1
|
Dabravolski SA, Isayenkov SV. Exploring Hormonal Pathways and Gene Networks in Crown Root Formation Under Stress Conditions: An Update. PLANTS (BASEL, SWITZERLAND) 2025; 14:630. [PMID: 40006889 PMCID: PMC11859994 DOI: 10.3390/plants14040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Crown root (CR) initiation and development are crucial for the establishment of robust root systems in plants, contributing significantly to stress tolerance and overall growth. This manuscript explores the regulatory roles of key hormones and genes involved in CR formation, with a focus on their interactions under conditions of drought and salt stress. Cytokinins (CK) act as a negative regulator of CR development, while auxin (AUX) serves as a positive driver, facilitating cellular growth and division. Wuschel-related homeobox (WOX) genes, particularly OsWOX11, play a central role by integrating CK and AUX signalling to regulate downstream targets such as OsCRL1 and auxin biosynthetic pathways. Other hormones, including jasmonic acid (JA) and gibberellin (GA), display context-dependent effects, modulating CR initiation based on environmental conditions. Critical genes like OsESG1 and OsFBX257 have been associated with improved drought resilience, interacting with proteins and kinases such as OsGF14b/c and OsCDPK1. Despite progress, significant challenges remain in mapping the full extent of hormonal crosstalk and gene regulation under stress conditions. This manuscript emphasises the need for future studies to incorporate comprehensive multi-omics approaches, expand the exploration of stress-related hormones like abscisic acid (ABA), and leverage advanced gene-editing techniques. Addressing these gaps will enhance our understanding of CR development and contribute to the development of crops with greater resistance to environmental stresses.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
2
|
Guo Z, Zhu J, Zheng Y, Wang D, Zhang J, Jiang Z, Lu X, Jia R, Li X. Unveiling the variability in cadmium accumulation and tolerance characteristics: a comparative study of Basma and Yunyan 87 tobacco varieties. ENVIRONMENTAL TECHNOLOGY 2025; 46:124-134. [PMID: 38623611 DOI: 10.1080/09593330.2024.2343127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Tobacco (Nicotiana tabacum L.) shows promise for remediating Cd-contaminated soil due to its significant Cd accumulation capabilities. Although various tobacco varieties exhibit distinct Cd bioaccumulation capacities, a comprehensive understanding of the underlying mechanisms is lacking. This study, conducted using hydroponics, explores differences in Cd accumulation and tolerance mechanisms between two tobacco varieties, Basma and Yunyan 87. The results showed that Cd stress reduced the dry weight, tolerance index, and root morphology for both varieties. Basma exhibited a relatively smaller decline in these indices compared to Yunyan 87. Moreover, Basma demonstrated a higher Cd bioconcentration factor (BCF), concentration, and accumulated content, signifying its superior tolerance and bioaccumulation capacity to Cd compared to Yunyan 87. The Carbonyl Cyanide3-ChloroPhenylhydrazone (CCCP) addition resulted in reduced Cd accumulation and BCFs in both tobacco species. This effect was more pronounced in Basma, suggesting that Basma relies more on an active transport process than Yunyan 87. This could potentially explain its enhanced bioaccumulation ability. Subcellular Cd distribution analysis revealed Basma's preference for distributing Cd in soluble fractions, while Yunyan 87 favoured the cell wall fractions. Transmission electron microscope showed that Basma's organelles were less damaged than Yunyan 87's under Cd stress, possibly contributing to the superior tolerance of Basma. Therefore, these results provided a theoretical foundation for development of Cd-contaminated soil tobacco remediation technology.
Collapse
Affiliation(s)
- Ziang Guo
- College of Forestry, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jinhui Zhu
- College of Forestry, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Ye Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Dan Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jiahui Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Zhuoxin Jiang
- College of Forestry, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiazi Lu
- Ecological Environment Geo-Service Center of Henan Geological Bureau, Zhengzhou, People's Republic of China
| | - Ruiqi Jia
- Zhong Yun International Engineering Co., Ltd, Zhengzhou, People's Republic of China
| | - Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou, People's Republic of China
| |
Collapse
|
3
|
Sun L, Zhang X, Zhou Y, Peng Z, Cui F, Zhou Q, Man Z, Guo J, Sun W. Can cadmium-contaminated rice be used to produce food additive sodium erythorbate? Food Chem 2025; 462:140923. [PMID: 39208740 DOI: 10.1016/j.foodchem.2024.140923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) in rice is a significant concern for its quality and safety. Currently, there is a crucial need to develop cost-effective and efficient ways to remove Cd or re-utilize Cd-contaminated rice. The food additive sodium erythorbate is produced via 2-ketogluconic acid (2KGA) fermentation by Pseudomonas plecoglossicida and lactonization using starch-rich raw materials, such as rice. We aimed to determine whether cadmium-contaminated rice can be used to produce sodium erythorbate. To achieve this aim, the migration of cadmium during the production of sodium erythorbate from Cd-contaminated rice was studied. Five rice varieties with different Cd contents from 0.10 to 0.68 mg/kg were used as raw materials. The results indicated the presence of Cd in rice and CaCO3 did not have a notable impact on the fermentation performance of 2KGA. The acidification of 2KGA fermentation broth, the addition of K4Fe(CN)6·3H2O and ZnSO4, and 2KGA purification using cation exchange effectively removed >98% of the Cd in the fermentation broth, but the 2KGA yield remained high at approximately 94%. The sodium erythorbate synthesized from Cd-contaminated rice was of high quality and free from Cd, meeting the requirements of the Chinese National Standard, GB 1886.28-2016. The study provided a safe and effective strategy for comprehensively utilizing Cd-contaminated rice to produce high value-added food additive.
Collapse
Affiliation(s)
- Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaoju Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanzheng Zhou
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Zhen Peng
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Qiang Zhou
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Zaiwei Man
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Jing Guo
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China.
| |
Collapse
|
4
|
Shan C, Shi C, Liang X, Zu Y, Wang J, Li B, Chen J. Variations in Root Characteristics and Cadmium Accumulation of Different Rice Varieties under Dry Cultivation Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2457. [PMID: 39273941 PMCID: PMC11397469 DOI: 10.3390/plants13172457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Variations in the cadmium (Cd) accumulation and root characteristics of different genotypes of rice during three developmental periods of dry cultivation were investigated in pot experiments in which two levels of Cd were added to the soil (0 and 10 mg kg-1). The results show that the Cd concentration in each organ of the different rice genotypes decreased in both the order of roots > shoots > grains and during the three developmental periods in the order of the maturity stage > booting stage > tillering stage. The lowest bioaccumulation factor (BCF) and translocation factor (TF) were found in Yunjing37 (YJ37) under Cd stress. At maturity, Cd stress inhibited the root length of Dianheyou34 (DHY34) the most and that of Dianheyou 918 (DHY918) the least, also affecting the root volume of DHY34 and Dianheyou615 (DHY615) the most and that of YJ37 and Yiyou 673 (YY673) the least; the inhibition rates were 41.80, 5.09, 40.95, and 10.51%, respectively. The exodermis showed the greatest thickening in YY673 and the lowest thickening in DHY615, while the endodermis showed the opposite result. The rates of change were 16.48, 2.45, 5.10, and 8.49%, respectively. The stele diameter of DHY615 decreased the most, and that of YY673 decreased the least, while the secondary xylem area showed the opposite result; the rates of change were -21.50, -14.29, -5.86, and -26.35%, respectively. Under Cd stress treatment at maturity, iron plaque was extracted using the dithionite-citrate-bicarbonate (DCB) method. The concentration of iron (DCB-Fe) was highest in YJ37, and the concentration of cadmium (DCB-Cd) was lowest in DHY34. YJ37 was screened as a low Cd-accumulating variety. The concentration of available Cd in the rhizosphere soil, iron plaque, root morphology, and anatomy affect Cd accumulation in rice with genotypic differences. Our screening of Cd-accumulating rice varieties provides a basis for the dry cultivation of rice in areas with high background values of Cd in order to avoid the health risks of Cd intake.
Collapse
Affiliation(s)
- Chaoping Shan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Can Shi
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Jixiu Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Jianjun Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Mabagala FS, Zhang T, Zeng X, He C, Shan H, Qiu C, Gao X, Zhang N, Su S. A review of amendments for simultaneously reducing Cd and As availability in paddy soils and rice grain based on meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121661. [PMID: 38991353 DOI: 10.1016/j.jenvman.2024.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Arsenic (As) and cadmium (Cd) accumulation in rice grains is a global food safety issue, and various methods and materials have been used to remove or reduce As and Cd in agricultural soils and rice grains. Despite the availability of synthesized materials capable of simultaneous As and Cd reduction from soil and rice grains, the contributions, efficiency, and main ingredients of the materials for As and Cd immobilization remain unclear. The present study first summarized the biogeochemistry of As and Cd in paddy soils and their transfer in the soil-food-human continuum. We also reviewed a series of reported inorganic and organic materials for simultaneous immobilization of As and Cd in paddy soils, and their reduction efficiency of As and Cd bioavailability were listed and compared. Based on the abovementioned materials, the study conducted a meta-analysis of 38 articles with 2565 observations to quantify the impacts of materials on simultaneous As and Cd reduction from soil and rice grains. Meta-analysis results showed that combining organic and inorganic amendments corresponded to effect sizes of -62.3% and -67.8% on As and Cd accumulation in rice grains, while the effect sizes on As and Cd reduction in paddy soils were -44.2% and -46.2%, respectively. Application of Fe based materials significantly (P < 0.05) reduced As (-54.2%) and Cd (-74.9%), accounting for the highest immobilization efficiency of As and Cd in rice grain among all the reviewed materials, outweighing S, Mn, P, Si, and Ca based materials. Moreover, precipitation, surface complexation, ion exchange, and electrostatic attraction mechanisms were involved in the co-immobilization tactics. The present study underlines the application of combined organic and inorganic amendments in simultaneous As and Cd immobilization. It also highlighted that employing Fe-incorporated biochar material may be a potential strategy for co-mitigating As and Cd pollution in paddy soils and accumulation in rice grains.
Collapse
Affiliation(s)
- Frank Stephano Mabagala
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China; Tanzania Agricultural Research Institution (TARI), TARI-Mlingano Centre, P.O. Box 5088, Tanga, Tanzania
| | - Ting Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China; Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| | - Chao He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| | - Hong Shan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| | - Cheng Qiu
- Institute of Agricultural Resources and Environment, Xizang Academy of Agricultural and Animal Husbandry Sciences, 850000, PR China
| | - Xue Gao
- Institute of Agricultural Resources and Environment, Xizang Academy of Agricultural and Animal Husbandry Sciences, 850000, PR China
| | - Nan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| |
Collapse
|
6
|
Mng'ong'o ME, Mabagala FS. Arsenic and cadmium availability and its removal in paddy farming areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121190. [PMID: 38763118 DOI: 10.1016/j.jenvman.2024.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Arsenic (As) and cadmium (Cd) accumulation in rice grain is a global concern threatening food security and safety to the growing population. As and Cd are toxic non-essential elements poisonous to animal and human at higher levels. Its accumulation in agro-ecosystems pose a public health risk to consumers of agro-ecosystem products. Due to their hazards, As and Cd sources should be cleared, avoiding entering plants and the human body. As and Cd removal in soils and grains in agro-ecosystems has been conducted by various materials (natural and synthesized), however, there are little documentation on their contribution on As and Cd removal or reduction in rice grains. This identified knowledge gap necessitate a systematically review to understand efficiency and mechanisms of As and Cd availability reduction and removal in paddy farming areas through utilization of various synthetic and modified materials. To achieve this, published peer reviewed articles between 2010 and 2024 were collected from various database i.e., Science Direct, Web of Science, Google Scholar, and Research Gate and analyzed its content in respect to As and Cd reduction and removal. Furthermore, collected data were re-analyzed to determine standardized mean differences (SMD) with 95% confidence intervals (CI). Based on 96 studies with 228 observations involving Fe, Ca, Si, and Se-based materials were identified, it was found that application of Fe, Ca, Si, and Se-based materials potentially reduced As and Cd in rice grains among various study sites and across studies. Among the studied materials, Fe-based materials observed to be more efficient compared to other utilized materials. However, there little or no information on performance of materials when used in combination and how they can improve crop productivity and soil health, thus requiring further studies. Thus, this study confirm Fe, Ca, Si, and Se modified materials have significant potential to reduce As and Cd availability in paddy farming areas and rice grains, thus necessary effort must be made to ensure materials access and availability for farmers utilization in paddy fields to reduce As and Cd accumulation.
Collapse
Affiliation(s)
- Marco E Mng'ong'o
- Mbeya University of Science and Technology, P.O. Box 131, Mbeya, Tanzania.
| | | |
Collapse
|
7
|
Kong F, Zhou J, Guan DX, Wu N, Lu S, Wang H. Role of iron manganese plaque in the safe production of rice (Oryza sativa L.) grains: Field evidence at plot and regional scales in cadmium-contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166183. [PMID: 37567314 DOI: 10.1016/j.scitotenv.2023.166183] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The relationship between iron manganese plaque (IP) and cadmium (Cd) accumulation by rice in the microenvironment of rice rhizosphere at varying field scales needs to be further explored. In this study, we selected different rice varieties and implemented tailored amendments to ensure the safe production of rice grains in heavily Cd-contaminated farmland situated around an E-waste dismantling site. Through regional surveys, we elucidated the role of IP in facilitating safe rice production. The selection of low-Cd accumulating rice varieties and application of appropriate amendments with sufficient dosages allowed for the effective reduction of Cd transport from soil to rice, resulting in a safe concentration of Cd in rice grains. Analysis using a random forest algorithm indicated that iron (Fe) played a more pivotal role than manganese in soil-rice systems in mitigating Cd accumulation in brown rice. The presence of Fe in IP (IP-Fe) at a low loading mass was unfavorable to the Cd-safe production of rice, while at an IP-Fe loading mass of 52 g/kg, the Cd content in brown rice decreased to a safe level. Furthermore, precipitation, coprecipitation, and complexation of surface functional groups contributed to Cd fixation on IP, as indicated by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, electron probe microanalysis, and Fourier-transform infrared spectroscopy with attenuated total reflection. Our results highlighted the key role of IP in the production of Cd-safe rice at different field scales.
Collapse
Affiliation(s)
- Fanyi Kong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahang Zhou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nei Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenggao Lu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
An T, Kuang Q, Wu Y, Gao Y, Zhang Y, Mickan BS, Xu B, Zhang S, Deng X, Chen Y. Variability in cadmium stress tolerance among four maize genotypes: Impacts on plant physiology, root morphology, and chloroplast microstructure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108135. [PMID: 37979572 DOI: 10.1016/j.plaphy.2023.108135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Accepted: 10/22/2023] [Indexed: 11/20/2023]
Abstract
Cadmium (Cd) is detrimental to both plants and humans. Maize (Zea mays L.) genotypes exhibit variations in Cd accumulations. This study examined variations in Cd accumulation and tolerance among four maize genotypes with contrasting root morphology. The four maize genotypes were cultivated in a semi-hydroponic system with three Cd concentrations (0, 10, 20 μmol L-1). The effects of Cd on plant growth and physiology were assessed 39 days after transplanting. Results showed that root characteristics were positively correlated with root Cd accumulation and the bioconcentration factor under Cd20 treatment. Genotypes Shengrui999 and Zhengdan958 exhibited higher total Cd content than Xundan29 and Zhongke11 under Cd20 conditions. Cd toxicity led to membrane degradation of chloroplast mesophyll cells, loosening and swelling of grana lamella, and reduced starch reserves. The greater tolerance of Shengrui999 and Zhengdan958 was contributed to factors such as root biomass, shallower root depth, higher Cd content, accumulation of osmolyte such as soluble protein, antioxidant activities such as catalase (CAT), and the presence of phytohormone gibberellic acid. The study establishes a link between root morphology, Cd accumulation, and tolerance in maize plants, as demonstrated by the higher Cd accumulation and shallower root system in Cd-tolerant genotypes. This research provides a foundation for breeding maize cultivars better suited for adaptation to moderate Cd-contaminated environments.
Collapse
Affiliation(s)
- Tingting An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China; The UWA Institute of Agriculture & School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Qiqiang Kuang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yujie Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yamin Gao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yi Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bede S Mickan
- The UWA Institute of Agriculture & School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; The UWA Institute of Agriculture & School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia.
| |
Collapse
|
9
|
Jing H, Yang W, Chen Y, Yang L, Zhou H, Yang Y, Zhao Z, Wu P, Zia-Ur-Rehman M. Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165369. [PMID: 37433335 DOI: 10.1016/j.scitotenv.2023.165369] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Cadmium (Cd) contamination in rice fields has been recognized as a severe global agro-environmental issue. To reach the goal of controlling Cd risk, we must pay more attention and obtain an in-depth understanding of the environmental behavior, uptake and translocation of Cd in soil-rice systems. However, to date, these aspects still lack sufficient exploration and summary. Here, we critically reviewed (i) the processes and transfer proteins of Cd uptake/transport in the soil-rice system, (ii) a series of soil and other environmental factors affecting the bioavailability of Cd in paddies, and (iii) the latest advances in regard to remediation strategies while producing rice. We propose that the correlation between the bioavailability of Cd and environmental factors must be further explored to develop low Cd accumulation and efficient remediation strategies in the future. Second, the mechanism of Cd uptake in rice mediated by elevated CO2 also needs to be given more attention. Meanwhile, more scientific planting methods (direct seeding and intercropping) and suitable rice with low Cd accumulation are important measures to ensure the safety of rice consumption. In addition, the relevant Cd efflux transporters in rice have yet to be revealed, which will promote molecular breeding techniques to address the current Cd-contaminated soil-rice system. The potential for efficient, durable, and low-cost soil remediation technologies and foliar amendments to limit Cd uptake by rice needs to be examined in the future. Conventional breeding procedures combined with molecular marker techniques for screening rice varieties with low Cd accumulation could be a more practical approach to select for desirable agronomic traits with low risk.
Collapse
Affiliation(s)
- Haonan Jing
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agriculture University, Changsha 410128, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | | |
Collapse
|
10
|
Xiao Y, Guo W, Qi X, Hashem MS, Wang D, Sun C. Differences in Cadmium Uptake and Accumulation in Seedlings of Wheat Varieties with Low- and High-Grain Cadmium Accumulation under Different Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3499. [PMID: 37836239 PMCID: PMC10574867 DOI: 10.3390/plants12193499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Cadmium (Cd) and drought, as abiotic stresses, have long been significant challenges for crop growth and agricultural production. However, there have been relatively few studies conducted on the effects of drought stress on Cd uptake, especially regarding the differences in Cd uptake characterization in varieties with varying Cd accumulation under different drought stress. To investigate the effects of drought conditions on Cd uptake by wheat in different genotypes under specific background levels of Cd pollution, we validated the differences in root absorption characteristics of low- (YM) and high-grain Cd accumulating wheat genotypes (XM) using non-invasive micro-test technology, and we conducted a hydroponic experiment on the Cd addition and different drought levels in a climate-controlled chamber. The biomass, root morphology, Cd uptake, and accumulation were determined under Cd (100 µmol L-1) and different drought levels of 0% (0 MPa), 5% (-0.100 Mpa), 10% (-0.200 Mpa), and 15% (-0.388 Mpa) simulated by polyethylene glycol (PEG-6000). We found that the simultaneous exposure to Cd and drought had a suppressive effect on the total root lengths, root surface areas, and root volumes of XM and YM, albeit with distinct patterns of variation. As the concentration of PEG-6000 increased, the Cd concentrations and the amount of Cd accumulated in the roots and shoots of XM and YM decreased. Specifically, the Cd concentration in the roots exhibited a reduction ranging from 12.51% to 66.90%, while the Cd concentration in the shoots experienced an even greater decrease of 50.46% to 80.57%. The PEG-6000 concentration was significantly negatively correlated (p < 0.001) with Cd concentration of roots and shoots and Cd accumulation in roots, shoots, and the whole plants and significantly negatively correlated (p < 0.05) with the total length, surface area, and volume of roots. This study confirms that drought stress (5% PEG-6000) can decrease the uptake and accumulation of Cd in wheat seedlings without significant inhibition of biomass, and the change of root morphology (root length) and the decrease of Cd concentration in roots may be the main direct pathways for achieving these effects under drought stress. This research provides a new perspective and idea for water management in Cd-contaminated farmland.
Collapse
Affiliation(s)
- Yatao Xiao
- Institute of Farmland Irrigation of CAAS/Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China;
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; (D.W.)
| | - Wei Guo
- Institute of Farmland Irrigation of CAAS/Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China;
| | - Xuebin Qi
- Institute of Farmland Irrigation of CAAS/Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China;
| | - Mahmoud S. Hashem
- Agricultural Research Center, Agricultural Engineering Research Institute (AEnRI), Giza 256, Egypt
| | - Dezhe Wang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; (D.W.)
| | - Chaoxiang Sun
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; (D.W.)
| |
Collapse
|
11
|
Sun S, Fan X, Feng Y, Wang X, Gao H, Song F. Arbuscular mycorrhizal fungi influence the uptake of cadmium in industrial hemp (Cannabis sativa L.). CHEMOSPHERE 2023; 330:138728. [PMID: 37080470 DOI: 10.1016/j.chemosphere.2023.138728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Phytoremediation is currently a more environmentally friendly and economical measure for the remediation of cadmium (Cd) contaminated soil. Heavy metal-resistant plant species, Cannabis sativa L. was inoculated with Rhizophagus irregularis to investigate the mechanisms of mycorrhizal in improving the Cd remediation ability of C. sativa. The results showed that after inoculation with R. irregularis, C. sativa root Cd contents increased significantly, and leaf Cd enrichment decreased significantly. At the transcriptional level, R. irregularis down-regulated the expression of the ABC transporter family but up-regulated differentially expressed genes regulating low molecular weight organic acids. The levels of malic acid, citric acid, and lactic acid were significantly increased in the rhizosphere soil, and they were significantly and strongly related to oxidizable Cd concentrations. Then citric acid levels were considerably and positively connected to exchangeable Cd concentrations. Our findings revealed that through regulating the movement of root molecules, arbuscular mycorrhizal fungus enhanced the heavy metal tolerance of C. sativa even more, meanwhile, they changed the Cd chemical forms by altering the composition of low molecular weight organic acids, which in turn affected soil Cd bioavailability.
Collapse
Affiliation(s)
- Simiao Sun
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute, Heilongjiang University, Jining, 272400, China; Heilongjiang Fertilizer Engineering Technology Research Center, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China; Heilongjiang Academy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaoxu Fan
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yuhan Feng
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute, Heilongjiang University, Jining, 272400, China
| | - Xiaohui Wang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute, Heilongjiang University, Jining, 272400, China
| | - Hongsheng Gao
- Heilongjiang Fertilizer Engineering Technology Research Center, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China; Heilongjiang Academy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Fuqiang Song
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute, Heilongjiang University, Jining, 272400, China.
| |
Collapse
|
12
|
Tong M, Liu X, Guan J, Lin Y, Zhou A, Qiao K. Novel biofortification candidate: MTP1 increases microelement contents and decreases toxic heavy metal accumulation in grains. CHEMOSPHERE 2023; 318:137967. [PMID: 36731661 DOI: 10.1016/j.chemosphere.2023.137967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Decreases in microelement contents and increases in toxic element levels seriously affect crop growth and human health. Thus, improving the elemental content of food crops is an important environmental issue for enhancing crop production and quality. Previous research showed that metal tolerance protein 1 (MTP1) is localized at the vacuole membrane, wherein it mediates the translocation of heavy metal ions. Therefore, LmMTP1 was isolated from annual ryegrass (Lolium multiflorum). Real-time quantitative PCR analyses revealed LmMTP1 expression increased significantly in the roots after Zn, Co, and Cd treatments. Confocal microscopy images indicated LmMTP1 was localized at the vacuole membrane. The expression of LmMTP1 in transgenic yeast and rice resulted in increased Zn, Co, and Cd tolerance. The examination of heavy metal contents detected increases in the Zn and Co contents, but decreases in the Cd contents, of yeast and rice. Moreover, the grains of LmMTP1-expressing transgenic rice had higher Zn/Co contents and lower Cd contents than wild-type rice grains. These results imply that LmMTP1 influences Zn, Co, and Cd tolerance and accumulation. Furthermore, LmMTP1 might be a novel biofortification-related candidate gene useful for improving the storage of essential elements and eliminating toxic heavy metals from crops.
Collapse
Affiliation(s)
- Mingyue Tong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiang Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing Guan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuanyuan Lin
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
13
|
Zhang Y, Zhang Y, Wu A. Remediation effects and mechanisms of typical minerals combined with inorganic amendment on cadmium-contaminated soil: a field study in wheat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38605-38615. [PMID: 36585588 DOI: 10.1007/s11356-022-24976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The remediation of cadmium (Cd)-contaminated soil has gained much attention recently because Cd in soil threatens human health through the food chain. Although tremendous progress has been made in the remediation of Cd-contaminated soil in rice acid soil system, the mechanism and effects of Cd-contaminated soil remediation under these amendments in wheat weak alkaline soil are still limited. In this study, the remediation effect and related mechanism of Cd in weakly alkaline soil were carried out using zeolite, diatomite, and sodium bentonite as the main remediation components, supplemented by calcium dihydrogen phosphate and fulvic acid. The results of field experiments showed that the concentration of Cd reduced by 27.3 ~ 31.2% in rhizosphere soil and 34.3 ~ 54.2% in non-rhizosphere soil, and the maximum reduction rate of Cd concentration in wheat grain was 25.5%. The main factors affecting the concentration of Cd in wheat grains include the change in exchangeable Cd, the absorption capacity of wheat root, and the inhibitory effect on Cd transport from stem to grain in this paper. In general, this work provides a new potential management feasible pathway to alleviate the Cd toxicity of weakly alkaline soil and wheat grain.
Collapse
Affiliation(s)
- Yuenan Zhang
- (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences, Ningbo Institute of Materials Technology and Engineering, 315201, Ningbo, China
| | - Yujie Zhang
- (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences, Ningbo Institute of Materials Technology and Engineering, 315201, Ningbo, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Aiguo Wu
- (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences, Ningbo Institute of Materials Technology and Engineering, 315201, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Chi Y, Tam NFY, Li WC, Ye Z. Multiple geochemical and microbial processes regulated by redox and organic matter control the vertical heterogeneity of As and Cd in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156229. [PMID: 35643135 DOI: 10.1016/j.scitotenv.2022.156229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The heterogeneity of arsenic (As) and cadmium (Cd) in paddy soils seriously hinders the assessment of contamination status and prediction of rice uptake. Their vertical patterns across different environmental conditions and the underlying mechanisms remain largely unexplored. In this study, maximum vertical differences of bioavailable As and Cd within 0-30 cm depth in paddy soils were 4.1-fold and four orders of magnitude, respectively. The vertical patterns of As and Cd followed the vertical redox gradient in long-term reduced paddies, but were shaped by the vertical pH gradient derived from acidic wastewater irrigation in partly oxidized soils. Iron(III)- and sulfate-reducing bacteria played key roles in the formation of vertical pH gradient and the immobilization of As and Cd by iron (hydr)oxides and sulfides under varied redox conditions. Soil redox and organic matter determined the transition between these two mechanisms via regulating microbial iron(III) and sulfate reduction processes. The work proposes that soil vertical As and Cd patterns directly affect the accumulation of As and Cd in different rice cultivars with different vertical root patterns. This is the first study elucidating the controlling mechanisms governing the vertical As and Cd patterns in paddy fields, providing important references to identify, manage and remediate contaminated paddy fields.
Collapse
Affiliation(s)
- Yihan Chi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, The Hong Kong Metropolitan University, Kowloon, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Wai Chin Li
- Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China.
| | - Zhihong Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Auesukaree C, Bussarakum J, Sirirakphaisarn S, Saengwilai PJ. Effects of aqueous Moringa oleifera leaf extract on growth performance and accumulation of cadmium in a Thai jasmine rice-Khao Dawk Mali 105 variety. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46968-46976. [PMID: 35175520 DOI: 10.1007/s11356-022-19194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The contamination of paddy fields and rice grains by cadmium (Cd) adversely affects human health. Thus, many approaches have been proposed to reduce the accumulation of Cd in rice. Here, we investigate the potential of aqueous Moringa oleifera leaf extract (AMOLE) in decreasing uptake and toxicity of Cd in a popular Thai jasmine rice variety, Khao Dawk Mali 105 (KDML105). Plants were grown in Petri dishes, a hydroponic system, and a pot system under different concentrations of Cd, in the presence and absence of AMOLE. In Petri dishes, Cd reduced the percentage of germination by 79%, but the treatment with 0.5 mg mL-1 AMOLE significantly increased the germination percentage. Moreover, AMOLE significantly decreased Cd accumulation in rice seedlings by 97%. In the hydroponics system, 0.5 mg mL-1 AMOLE decreased Cd content in shoots by 48%. Although no significant physiological changes in response to Cd treatments were observed in the pot system, a large amount of Cd was accumulated in rice roots. The AMOLE treatments significantly reduced Cd accumulation in rice shoots and decreased Cd content in milled grain by half compared to those without AMOLE treatment. We conclude that AMOLE reduced Cd toxicity, enhanced seedling growth, and reduced Cd accumulation in rice grains.
Collapse
Affiliation(s)
- Choowong Auesukaree
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence On Biodiversity, Ministry of Education, CHE, Bangkok, Thailand
- Center of Excellence On Environmental Health and Toxicology, Ministry of Education, CHE, Bangkok, Thailand
| | - Jutamas Bussarakum
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sirin Sirirakphaisarn
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Patompong Johns Saengwilai
- Center of Excellence On Environmental Health and Toxicology, Ministry of Education, CHE, Bangkok, Thailand.
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
16
|
Pan J, Guan M, Xu P, Chen M, Cao Z. Salicylic acid reduces cadmium (Cd) accumulation in rice (Oryza sativa L.) by regulating root cell wall composition via nitric oxide signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149202. [PMID: 34346363 DOI: 10.1016/j.scitotenv.2021.149202] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The effects of salicylic acid (SA) on cadmium (Cd) accumulation, Cd subcellular distribution, cell wall composition and Cd adsorption in Cd-stressed rice seedlings were examined. The interaction between SA and nitric oxide (NO) signaling in regulating cell wall composition under Cd exposure was also investigated. Our results showed that 5 μmol·L-1 Cd treatment significantly decreased plant height, root length and plant dry weight by 40.1%, 46.1% and 21.3% (p < 0.05), respectively, and the inhibitory effects of Cd on the growth parameters were alleviated by exogenous SA. Application of SA remarkably decreased Cd concentrations in roots and shoots of rice seedlings by 48.0% and 19.6%, respectively, and increased the distribution ratio of Cd in the root cell wall fraction (from 35.7% to 40.6%) compared with Cd treatment alone. The reduced Cd accumulation in rice plants could be attributed to that SA application promoted pectin synthesis and demethylesterification, thereby increasing Cd deposition in the root cell wall. Moreover, SA application promoted lignin biosynthesis to strengthen the cell wall and prevent Cd from entering the root cells. In addition, NO might be involved in SA-induced pectin synthesis, pectin demethylesterification and lignin biosynthesis as a downstream signaling molecule, contributing to reduced Cd accumulation in Cd-stressed rice seedlings. The results provide deep insights into the mechanisms of exogenous SA action in reducing Cd accumulation in rice plants.
Collapse
Affiliation(s)
- Jiuyue Pan
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Meiyan Guan
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ping Xu
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Mingxue Chen
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhenzhen Cao
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
17
|
Song L, Pan Z, Dai Y, Chen L, Zhang L, Liao Q, Yu X, Guo H, Zhou G. High-throughput sequencing clarifies the spatial structures of microbial communities in cadmium-polluted rice soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47086-47098. [PMID: 33886056 DOI: 10.1007/s11356-021-13993-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Soil microbial communities are affected by environmental factors. Contamination with heavy metals such as cadmium (Cd) can decrease soil microbial species richness and substantially alter soil microbial species composition. Investigations of the microbial communities in Cd-contaminated soils are necessary to obtain data for soil bioremediation efforts. However, depth-associated variations in microbial community composition and structure in Cd-contaminated paddy soils are not well understood. Here, the effects of various degrees of long-term Cd pollution on soil microorganisms were investigated at different soil depths within the plough layer using 16S rRNA gene amplicon sequencing. We found that, in Cd-polluted soils, microbial communities were more similar between the surface soil and the underlying soil. In addition, microbial community richness and/or diversity were significantly reduced in the Cd-polluted underlying soil as compared with the non-polluted underlying soil. However, species richness in the surface layer was significantly greater in the mildly and severely Cd-polluted soils. The soil microbial communities in the same soil layer differed significantly between the non-polluted and polluted soils. Furthermore, Cd contamination affected the microbial communities of different soil layers differently. Soil pH had a synergistic effect on microbial community abundance and composition. The potential functions of the soil microbiota were mainly related to environmental processing, genetic processing, and metabolic pathways. Notably, our identification of the phyla that were differently abundant among sites with different levels of Cd pollution will provide experimental guidance for further explorations of the effects of Cd on soil microbes in natural environments. Our results not only demonstrate that long-term Cd pollution leads to a marked reduction in microbial richness and diversity in the underlying soil layer, but they also help to clarify how long-term heavy metal contamination affects the soil bacterial community.
Collapse
Affiliation(s)
- Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Zhenzhi Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yi Dai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Lin Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Qilin Liao
- Geological Survey of Jiangsu Province, Nanjing, 210018, China
| | - Xiezhi Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Saengwilai P, Meeinkuirt W. Cadmium (Cd) and zinc (Zn) accumulation by Thai rice varieties and health risk assessment in a Cd-Zn co-contaminated paddy field: Effect of soil amendments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3659-3674. [PMID: 33630197 DOI: 10.1007/s10653-021-00858-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Zinc mining and smelting activities result in cadmium (Cd) and zinc (Zn) contamination in rice grains, causing deleterious impacts on human health and local economies. Here, we investigated the effects of soil amendments, including mixtures of dicalcium phosphate with cattle manure (T1) and leonardite (T2), on soil physicochemical properties as well as growth performance and accumulation of Cd and Zn among three commercial Thai rice varieties: Khao Dok Mali 105 (KDML105), Phitsanulok2 (PSL2) and RD3, grown in a Cd-Zn co-contaminated paddy field. Human health risk was assessed using the health risk index (HRI) and Daily Intake of Metal (DIM). Application of the amendments, particularly T1, decreased Cd and Zn bioavailability by 60% and 39%, respectively, increased biomass production in PSL2 and RD3 varieties, and substantially reduced Cd uptake in the KDML105 variety by 47%. While levels of Zn in whole plant tissues of all treatments did not exceed maximum levels of undesirable substances in fodder, Cd contents in grain of PSL2 and RD3 exceeded the maximum allowable concentration of 0.2 mg kg-1. The HRI values for Cd of PSL2 and RD3 varieties were relatively high and are considered to pose a potential risk to human health. KDML105 in the T1 treatment had the lowest HRI value (0.05 ± 0.03), which was within acceptable limits. Our results suggest that Cd and Zn accumulation in rice and associated human health risks could be reduced by application of amendments to paddy soils, but the effectiveness depends on amendment types, rice varieties and soil physicochemical properties.
Collapse
Affiliation(s)
- Patompong Saengwilai
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence On Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok, Thailand
| | - Weeradej Meeinkuirt
- Water and Soil Environmental Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand.
| |
Collapse
|
19
|
Deng X, Chen B, Chen Y, Lu L, Yuan X, Yang Y, Zeng Q. Variations in root morphological indices of rice (Oryza sativa L.) induced by seedling establishment methods and their relation to arsenic accumulation in plant tissues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116999. [PMID: 33799206 DOI: 10.1016/j.envpol.2021.116999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Understanding how the seedling establishment method affects arsenic (As) accumulation in rice is important for safe agricultural production. In a field experiment with three seedling establishment methods and two rice cultivars, the effects of direct seeding (DS), manual transplanting (MT), and seedling throwing (ST) on root morphological indices and the distribution, translocation, and accumulation of As in rice tissues across growth stages were compared. DS method resulted in the greatest accumulation of As in the two rice cultivars and led to more As distributed in aboveground tissues during the entire growth period. Especially in DS brown rice, the concentration of total As increased by 24.0%-40.8%, and that of inorganic As increased by 24.4%-40.0%, compared with the concentrations in MT and ST rice. A multiple regression model was developed with root morphological indices and the total As concentration in brown rice, and the R2 value of the model was 0.819, which was significant at the 1% level. Compared with the other establishment methods, the thinner diameters, smaller volumes, larger specific surface areas, and greater numbers of root tips in DS rice roots across growth stages promoted As uptake. The concentrations of As in root tips were approximately five times greater than those in the root base, and root tips were the key factor determining the difference in As accumulation in rice roots under the different seedling establishment methods. The results of this study demonstrate that the choice of an appropriate rice seedling establishment method is important to avoid the environmental consequences of As contamination and safely produce rice grain. Therefore, despite the current trend of increased use of DS, transplantation is recommended as a safer pattern of rice seedling establishment in As-contaminated areas.
Collapse
Affiliation(s)
- Xiao Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Bin Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yixuan Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lei Lu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoqing Yuan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yang Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|