1
|
Dąbrowska AM, Kaźmierkiewicz R, Barabaś-Lepak AM, Biedulska M, Chylewska A. Comprehensive Chemical Analysis of the Methyl 3-Nitrogen-2,3-Dideoxysaccharides Derivatives with d- ribo-Configuration: Synthesis, Reactivity of HIV-1 Reverse Transcriptase Inhibitors. J Phys Chem B 2025; 129:911-929. [PMID: 39807672 PMCID: PMC11770755 DOI: 10.1021/acs.jpcb.4c08136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions. pKa values, obtained from two independent methods, reveal significant sugar ionization effects on UV spectra with varying pH levels. Stability constants for divalent metal ion complexes (Cu2+ and Ni2+) with the saccharide isomers indicate that complex stoichiometries and stabilities are highly dependent on the configuration of sugar ring substituents. Spectrophotometric results show a descending order of CT-DNA-binding affinity: BRNH2OMe > BRN3OMe > ARN3OMe > ARNH2OMe, suggesting varied interaction strengths. Molecular docking of models of synthesized O-glycosides confirmed their potential as reverse transcriptase inhibitors. Among the derivatives tested, the compound BRN3OMe displays the highest interaction with the enzyme active site residues and DNA, suggesting it may possess the greatest efficacy. Our reported results highlight the promising inhibitory properties of novel O-glycosides against HIV reverse transcriptase, supporting their potential development as antiviral agents.
Collapse
Affiliation(s)
- Aleksandra M. Dąbrowska
- Intermolecular
Interaction Laboratory, Department of Bioinorganic Chemistry, Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Rajmund Kaźmierkiewicz
- Laboratory
of Biomolecular Systems Simulations, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University
of Gdańsk, Abrahama
58, 80-307 Gdańsk, Poland
| | - Anna M. Barabaś-Lepak
- I Secondary
School named after Maria Skłodowska-Curie in Tczew, Maritime School 1, 83-110 Tczew, Poland
| | - Małgorzata Biedulska
- Institute
of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Agnieszka Chylewska
- Intermolecular
Interaction Laboratory, Department of Bioinorganic Chemistry, Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
2
|
Pathak T, Bose A. 1,5-disubstituted 1,2,3-triazolylated carbohydrates and nucleosides. Carbohydr Res 2024; 541:109126. [PMID: 38823061 DOI: 10.1016/j.carres.2024.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
In general, 1,5-disubstituted 1,2,3-triazolyl moiety is much less common in the synthesis and applications in comparison to its regioisomeric counterpart. Moreover, the synthesis of 1,5-disubstituted 1,2,3-triazoles are not so straightforward as is the case for copper catalyzed strategy of 1,4-disubstituted 1,2,3-triazoles. The preparation of 1,5-triazolylated carbohydrates and nucleosides are even more complex because of the difficulties in accessing the appropriate starting materials as well as the compatibility of reaction conditions with the various protecting groups. 1,5-Disubstitution regioisomeric triazoles of carbohydrates and nucleosides were traditionally obtained as minor products through straightforward heating of the mixture of azides and terminal alkynes. However, the separation of isomers was tedious or in some cases futile. On the other hand, regioselective synthesis using ruthenium catalysis triggered serious concern of residual metal content in therapeutically important ingredients. Therefore, serious efforts are being made by several groups to develop non-toxic metal based or completely metal-free synthesis of 1,5-disubstituted 1,2,3-triazoles. This article strives to summarize the pre-Click era as well as the post-2001 reports on the synthesis and potential applications of 1,5-disubstituted 1,2,3-triazoles in biological systems.
Collapse
Affiliation(s)
- Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India.
| | - Amitabha Bose
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| |
Collapse
|
3
|
Antony J, P. Musthafa S, Natarajan R, Mathai S, S. Devaky K, Rappai JP. Highly atom efficient synthesis of 2,2,4,5-tetrasubstituted 3(2H)-furanones having both hydroxyl and amino substituents. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2036347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jesna Antony
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, India
| | - Sumi P. Musthafa
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, India
| | - Rakesh Natarajan
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, India
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| | - Sindhu Mathai
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, India
| | | | - John P. Rappai
- Department of Chemistry, Government Victoria College, Palakkad, India
| |
Collapse
|
4
|
Kumar R, Maity J, Mathur D, Verma A, Rana N, Kumar M, Kumar S, Prasad AK. Green synthesis of triazolo-nucleoside conjugates via azide–alkyne C–N bond formation. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Modified nucleosides are the core precursors for the synthesis of artificial nucleic acids, and are important in the field of synthetic and medicinal chemistry. In order to synthesize various triazolo-compounds, copper and ruthenium catalysed azide–alkyne 1,3-dipolar cycloaddition reactions also known as click reaction have emerged as a facile and efficient tool due to its simplicity and convenient conditions. Introduction of a triazole ring in nucleosides enhances their therapeutic value and various photophysical properties. This review primarily focuses on the plethora of synthetic methodologies being employed to synthesize sugar modified triazolyl nucleosides, their therapeutic importance and various other applications.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry , R.D.S. College, B.R.A. Bihar University , Muzaffarpur , India
| | - Jyotirmoy Maity
- Department of Chemistry , St. Stephen’s College, University of Delhi , Delhi , India
| | - Divya Mathur
- Department of Chemistry , Daulat Ram College, University of Delhi , Delhi , India
| | - Abhishek Verma
- Department of Chemistry , Bioorganic Laboratory, University of Delhi , Delhi , India
| | - Neha Rana
- Department of Chemistry , Bioorganic Laboratory, University of Delhi , Delhi , India
| | - Manish Kumar
- Department of Chemistry , Bioorganic Laboratory, University of Delhi , Delhi , India
| | - Sandeep Kumar
- Department of Chemistry , Bioorganic Laboratory, University of Delhi , Delhi , India
| | - Ashok K. Prasad
- Department of Chemistry , Bioorganic Laboratory, University of Delhi , Delhi , India
| |
Collapse
|
5
|
Rappai JP, Antony J, Musthafa SP, Natarajan R. Expeditious synthesis of highly substituted 3(2H)-furanone and quinoline by microwave assisted reaction between aldonitrones and dibenzoylacetylene. NEW J CHEM 2022. [DOI: 10.1039/d2nj00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microwave assisted reaction between various aldonitrones and dibenzoylacetylene gave 2-hydroxy-2,5-diphenyl-4-(phenylamino)furan-3(2H)-one (5) and (3-hydroxy-2-phenylquinolin-4-yl)(phenyl)methanone (8) arising through two distinct reaction pathways in good yields. Compared to reactions carried out under thermal...
Collapse
|
6
|
de Alencar DM, Gonçalves J, Vieira A, Cerqueira SA, Sebastião C, Leitão MIPS, Francescato G, Antenori P, Soares H, Petronilho A. Development of Triazoles and Triazolium Salts Based on AZT and Their Anti-Viral Activity against HIV-1. Molecules 2021; 26:6720. [PMID: 34771129 PMCID: PMC8588071 DOI: 10.3390/molecules26216720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
We report herein a set of 3'-azido-3'-deoxythymidine (AZT) derivatives based on triazoles and triazolium salts for HIV-1 infection. The compounds were synthesized via click chemistry with Cu(I) and Ru(II) catalysts. Triazolium salts were synthesized by reaction with methyl iodide or methyl triflate in good yields. The antiviral activity of the compounds was tested using two methodologies: In method one the activity was measured on infected cells; in method two a pre-exposure prophylaxis experimental model was employed. For method one the activity of the compounds was moderate, and in general the triazolium salts showed a decreased activity in relation to their triazole precursors. With method two the antiviral activity was higher. All compounds were able to decrease the infection, with two compounds able to clear almost all the infection, while a lower antiviral activity was noted for the triazolium salts. These results suggest that these drugs could play an important role in the development of pre-exposure prophylaxis therapies.
Collapse
Affiliation(s)
- Daniel Machado de Alencar
- ITQB-NOVA—Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avd da Republica, 2780-157 Oeiras, Portugal; (D.M.d.A.); (A.V.); (M.I.P.S.L.); (G.F.); (P.A.)
| | - Juliana Gonçalves
- Human Immunobiology and Pathogenesis Laboratory, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, 1150-082 Lisbon, Portugal; (J.G.); (S.A.C.); (C.S.)
| | - Andreia Vieira
- ITQB-NOVA—Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avd da Republica, 2780-157 Oeiras, Portugal; (D.M.d.A.); (A.V.); (M.I.P.S.L.); (G.F.); (P.A.)
| | - Sofia A. Cerqueira
- Human Immunobiology and Pathogenesis Laboratory, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, 1150-082 Lisbon, Portugal; (J.G.); (S.A.C.); (C.S.)
| | - Cruz Sebastião
- Human Immunobiology and Pathogenesis Laboratory, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, 1150-082 Lisbon, Portugal; (J.G.); (S.A.C.); (C.S.)
| | - Maria Inês P. S. Leitão
- ITQB-NOVA—Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avd da Republica, 2780-157 Oeiras, Portugal; (D.M.d.A.); (A.V.); (M.I.P.S.L.); (G.F.); (P.A.)
| | - Giulia Francescato
- ITQB-NOVA—Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avd da Republica, 2780-157 Oeiras, Portugal; (D.M.d.A.); (A.V.); (M.I.P.S.L.); (G.F.); (P.A.)
| | - Paola Antenori
- ITQB-NOVA—Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avd da Republica, 2780-157 Oeiras, Portugal; (D.M.d.A.); (A.V.); (M.I.P.S.L.); (G.F.); (P.A.)
| | - Helena Soares
- Human Immunobiology and Pathogenesis Laboratory, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, 1150-082 Lisbon, Portugal; (J.G.); (S.A.C.); (C.S.)
| | - Ana Petronilho
- ITQB-NOVA—Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avd da Republica, 2780-157 Oeiras, Portugal; (D.M.d.A.); (A.V.); (M.I.P.S.L.); (G.F.); (P.A.)
| |
Collapse
|
7
|
Clavé G, Vasseur JJ, Smietana M. The Sulfo-Click Reaction and Dual Labeling of Nucleosides. ACTA ACUST UNITED AC 2020; 83:e120. [PMID: 33238080 DOI: 10.1002/cpnc.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article contains detailed synthetic procedures for the implementation of the sulfo-click reaction to nucleoside derivatives. First, 3'-O-TBDMS-protected nucleosides are converted to their corresponding 4'-thioacid derivatives in three steps. Then, various conjugates are synthetized via a biocompatible and chemoselective coupling procedure using sulfonyl azide partners. Finally, to illustrate the potential of the sulfo-click reaction, a nucleoside bearing two orthogonal azido groups is synthesized and engaged in one-pot dual labeling through a sulfo-click/copper-catalyzed azide-alkyne cycloaddition (CuAAC) cascade. The high efficiency of the sulfo-click reaction as applied to nucleosides opens up new possibilities in the context of bioconjugation. © 2020 Wiley Periodicals LLC. Basic Protocol 1: General protocol for the synthesis of 4'-thioacid-nucleoside derivatives Basic Protocol 2: Implementation of the sulfo-click reaction Basic Protocol 3: Synthesis of 3'-azido-4'-(carboxamido)ethane-sulfonyl azide-3'-deoxythymidine Basic Protocol 4: Detailed synthetic procedure for one-pot double-click conjugations.
Collapse
|
8
|
Feng LS, Zheng MJ, Zhao F, Liu D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Arch Pharm (Weinheim) 2020; 354:e2000163. [PMID: 32960467 DOI: 10.1002/ardp.202000163] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) is the major etiological agent responsible for the acquired immunodeficiency syndrome (AIDS), which is a serious infectious disease and remains one of the most prevalent problems at present. Currently, combined antiretroviral therapy is the primary modality for the treatment and management of HIV/AIDS, but the long-term use can result in major drawbacks such as the development of multidrug-resistant viruses and multiple side effects. 1,2,3-Triazole is the common framework in the development of new drugs, and its derivatives have the potential to inhibit various HIV-1 enzymes such as reverse transcriptase, integrase, and protease, consequently possessing a potential anti-HIV-1 activity. This review covers the recent advances regarding the 1,2,3-triazole hybrids with potential anti-HIV-1 activity; it focuses on the chemical structures, structure-activity relationship, and mechanisms of action, covering articles published from 2010 to 2020.
Collapse
Affiliation(s)
| | | | | | - Duan Liu
- WuXi AppTec Co., Ltd., Wuhan, China
| |
Collapse
|
9
|
Kleczewska N, Ruszkowski P, Singh A, Trznadel R, Celewicz L. Synthesis and anticancer activity of 3'-[4-fluoroaryl-(1,2,3-triazol-1-yl)]-3'-deoxythymidine analogs and their phosphoramidates. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:605-641. [PMID: 30968733 DOI: 10.1080/15257770.2019.1594282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of novel 4-chlorophenyl N-alkyl phosphoramidates of 3'-[4-fluoroaryl-(1,2,3-triazol-1-yl)]-3'-deoxythymidines (20-49) was synthesized by means of phosphorylation of 3'-[4-aryl-(1,2,3-triazol-1-yl)]-3'-deoxythymidines (7-11) with 4-chlorophenyl phosphoroditriazolide (14), followed by a reaction with the appropriate amine. The synthesized compounds 7-11 and 20-49 were evaluated along with four known anticancer compounds for their cytotoxic activity in human cancer cell lines: cervical (HeLa), nasopharyngeal (KB), breast (MCF-7), osteosarcoma (143B) (only selected compounds 20, 24, 28, 32-36, 38, 40, 46) and normal human dermal fibroblast cell line (HDF) using the sulforhodamine B (SRB) assay. Among 3'-[4-aryl-(1,2,3-triazol-1-yl)]-3'-deoxythymidines (7-11) the highest activity in all the investigated cancer cells was displayed by 3'-[4-(3-fluorophenyl)-(1,2,3-triazol-1-yl)]-3'-deoxythymidine (9) (IC50 in the range of 2.58-3.61 μM) and its activity was higher than that of cytarabine. Among phosphoramidates 20-49 the highest activity was demonstrated by N-n-propyl phosphoramidate of 3'-[4-(3-fluorophenyl)-(1,2,3-triazol-1-yl)]-3'-deoxythymidine (35) in all the cancer cells (IC50 in the range of 0.97-1.94 μM). Also N-ethyl phosphoramidate of 3'-[4-(3-fluorophenyl)-(1,2,3-triazol-1-yl)]-3'-deoxythymidine (33) exhibited good activity in all the used cell lines (IC50 in the range of 4.79-4.96 μM).
Collapse
Affiliation(s)
| | - Piotr Ruszkowski
- b Department of Pharmacology , Poznań University of Medical Sciences , Poznań , Poland
| | - Aleksandra Singh
- a Faculty of Chemistry , Adam Mickiewicz University , Poznań , Poland
| | - Roksana Trznadel
- a Faculty of Chemistry , Adam Mickiewicz University , Poznań , Poland
| | - Lech Celewicz
- a Faculty of Chemistry , Adam Mickiewicz University , Poznań , Poland
| |
Collapse
|
10
|
Sirivolu VR, Vernekar SKV, Ilina T, Myshakina NS, Parniak MA, Wang Z. Clicking 3'-azidothymidine into novel potent inhibitors of human immunodeficiency virus. J Med Chem 2013; 56:8765-80. [PMID: 24102161 DOI: 10.1021/jm401232v] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
3'-Azidothymidine (AZT) was the first approved antiviral for the treatment of human immunodeficiency virus (HIV). Reported efforts in clicking the 3'-azido group of AZT have not yielded 1,2,3-triazoles active against HIV or any other viruses. We report herein the first AZT-derived 1,2,3-triazoles with submicromolar potencies against HIV-1. The observed antiviral activities from the cytopathic effect (CPE) based assay were confirmed through a single replication cycle assay. Structure-activity-relationship (SAR) studies revealed two structural features key to antiviral activity: a bulky aromatic ring and the 1,5-substitution pattern on the triazole. Biochemical analysis of the corresponding triphosphates showed lower ATP-mediated nucleotide excision efficiency compared to AZT, which along with molecular modeling suggests a mechanism of preferred translocation of triazoles into the P-site of HIV reverse transcriptase (RT). This mechanism is corroborated with the observed reduction of fold resistance of the triazole analogue to an AZT-resistant HIV variant (9-fold compared to 56-fold with AZT).
Collapse
Affiliation(s)
- Venkata Ramana Sirivolu
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | |
Collapse
|
11
|
Efthymiou T, Gong W, Desaulniers JP. Chemical architecture and applications of nucleic acid derivatives containing 1,2,3-triazole functionalities synthesized via click chemistry. Molecules 2012; 17:12665-703. [PMID: 23103533 PMCID: PMC6268694 DOI: 10.3390/molecules171112665] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/16/2022] Open
Abstract
There is considerable attention directed at chemically modifying nucleic acids with robust functional groups in order to alter their properties. Since the breakthrough of copper-assisted azide-alkyne cycloadditions (CuAAC), there have been several reports describing the synthesis and properties of novel triazole-modified nucleic acid derivatives for potential downstream DNA- and RNA-based applications. This review will focus on highlighting representative novel nucleic acid molecular structures that have been synthesized via the “click” azide-alkyne cycloaddition. Many of these derivatives show compatibility for various applications that involve enzymatic transformation, nucleic acid hybridization, molecular tagging and purification, and gene silencing. The details of these applications are discussed. In conclusion, the future of nucleic acid analogues functionalized with triazoles is promising.
Collapse
Affiliation(s)
| | | | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, ON L1H 7K4, Canada
| |
Collapse
|