Mleczek M, Goliński P, Krzesłowska M, Gąsecka M, Magdziak Z, Rutkowski P, Budzyńska S, Waliszewska B, Kozubik T, Karolewski Z, Niedzielski P. Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22183-22195. [PMID: 28791581 PMCID: PMC5629231 DOI: 10.1007/s11356-017-9842-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/27/2017] [Indexed: 05/26/2023]
Abstract
The aim of the study was to compare the phytoextraction abilities of six tree species (Acer platanoides L., Acer pseudoplatanus L., Betula pendula Roth, Quercus robur L., Tilia cordata Miller, Ulmus laevis Pall.), cultivated on mining sludge contaminated with arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), thallium (Tl), and zinc (Zn). All six tree species were able to survive on such an unpromising substrate. However, A. platanoides and T. cordata seedlings grown on the polluted substrate showed significantly lower biomass than control plants (55.5 and 45.6%, respectively). As, Cd, Cu, Pb, and Tl predominantly accumulated in the roots of all the analyzed tree species with the following highest contents: 1616, 268, 2432, 547, and 856 mg kg-1, respectively. Zn was predominantly localized in shoots with the highest content of 5801 and 5732 mg kg-1 for U. laevis and A. platanoides, respectively. A. platanoides was the most effective in Zn phytoextaction, with a bioconcentration factor (BCF) of 8.99 and a translocation factor (TF) of 1.5. Furthermore, with the exception of A. pseudoplatanus, the analyzed tree species showed a BCF > 1 for Tl, with the highest value for A. platanoides (1.41). However, the TF for this metal was lower than 1 in all the analyzed tree species. A. platanoides showed the highest BCF and a low TF and could, therefore, be a promising species for Tl phytostabilization. In the case of the other analyzed tree species, their potential for effective phytoextraction was markedly lower. Further studies on the use of A. platanoides in phytoremediation would be worth conducting.
Collapse
Affiliation(s)
- Mirosław Mleczek
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland.
| | - Piotr Goliński
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Magdalena Krzesłowska
- Faculty of Biology, Laboratory of General Botany, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Monika Gąsecka
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Zuzanna Magdziak
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Paweł Rutkowski
- Department of Forest Sites and Ecology, Poznań University of Life Sciences, Wojska Polskiego 71F, 60-625, Poznań, Poland
| | - Sylwia Budzyńska
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Bogusława Waliszewska
- Institute of Chemical Wood Technology, University of Life Sciences in Poznan, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Tomisław Kozubik
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
- Energetyka S.A, M. Skłodowskiej-Curie 58, 59-301, Lubin, Poland
| | - Zbigniew Karolewski
- Department of Phytopathology, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594, Poznań, Poland
| | - Przemysław Niedzielski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89B, 61-614, Poznań, Poland
| |
Collapse
|
12
|
Rzymski P, Klimaszyk P, Marszelewski W, Borowiak D, Mleczek M, Nowiński K, Pius B, Niedzielski P, Poniedziałek B. The chemistry and toxicity of discharge waters from copper mine tailing impoundment in the valley of the Apuseni Mountains in Romania. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21445-21458. [PMID: 28744684 PMCID: PMC5579155 DOI: 10.1007/s11356-017-9782-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/19/2017] [Indexed: 05/06/2023]
Abstract
Copper mining generates large quantities of waste, tailings, and acid outflows causing long-term environmental impacts and potential threats to human health. Valea Şesei is the largest tailing impoundment in Romania, created by flooding the valley (known as Valea Şesei) of the Metalliferous Mountains (a division of the Apuseni Mountains) with copper mining waste. The present study (i) estimated the total volume of tailings in this area; (ii) screened the concentration of 65 elements (rare earth and platinum group elements, alkali metals and alkali earth metals, transition and post-transition metals and metalloids) and cyanide concentrations in wastewater samples collected from tailing impoundment; (iii) evaluated the toxicity of these water samples using five in vitro bioassays employing human cells isolated from healthy donors and a short-term (1 h) exposure model. The sampled waters were highly acidic (pH 2.1-4.9) and had high electrical conductivity (2.80-15.61 mS cm-1). No cyanides were detected in any sample. Water samples collected from the stream (AMD) inflowing to the tailing impoundment were characterized by the greatest concentrations of alkali metals, alkaline earth metals, transition and post-transition metals, metalloids, rare earth elements, and noble metal group. At other sites, the elemental concentrations were lower but remained high enough to pose a relevant risk. The greatest magnitude of in vitro toxic effects was induced by AMD. Observed alterations included redox imbalance in human neutrophils followed by lipid peroxidation and decreased cell survival, significant aggregation of red blood cells, and increased prothrombin time. The study highlights that Valea Şesei is a large sink for toxic elements, posing environmental and health risks, and requiring action to prevent further release of chemicals and to initiate restoration of the area.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Piotr Klimaszyk
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | | | - Mirosław Mleczek
- Department of Chemistry, Poznan University of Life Sciences, Poznań, Poland
| | - Kamil Nowiński
- Department of Limnology, University of Gdańsk, Gdańsk, Poland
| | - Bożena Pius
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
13
|
Mikołajczak P, Borowiak K, Niedzielski P. Phytoextraction of rare earth elements in herbaceous plant species growing close to roads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14091-14103. [PMID: 28411316 PMCID: PMC5486614 DOI: 10.1007/s11356-017-8944-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/27/2017] [Indexed: 05/24/2023]
Abstract
The aim of study was to determine the phytoextraction of rare earth elements (REEs) to roots, stems and leaves of five herbaceous plant species (Achillea millefolium L., Artemisia vulgaris L., Papaver rhoeas L., Taraxacum officinale AND Tripleurospermum inodorum), growing in four areas located in close proximity to a road with varied traffic intensity. Additionally, the relationship between road traffic intensity, REE concentration in soil and the content of these elements in plant organs was estimated. A. vulgaris and P. rhoeas were able to effectively transport REEs in their leaves, independently of area collection. The highest content of REEs was observed in P. rhoeas leaves and T. inodorum roots. Generally, HREEs were accumulated in P. rhoeas roots and leaves and also in the stems of T. inodorum and T. officinale, whereas LREEs were accumulated in T. inodorum roots and T. officinale stems. It is worth underlining that there was a clear relationship between road traffic intensity and REE, HREE and LREE concentration in soil. No positive correlation was found between the concentration of these elements in soil and their content in plants, with the exception of T. officinale. An effective transport of REEs from the root system to leaves was observed, what points to the possible ability of some of the tested plant species to remove REEs from soils near roads.
Collapse
Affiliation(s)
- Patrycja Mikołajczak
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94C, 60-649, Poznań, Poland.
| | - Klaudia Borowiak
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94C, 60-649, Poznań, Poland
| | - Przemysław Niedzielski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89B, 61-614, Poznań, Poland
| |
Collapse
|