1
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Ma H, Qu J, Liao Y, Liu L, Yan M, Wei Y, Xu W, Luo J, Dai Y, Pang Z, Qu Q. Equilibrative nucleotide transporter ENT3 (SLC29A3): A unique transporter for inherited disorders and cancers. Exp Cell Res 2024; 434:113892. [PMID: 38104646 DOI: 10.1016/j.yexcr.2023.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
As a crucial gene associated with diseases, the SLC29A3 gene encodes the equilibrative nucleoside transporter 3 (ENT3). ENT3 plays an essential regulatory role in transporting intracellular hydrophilic nucleosides, nucleotides, hydrophilic anticancer and antiviral nucleoside drugs, energy metabolism, subcellular localization, protein stability, and signal transduction. The mutation and inactivation of SLC29A3 are intimately linked to the occurrence, development, and prognosis of various human tumors. Moreover, many hereditary human diseases, such as H syndrome, pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) syndrome, Faisalabad histiocytosis (FHC), are related to SLC29A3 mutations. This review explores the mechanisms of SLC29A3 mutations and expression alterations in inherited disorders and cancers. Additionally, we compile studies on the inhibition of ENT3, which may serve as an effective strategy to potentiate the anticancer activity of chemotherapy. Thus, the synopsis of genetics, permeant function and drug therapy of ENT3 provides a new theoretical and empirical foundation for the diagnosis, prognosis of evaluation and treatment of various related diseases.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Yongkang Liao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yiwen Wei
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yuxin Dai
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China.
| |
Collapse
|
3
|
Persaud AK, Bernier MC, Massey MA, Agrawal S, Kaur T, Nayak D, Xie Z, Weadick B, Raj R, Hill K, Abbott N, Joshi A, Anabtawi N, Bryant C, Somogyi A, Cruz-Monserrate Z, Amari F, Coppola V, Sparreboom A, Baker SD, Unadkat JD, Phelps MA, Govindarajan R. Increased renal elimination of endogenous and synthetic pyrimidine nucleosides in concentrative nucleoside transporter 1 deficient mice. Nat Commun 2023; 14:3175. [PMID: 37264059 PMCID: PMC10235067 DOI: 10.1038/s41467-023-38789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Concentrative nucleoside transporters (CNTs) are active nucleoside influx systems, but their in vivo roles are poorly defined. By generating CNT1 knockout (KO) mice, here we identify a role of CNT1 in the renal reabsorption of nucleosides. Deletion of CNT1 in mice increases the urinary excretion of endogenous pyrimidine nucleosides with compensatory alterations in purine nucleoside metabolism. In addition, CNT1 KO mice exhibits high urinary excretion of the nucleoside analog gemcitabine (dFdC), which results in poor tumor growth control in CNT1 KO mice harboring syngeneic pancreatic tumors. Interestingly, increasing the dFdC dose to attain an area under the concentration-time curve level equivalent to that achieved by wild-type (WT) mice rescues antitumor efficacy. The findings provide new insights into how CNT1 regulates reabsorption of endogenous and synthetic nucleosides in murine kidneys and suggest that the functional status of CNTs may account for the optimal action of pyrimidine nucleoside analog therapeutics in humans.
Collapse
Affiliation(s)
- Avinash K Persaud
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew C Bernier
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael A Massey
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- The Center for Life Sciences Education, College of Arts and Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Shipra Agrawal
- Division of Nephrology & Hypertension, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tejinder Kaur
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Debasis Nayak
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhiliang Xie
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Kasey Hill
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Nicole Abbott
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Arnav Joshi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Nadeen Anabtawi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Claire Bryant
- Center for Clinical & Translational Research, Nationwide Children's Hospital, Columbus, OH, 43210, USA
| | - Arpad Somogyi
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharyn D Baker
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, College of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Mitch A Phelps
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Boakes JC, Harborne SPD, Ngo JTS, Pliotas C, Goldman A. Novel variants provide differential stabilisation of human equilibrative nucleoside transporter 1 states. Front Mol Biosci 2022; 9:970391. [DOI: 10.3389/fmolb.2022.970391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Human equilibrative nucleoside transporters represent a major pharmaceutical target for cardiac, cancer and viral therapies. Understanding the molecular basis for transport is crucial for the development of improved therapeutics through structure-based drug design. ENTs have been proposed to utilise an alternating access mechanism of action, similar to that of the major facilitator superfamily. However, ENTs lack functionally-essential features of that superfamily, suggesting that they may use a different transport mechanism. Understanding the molecular basis of their transport requires insight into diverse conformational states. Differences between intermediate states may be discrete and mediated by subtle gating interactions, such as salt bridges. We identified four variants of human equilibrative nucleoside transporter isoform 1 (hENT1) at the large intracellular loop (ICL6) and transmembrane helix 7 (TM7) that stabilise the apo-state (∆Tm 0.7–1.5°C). Furthermore, we showed that variants K263A (ICL6) and I282V (TM7) specifically stabilise the inhibitor-bound state of hENT1 (∆∆Tm 5.0 ± 1.7°C and 3.0 ± 1.8°C), supporting the role of ICL6 in hENT1 gating. Finally, we showed that, in comparison with wild type, variant T336A is destabilised by nitrobenzylthioinosine (∆∆Tm -4.7 ± 1.1°C) and binds it seven times worse. This residue may help determine inhibitor and substrate sensitivity. Residue K263 is not present in the solved structures, highlighting the need for further structural data that include the loop regions.
Collapse
|
5
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
6
|
Randazzo O, Papini F, Mantini G, Gregori A, Parrino B, Liu DSK, Cascioferro S, Carbone D, Peters GJ, Frampton AE, Garajova I, Giovannetti E. "Open Sesame?": Biomarker Status of the Human Equilibrative Nucleoside Transporter-1 and Molecular Mechanisms Influencing its Expression and Activity in the Uptake and Cytotoxicity of Gemcitabine in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12113206. [PMID: 33142664 PMCID: PMC7692081 DOI: 10.3390/cancers12113206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive tumor characterized by early invasiveness, rapid progression and resistance to treatment. For more than twenty years, gemcitabine has been the main therapy for PDAC both in the palliative and adjuvant setting. After the introduction of FOLFIRINOX as an upfront treatment for metastatic disease, gemcitabine is still commonly used in combination with nab-paclitaxel as an alternative first-line regimen, as well as a monotherapy in elderly patients unfit for combination chemotherapy. As a hydrophilic nucleoside analogue, gemcitabine requires nucleoside transporters to permeate the plasma membrane, and a major role in the uptake of this drug is played by human equilibrative nucleoside transporter 1 (hENT-1). Several studies have proposed hENT-1 as a biomarker for gemcitabine efficacy in PDAC. A recent comprehensive multimodal analysis of hENT-1 status evaluated its predictive role by both immunohistochemistry (with five different antibodies), and quantitative-PCR, supporting the use of the 10D7G2 antibody. High hENT-1 levels observed with this antibody were associated with prolonged disease-free status and overall-survival in patients receiving gemcitabine adjuvant chemotherapy. This commentary aims to critically discuss this analysis and lists molecular factors influencing hENT-1 expression. Improved knowledge on these factors should help the identification of subgroups of patients who may benefit from specific therapies and overcome the limitations of traditional biomarker studies.
Collapse
Affiliation(s)
- Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Filippo Papini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| | - Alessandro Gregori
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Daniel S. K. Liu
- Division of Cancer, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, London W12 0NN, UK;
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Adam E. Frampton
- Division of Cancer, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, London W12 0NN, UK;
- Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford GU2 7XH, UK
- Correspondence: (A.E.F.); (E.G.); Tel.: +31-003-120-444-2633 (E.G.)
| | - Ingrid Garajova
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
- Correspondence: (A.E.F.); (E.G.); Tel.: +31-003-120-444-2633 (E.G.)
| |
Collapse
|
7
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
8
|
Choi JS, Maity A, Gray T, Berdis AJ. A metal-containing nucleoside that possesses both therapeutic and diagnostic activity against cancer. J Biol Chem 2015; 290:9714-26. [PMID: 25713072 DOI: 10.1074/jbc.m114.620294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/29/2022] Open
Abstract
Nucleoside transport is an essential process that helps maintain the hyperproliferative state of most cancer cells. As such, it represents an important target for developing diagnostic and therapeutic agents that can effectively detect and treat cancer, respectively. This report describes the development of a metal-containing nucleoside designated Ir(III)-PPY nucleoside that displays both therapeutic and diagnostic properties against the human epidermal carcinoma cell line KB3-1. The cytotoxic effects of Ir(III)-PPY nucleoside are both time- and dose-dependent. Flow cytometry analyses validate that the nucleoside analog causes apoptosis by blocking cell cycle progression at G2/M. Fluorescent microscopy studies show rapid accumulation in the cytoplasm within 4 h. However, more significant accumulation is observed in the nucleus and mitochondria after 24 h. This localization is consistent with the ability of the metal-containing nucleoside to influence cell cycle progression at G2/M. Mitochondrial depletion is also observed after longer incubations (Δt ∼48 h), and this effect may produce additional cytotoxic effects. siRNA knockdown experiments demonstrate that the nucleoside transporter, hENT1, plays a key role in the cellular entry of Ir(III)-PPY nucleoside. Collectively, these data provide evidence for the development of a metal-containing nucleoside that functions as a combined therapeutic and diagnostic agent against cancer.
Collapse
Affiliation(s)
- Jung-Suk Choi
- From the Department of Chemistry and the Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115 and
| | - Ayan Maity
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Thomas Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Anthony J Berdis
- From the Department of Chemistry and the Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115 and
| |
Collapse
|
9
|
Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014; 5:231. [PMID: 25400580 PMCID: PMC4215795 DOI: 10.3389/fphar.2014.00231] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available evidence, and is both more productive and more predictive.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester Manchester, UK ; Manchester Institute of Biotechnology, The University of Manchester Manchester, UK
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge Cambridge, UK ; Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| |
Collapse
|
10
|
Klein DM, Cherrington NJ. Organic and inorganic transporters of the testis: A review. SPERMATOGENESIS 2014; 4:e979653. [PMID: 26413398 PMCID: PMC4581056 DOI: 10.4161/21565562.2014.979653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/16/2014] [Indexed: 12/16/2022]
Abstract
Transporters have a huge impact on the toxicology and pharmacological effects of xenobiotics in addition to being implicated in several diseases. While these important proteins have been well studied in organs such as the kidney or liver, characterization of transporters in the testis is still in the early stages. Knowledge of transporter function may greatly advance the field's understanding of the physiological and toxicological processes that occur in the testis. Several foundational studies involving both organic and inorganic transporters have been critical in furthering our understanding of how the testis interacts with endogenous and xenobiotic compounds. This review provides an overview of how transporters function, their clinical significance, and highlights what is known for many of the important transporters in the testis.
Collapse
Affiliation(s)
- David M Klein
- University of Arizona; Department of Pharmacology and Toxicology; Tucson, AZ, US
| | - Nathan J Cherrington
- University of Arizona; Department of Pharmacology and Toxicology; Tucson, AZ, US
| |
Collapse
|
11
|
Sahoo S, Aurich MK, Jonsson JJ, Thiele I. Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease. Front Physiol 2014; 5:91. [PMID: 24653705 PMCID: PMC3949408 DOI: 10.3389/fphys.2014.00091] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 02/17/2014] [Indexed: 01/18/2023] Open
Abstract
Membrane transporters enable efficient cellular metabolism, aid in nutrient sensing, and have been associated with various diseases, such as obesity and cancer. Genome-scale metabolic network reconstructions capture genomic, physiological, and biochemical knowledge of a target organism, along with a detailed representation of the cellular metabolite transport mechanisms. Since the first reconstruction of human metabolism, Recon 1, published in 2007, progress has been made in the field of metabolite transport. Recently, we published an updated reconstruction, Recon 2, which significantly improved the metabolic coverage and functionality. Human metabolic reconstructions have been used to investigate the role of metabolism in disease and to predict biomarkers and drug targets. Given the importance of cellular transport systems in understanding human metabolism in health and disease, we analyzed the coverage of transport systems for various metabolite classes in Recon 2. We will review the current knowledge on transporters (i.e., their preferred substrates, transport mechanisms, metabolic relevance, and disease association for each metabolite class). We will assess missing coverage and propose modifications and additions through a transport module that is functional when combined with Recon 2. This information will be valuable for further refinements. These data will also provide starting points for further experiments by highlighting areas of incomplete knowledge. This review represents the first comprehensive overview of the transporters involved in central metabolism and their transport mechanisms, thus serving as a compendium of metabolite transporters specific for human metabolic reconstructions.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Maike K Aurich
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Jon J Jonsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland Reykjavik, Iceland ; Department of Genetics and Molecular Medicine, Landspitali, National University Hospital of Iceland Reykjavik, Iceland
| | - Ines Thiele
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| |
Collapse
|
12
|
Li YY, Qin YZ, Wang RQ, Li WB, Qu XJ. SL-01, an oral derivative of gemcitabine, inhibited human breast cancer growth through induction of apoptosis. Biochem Biophys Res Commun 2013; 438:402-9. [PMID: 23899521 DOI: 10.1016/j.bbrc.2013.07.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED SL-01 is an oral derivative of gemcitabine that was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl) pyrazine-2-carbonyl at N4-position on cytidine ring of gemcitabine. We aimed to evaluate the efficacy of SL-01 on human breast cancer growth. SL-01 significantly inhibited MCF-7 proliferation as estimated by colorimetric assay. Flow cytometry assay indicated the apoptotic induction and cell cycle arrest in G1 phase. SL-01 modulated the expressions of p-ATM, p53 and p21 and decrease of cyclin D1 in MCF-7 cells. Further experiments were performed in a MCF-7 xenografts mouse model. SL-01 by oral administration strongly inhibited MCF-7 xenografts growth. This effect of SL-01 might arise from its roles in the induction of apoptosis. Immunohistochemistry assay showed the increase of TUNEL staining cells. Western blotting indicated the modulation of apoptotic proteins in SL-01-treated xenografts. During the course of study, there was no evidence of toxicity to mice. In contrast, the decrease of neutrophil cells in peripheral and increase of AST and ALT levels in serum were observed in the gemcitabine-treated mice. CONCLUSION SL-01 possessed similar activity against human breast cancer growth with gemcitabine, whereas, with lower toxicity to gemcitabine. SL-01 is a potent oral agent that may supplant the use of gemcitabine.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | |
Collapse
|
13
|
Klein DM, Evans KK, Hardwick RN, Dantzler WH, Wright SH, Cherrington NJ. Basolateral uptake of nucleosides by Sertoli cells is mediated primarily by equilibrative nucleoside transporter 1. J Pharmacol Exp Ther 2013; 346:121-9. [PMID: 23639800 PMCID: PMC3684844 DOI: 10.1124/jpet.113.203265] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/01/2013] [Indexed: 12/21/2022] Open
Abstract
The blood-testis barrier (BTB) prevents the entry of many xenobiotic compounds into seminiferous tubules thereby protecting developing germ cells. Understanding drug transport across the BTB may improve drug delivery into the testis. Members of one class of drug, nucleoside reverse transcriptase inhibitors (NRTIs), do penetrate the BTB, presumably through interaction with physiologic nucleoside transporters. By investigating the mechanism of nucleoside transport, it may be possible to design other drugs to bypass the BTB in a similar manner. We present a novel ex vivo technique to study transport at the BTB that employs isolated, intact seminiferous tubules. Using this system, we found that over 80% of total uptake by seminiferous tubules of the model nucleoside uridine could be inhibited by 100 nM nitrobenzylmercaptopurine riboside (NBMPR, 6-S-[(4-nitrophenyl)methyl]-6-thioinosine), a concentration that selectively inhibits equilibrative nucleoside transporter 1 (ENT1) activity. In primary cultured rat Sertoli cells, 100 nM NBMPR inhibited all transepithelial transport and basolateral uptake of uridine. Immunohistochemical staining showed ENT1 to be located on the basolateral membrane of human and rat Sertoli cells, whereas ENT2 was located on the apical membrane of Sertoli cells. Transepithelial transport of uridine by rat Sertoli cells was partially inhibited by the NRTIs zidovudine, didanosine, and tenofovir disoproxil fumarate, consistent with an interaction between these drugs and ENT transporters. These data indicate that ENT1 is the primary route for basolateral nucleoside uptake into Sertoli cells and a possible mechanism for nucleosides and nucleoside-based drugs to undergo transepithelial transport.
Collapse
Affiliation(s)
- David M Klein
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | | | |
Collapse
|
14
|
Staud F, Cerveny L, Ceckova M. Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target 2012; 20:736-63. [PMID: 22994411 DOI: 10.3109/1061186x.2012.716847] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pharmacotherapy during pregnancy is often inevitable for medical treatment of the mother, the fetus or both. The knowledge of drug transport across placenta is, therefore, an important topic to bear in mind when deciding treatment in pregnant women. Several drug transporters of the ABC and SLC families have been discovered in the placenta, such as P-glycoprotein, breast cancer resistance protein, or organic anion/cation transporters. It is thus evident that the passage of drugs across the placenta can no longer be predicted simply on the basis of their physical-chemical properties. Functional expression of placental drug transporters in the trophoblast and the possibility of drug-drug interactions must be considered to optimize pharmacotherapy during pregnancy. In this review we summarize current knowledge on the expression and function of ABC and SLC transporters in the trophoblast. Furthermore, we put this data into context with medical conditions that require maternal and/or fetal treatment during pregnancy, such as gestational diabetes, HIV infection, fetal arrhythmias and epilepsy. Proper understanding of the role of placental transporters should be of great interest not only to clinicians but also to pharmaceutical industry for future drug design and development to control the degree of fetal exposure.
Collapse
Affiliation(s)
- Frantisek Staud
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic.
| | | | | |
Collapse
|
15
|
Nucleoside transporters: biological insights and therapeutic applications. Future Med Chem 2012; 4:1461-78. [DOI: 10.4155/fmc.12.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleoside transporters play important physiological roles by regulating intra- and extra-cellular concentrations of purine and pyrimidine (deoxy)nucleosides. This review describes the biological function and activity of the two major families of membrane nucleoside transporters that exist in mammalian cells. These include equilibrative nucleoside transporters that transport nucleosides in a gradient-dependent fashion and concentrative nucleoside transporters that import nucleosides against a gradient by coupling movement with sodium transport. Particular emphasis is placed on describing the roles of nucleoside transport in normal physiological processes, including inflammation, cardiovascular function and nutrient transport across the blood–brain barrier. In addition, the role of nucleoside transport in pathological conditions such as cardiovascular disease and cancer are discussed. The potential therapeutic applications of manipulating nucleoside transport activities are discussed, focusing on nucleoside analogs as anti-neoplastic agents. Finally, we discuss future directions for the development of novel chemical entities to measure nucleoside transport activity at the cellular and organismal level.
Collapse
|
16
|
Cavanagh BL, Walker T, Norazit A, Meedeniya AC. Thymidine analogues for tracking DNA synthesis. Molecules 2011; 16:7980-93. [PMID: 21921870 PMCID: PMC6264245 DOI: 10.3390/molecules16097980] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/08/2011] [Indexed: 01/24/2023] Open
Abstract
Replicating cells undergo DNA synthesis in the highly regulated, S-phase of the cell cycle. Analogues of the pyrimidine deoxynucleoside thymidine may be inserted into replicating DNA, effectively tagging dividing cells allowing their characterisation. Tritiated thymidine, targeted using autoradiography was technically demanding and superseded by 5-bromo-2-deoxyuridine (BrdU) and related halogenated analogues, detected using antibodies. Their detection required the denaturation of DNA, often constraining the outcome of investigations. Despite these limitations BrdU alone has been used to target newly synthesised DNA in over 20,000 reviewed biomedical studies. A recent breakthrough in “tagging DNA synthesis” is the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU). The alkyne group in EdU is readily detected using a fluorescent azide probe and copper catalysis using ‘Huisgen’s reaction’ (1,3-dipolar cycloaddition or ‘click chemistry’). This rapid, two-step biolabelling approach allows the tagging and imaging of DNA within cells whilst preserving the structural and molecular integrity of the cells. The bio-orthogonal detection of EdU allows its application in more experimental assays than previously possible with other “unnatural bases”. These include physiological, anatomical and molecular biological experimentation in multiple fields including, stem cell research, cancer biology, and parasitology. The full potential of EdU and related molecules in biomedical research remains to be explored.
Collapse
Affiliation(s)
- Brenton L. Cavanagh
- Health Institute and Eskitis Institute, Griffith University, Queensland 4107, Australia
| | - Tom Walker
- Health Institute and Eskitis Institute, Griffith University, Queensland 4107, Australia
| | - Anwar Norazit
- Health Institute and Eskitis Institute, Griffith University, Queensland 4107, Australia
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Adrian C.B. Meedeniya
- Health Institute and Eskitis Institute, Griffith University, Queensland 4107, Australia
- Author to whom correspondence should be addressed; ; Tel.: +61-7-3735-4417, Fax: +61-7-3735-4255
| |
Collapse
|
17
|
Abstract
BACKGROUND Nucleoside/nucleobase transporters have been investigated since the 1960s. In particular, equilibrative nucleoside transporters were thought to be valuable drug targets, since they are involved in various kinds of viral and parasitic diseases as well as cancers. DISCUSSION In the postgenomic era multiple transporters, including different subtypes, have been cloned and characterized on the molecular level. In this article we summarize recent advances regarding structure, function and localization of nucleoside/nucleobase transporters as well as the pharmacological profile of selected drugs. CONCLUSION Knowledge of the different kinetic properties and structural features of nucleoside transporters can either be used for the rational design of therapeutics directly targeting the transporter itself or for the delivery of drugs using the transporter as a port of entry into the target cell. Equilibrative nucleoside transporters are of considerable pharmacological interest as drug targets for the development of drugs tailored to each patient's need for the treatment of cardiac disease, cancer and viral infections.
Collapse
|
18
|
Damaraju VL, Smith KM, Mowles D, Nowak I, Karpinski E, Young JD, Robins MJ, Cass CE. Interaction of fused-pyrimidine nucleoside analogs with human concentrative nucleoside transporters: High-affinity inhibitors of human concentrative nucleoside transporter 1. Biochem Pharmacol 2011; 81:82-90. [DOI: 10.1016/j.bcp.2010.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/09/2010] [Accepted: 09/13/2010] [Indexed: 02/03/2023]
|
19
|
Marvi M, Rose JB, Bang A, Moon BC, Pozeg Z, Ibrahim M, Peniston C, Coe IR. Nucleoside transporter expression profiles in human cardiac tissue show striking individual variability with overall predominance of hENT1. Eur J Pharm Sci 2010; 41:685-91. [PMID: 20883780 DOI: 10.1016/j.ejps.2010.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 11/25/2022]
Abstract
Nucleoside transporters (NTs) are integral membrane transport proteins that modulate the flux of nucleosides such as adenosine across cell membranes. Two families of NTs exist, the concentrative NTs (CNTs, SLC28) and the equilibrative NTs (ENTs, SLC29). CNTs and ENTs transport anti-cancer and anti-viral nucleoside analog drugs and ENTs are also targets of drugs used to treat cardiac pathologies. Levels of some NT profiles have been shown to relate to clinical outcomes in the use of nucleoside analog drugs. However, currently, patient NT profile is not assessed prior to pharmacological administration of analog drugs. Here we describe a reliable method to determine a complete individual NT expression profile from human tissue using quantitative real-time PCR. We developed this assay on tissue (right atrial appendage, left internal mammary, aorta) from individuals undergoing cardiac surgery and compared these findings to the NT expression profiles in pooled whole heart tissue (normal and diseased). Data show that hENT1 is the most abundantly expressed NT, with highest expression levels in the aorta. However, NT expression profiles are highly variable among individuals and changes in NT expression between normal and diseased tissues were observed. These data are the first to describe the RNA expression patterns of all seven NT isoforms in the human heart. The methodology described here may be useful for quantitatively characterizing complete NT expression profiles in any human target tissue.
Collapse
Affiliation(s)
- Melissa Marvi
- Department of Biology, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Velasco-Loyden G, Pérez-Carreón JI, Agüero JFC, Romero PC, Vidrio-Gómez S, Martínez-Pérez L, Yáñez-Maldonado L, Hernández-Muñoz R, Macías-Silva M, de Sánchez VC. Prevention of in vitro hepatic stellate cells activation by the adenosine derivative compound IFC305. Biochem Pharmacol 2010; 80:1690-9. [PMID: 20813095 DOI: 10.1016/j.bcp.2010.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 01/31/2023]
Abstract
We have previously shown that adenosine and the aspartate salt of adenosine (IFC305) reverse pre-established CCl(4)-induced cirrhosis in rats. However, their molecular mechanism of action is not clearly understood. Hepatic stellate cells (HSC) play a pivotal role in liver fibrogenesis leading to cirrhosis, mainly through their activation, changing from a quiescent adipogenic state to a proliferative myofibrogenic condition. Therefore, we decided to investigate the effect of IFC305 on primary cultured rat HSC. Our results reveal that this compound suppressed the activation of HSC, as demonstrated by the maintenance of a quiescent cell morphology, including lipid droplets content, inhibition of α-smooth muscle actin (α-SMA) and collagen α1(I) expression, and up-regulation of MMP-13, Smad7, and PPARγ expression, three key antifibrogenic genes. Furthermore, IFC305 was able to repress the platelet-derived growth factor (PDGF)-induced proliferation of HSC. This inhibition was independent of adenosine receptors stimulation; instead, IFC305 was incorporated into cells by adenosine transporters and converted to AMP by adenosine kinase. On the other hand, addition of pyrimidine ribonucleoside as uridine reversed the suppressive effect of IFC305 on the proliferation and activation of HSC, suggesting that intracellular pyrimidine starvation would be involved in the molecular mechanism of action of IFC305. In conclusion, IFC305 inhibits HSC activation and maintains their quiescence in vitro; these results could explain in part the antifibrotic liver beneficial effect previously described for this compound on the animal model.
Collapse
Affiliation(s)
- Gabriela Velasco-Loyden
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México 04510, D.F., Apdo. postal 70-243, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Santini D, Vincenzi B, Fratto ME, Perrone G, Lai R, Catalano V, Cass C, Ruffini PA, Spoto C, Muretto P, Rizzo S, Muda AO, Mackey JR, Russo A, Tonini G, Graziano F. Prognostic role of human equilibrative transporter 1 (hENT1) in patients with resected gastric cancer. J Cell Physiol 2010; 223:384-8. [PMID: 20082300 DOI: 10.1002/jcp.22045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleoside transporter proteins are specialized proteins that mediate the transport of nucleosides and nucleoside analog drugs across the plasma membrane. The human equilibrative nucleoside transporter 1 (hENT1) is a member of these proteins and mediates cellular entry of gemcitabine, cytarabine, and fludarabine. The hENT1 expression has been demonstrated to be related with prognosis and activity of gemcitabine-based therapy in breast, ampullary, lung, and pancreatic cancer. We investigated the immunohistochemical expression of hENT in tumor samples from 111 patients with resected gastric adenocarcinoma, correlating these data with clinical parameters and disease outcomes. None of the patients received chemotherapy or radiation therapy before or after surgery as a part of an adjuvant or neoadjuvant program. On univariate survival analysis, the hENT1 expression was associated with overall survival (OS) and disease free survival (DFS). Specifically, those patients with overexpression of hENT1 showed a shorter OS (P = 0.021) and a shorter DFS (P = 0.033). Considering only the node positive patients, higher hENT levels were associated with significantly shorter median DFS (21.7 months; 95% CI 11.1-32.4) compared with patients with low expression of hENT1. The hENT1 expression was defined, in the lymph-node positive patients, as an independent prognostic factor (P = 0.019). Furthermore, considering only patients with diffuse or mixed tumors and lymph-node positive, the expression of hENT1 was strongly related with DFS and OS. Immunohistochemistry for the hENT1 protein carries prognostic information in patients with resected gastric cancer and holds promise as a predictive factor in chemotherapy decisions.
Collapse
|
22
|
Brueckner B, Rius M, Markelova MR, Fichtner I, Hals PA, Sandvold ML, Lyko F. Delivery of 5-Azacytidine to Human Cancer Cells by Elaidic Acid Esterification Increases Therapeutic Drug Efficacy. Mol Cancer Ther 2010; 9:1256-64. [DOI: 10.1158/1535-7163.mct-09-1202] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Reyes G, Naydenova Z, Abdulla P, Chalsev M, Villani A, Rose JB, Chaudary N, DeSouza L, Siu KWM, Coe IR. Characterization of mammalian equilibrative nucleoside transporters (ENTs) by mass spectrometry. Protein Expr Purif 2010; 73:1-9. [PMID: 20399865 DOI: 10.1016/j.pep.2010.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Equilibrative nucleoside transporters (ENTs) are integral membrane proteins that facilitate the movement of nucleosides and hydrophilic nucleoside analog (NA) drugs across cell membranes. ENTs are also targets for cardioprotectant drugs, which block re-uptake of the purine nucleoside adenosine, thereby enhancing purinergic receptor signaling pathways. ENTs are therefore important contributors to drug bioavailability and efficacy. Despite this important clinical role, very little is known about the structure and regulation of ENTs. Biochemical and structural studies on ENT proteins have been limited by their low endogenous expression levels, hydrophobicity and labile nature. To address these issues, we developed an approach whereby tagged mammalian ENT1 protein was over-expressed in mammalian cell lines, confirmed to be functional and isolated by affinity purification to sufficient levels to be analyzed using MALDI-TOF and tandem MS mass spectrometry. This proteomic approach will allow for a more detailed analysis of the structure, function and regulation of ENTs in the future.
Collapse
Affiliation(s)
- German Reyes
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yamamoto S, Inoue K, Murata T, Kamigaso S, Yasujima T, Maeda JY, Yoshida Y, Ohta KY, Yuasa H. Identification and functional characterization of the first nucleobase transporter in mammals: implication in the species difference in the intestinal absorption mechanism of nucleobases and their analogs between higher primates and other mammals. J Biol Chem 2010; 285:6522-31. [PMID: 20042597 PMCID: PMC2825448 DOI: 10.1074/jbc.m109.032961] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/23/2009] [Indexed: 11/06/2022] Open
Abstract
Nucleobases are important compounds that constitute nucleosides and nucleic acids. Although it has long been suggested that specific transporters are involved in their intestinal absorption and uptake in other tissues, none of their molecular entities have been identified in mammals to date. Here we describe identification of rat Slc23a4 as the first sodium-dependent nucleobase transporter (rSNBT1). The mRNA of rSNBT1 was expressed highly and only in the small intestine. When transiently expressed in HEK293 cells, rSNBT1 could transport uracil most efficiently. The transport of uracil mediated by rSNBT1 was sodium-dependent and saturable with a Michaelis constant of 21.2 microM. Thymine, guanine, hypoxanthine, and xanthine were also transported, but adenine was not. It was also suggested by studies of the inhibitory effect on rSNBT1-mediated uracil transport that several nucleobase analogs such as 5-fluorouracil are recognized by rSNBT1, but cytosine and nucleosides are not or only poorly recognized. Furthermore, rSNBT1 fused with green fluorescent protein was mainly localized at the apical membrane, when stably expressed in polarized Madin-Darby canine kidney II cells. These characteristics of rSNBT1 were almost fully in agreement with those of the carrier-mediated transport system involved in intestinal uracil uptake. Therefore, it is likely that rSNBT1 is its molecular entity or at least in part responsible for that. It was also found that the gene orthologous to the rSNBT1 gene is genetically defective in humans. This may have a biological and evolutional meaning in the transport and metabolism of nucleobases. The present study provides novel insights into the specific transport and metabolism of nucleobases and their analogs for therapeutic use.
Collapse
Affiliation(s)
- Syunsuke Yamamoto
- From the Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Katsuhisa Inoue
- From the Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Tomoaki Murata
- From the Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Syunsuke Kamigaso
- From the Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Tomoya Yasujima
- From the Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Jun-ya Maeda
- From the Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yukihiro Yoshida
- From the Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kin-ya Ohta
- From the Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hiroaki Yuasa
- From the Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
25
|
Cheng FC, Feng JJ, Chen KH, Imanishi H, Fujishima M, Takekoshi H, Naoki Y, Shimoda M. Receptor binding activities of Chlorella on cysteinyl leukotriene CysLT, glutamate AMPA, ion channels, purinergic P 2Y, tachykinin NK2 receptors and adenosine transporter. Phytother Res 2010; 24:43-8. [PMID: 19517465 DOI: 10.1002/ptr.2864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A Chlorella powder was tested in a total of 129 in vitro receptor binding assay systems. The results showed a potent inhibition of this powder on cysteinyl leukotriene CysLT2, and glutamate AMPA in a dose-concentration manner with IC(50) mean +/- SEM values of 20 +/- 4.5 microg/mL and 44 +/- 14 microg/mL, respectively. Other moderate and weak activities reflected in competitive binding experiments were seen versus adenosine transporter; calcium channel L-type, benzothiazepine; gabapentin; kainate, NMDA-glycine; inositol trisphosphate IP(3); cysteinyl CysLT(1), LTB(4); purinergic P(2Y); tachykinin NK(2); serotonin 5-HT(2B) and prostanoid, thromboxane A(2). Together, the results suggest that the various inhibitory effects of Chlorella powder in these receptor binding assays could reflect its actions in modulating Ca(2+)-dependent signal related targets and might be relevant to the mechanisms of its biological effects. These results reveal important potential biochemical activities that might be exploited for the prevention or treatment of several pathologies. From these results, the possible therapeutic usage of the product is discussed.
Collapse
Affiliation(s)
- Fong-Chi Cheng
- MDS Pharma Services Taiwan Ltd, 158 Li-Teh Road, Peitou, Taipei, 112, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Interaction of benzopyranone derivatives and related compounds with human concentrative nucleoside transporters 1, 2 and 3 heterologously expressed in porcine PK15 nucleoside transporter deficient cells. Structure–activity relationships and determinants of transporter affinity and selectivity. Biochem Pharmacol 2010; 79:307-20. [DOI: 10.1016/j.bcp.2009.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 11/23/2022]
|
27
|
Mori N, Yokooji T, Kamio Y, Murakami T. Study on intestinal absorption sites of mizoribine and ribavirin, substrates for concentrative nucleoside transporter(s), in rats. Eur J Pharmacol 2010; 628:214-9. [DOI: 10.1016/j.ejphar.2009.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 11/14/2009] [Accepted: 11/23/2009] [Indexed: 02/07/2023]
|
28
|
Paproski RJ, Young JD, Cass CE. Predicting gemcitabine transport and toxicity in human pancreatic cancer cell lines with the positron emission tomography tracer 3'-deoxy-3'-fluorothymidine. Biochem Pharmacol 2010; 79:587-95. [PMID: 19788890 DOI: 10.1016/j.bcp.2009.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 12/14/2022]
Abstract
The abundance of human equilibrative nucleoside transporter 1 (hENT1) has recently been shown to be a predictive marker of benefit from gemcitabine therapy in patients with pancreatic cancer. Since hENT1 is also important for the uptake of positron emission tomography (PET) tracer 3'-deoxy-3'-fluorothymidine (FLT) in various cultured human cell lines, this study was undertaken to determine if FLT uptake predicts gemcitabine uptake and/or toxicity in a panel of human pancreatic cancer cell lines (Capan-2, AsPC-1, BxPC-3, PL45, MIA PaCa-2, and PANC-1). Capan-2 cells displayed the lowest levels of (1) extracellular nitrobenzylmercaptopurine ribonucleoside (NBMPR) binding, which represents cell-surface hENT1, (2) FLT and gemcitabine uptake during short (1-45s) and prolonged (1h) periods, and (3) gemcitabine sensitivity. Exposure to NBMPR (inhibits only hENT1) or dilazep (inhibits hENT1 and hENT2) reduced FLT and gemcitabine uptake and gemcitabine sensitivity, with dilazep having greater effects than NBMPR. Gemcitabine permeation was almost completely mediated, primarily by hENT1 and to a lesser extent by hENT2, whereas FLT permeation included a substantial component of passive diffusion. In five of six cell lines, correlations were observed between (1) FLT and gemcitabine initial rates of uptake, (2) gemcitabine uptake and gemcitabine toxicity, (3) FLT uptake and gemcitabine toxicity, and (4) ribonucleotide reductase subunit M1 expression and gemcitabine toxicity. FLT and gemcitabine uptake were comparable for predicting gemcitabine toxicity in the tested pancreatic cancer cell lines suggesting that FLT PET may provide clinically useful information about tumor gemcitabine transport capacity and sensitivity.
Collapse
Affiliation(s)
- Robert J Paproski
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
29
|
Bergman AM, Adema AD, Balzarini J, Bruheim S, Fichtner I, Noordhuis P, Fodstad O, Myhren F, Sandvold ML, Hendriks HR, Peters GJ. Antiproliferative activity, mechanism of action and oral antitumor activity of CP-4126, a fatty acid derivative of gemcitabine, in in vitro and in vivo tumor models. Invest New Drugs 2010; 29:456-66. [PMID: 20066470 PMCID: PMC3076580 DOI: 10.1007/s10637-009-9377-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/11/2009] [Indexed: 11/28/2022]
Abstract
Gemcitabine is a deoxycytidine (dCyd) analog with activity in leukemia and solid tumors, which requires phosphorylation by deoxycytidine kinase (dCK). Decreased membrane transport is a mechanism of resistance to gemcitabine. In order to facilitate gemcitabine uptake and prolong retention in the cell, a lipophilic pro-drug was synthesized (CP-4126), with an elaidic fatty acid esterified at the 5'position. CP-4126 was tested in cell lines resistant to cytarabine, another dCyd analog or gemcitabine. Activity of gemcitabine and the derivative was comparable in the parent cell lines, while in dCK deficient cells all compounds were inactive. However, inhibition of nucleoside transport increased the IC(50) for gemcitabine up to 200-fold, but not for CP-4126, underlining the independence of a nucleoside transporter. For in vivo evaluation, nude mice bearing a human xenograft were treated intraperitoneally every third day for five doses at the maximal tolerated dose. In melanoma, sarcoma, lung, prostate, pancreatic and breast cancer xenografts, gemcitabine and CP-4126 were equally and highly effective; in four other xenografts moderately but equally active. In contrast to gemcitabine, CP-4126 could be administered orally, with a schedule and dose dependent toxicity and antitumor activity. In a colon cancer xenograft, antitumor activity of orally administered CP-4126 was equal to the intraperitoneally administered drug. In conclusion, CP-4126 is membrane transporter independent. Intraperitoneally administered CP-4126 was as effective as gemcitabine in several xenografts and CP-4126 is tolerated when orally administered. CP-4126 seems to be a promising new anticancer drug.
Collapse
Affiliation(s)
- Andries M Bergman
- Department of Medical Oncology, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Arendt CS, Ullman B. Role of transmembrane domain 4 in ligand permeation by Crithidia fasciculata equilibrative nucleoside transporter 2 (CfNT2). J Biol Chem 2009; 285:6024-35. [PMID: 20037157 DOI: 10.1074/jbc.m109.074351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Equilibrative nucleoside transporters play essential roles in nutrient uptake, cardiovascular and renal function, and purine analog drug chemotherapies. Limited structural information is available for this family of transporters; however, residues in transmembrane domains 1, 2, 4, and 5 appear to be important for ligand and inhibitor binding. In order to identify regions of the transporter that are important for ligand specificity, a genetic selection for mutants of the inosine-guanosine-specific Crithidia fasciculata nucleoside transporter 2 (CfNT2) that had gained the ability to transport adenosine was carried out in the yeast Saccharomyces cerevisiae. Nearly all positive clones from the genetic selection carried mutations at lysine 155 in transmembrane domain 4, highlighting lysine 155 as a pivotal residue governing the ligand specificity of CfNT2. Mutation of lysine 155 to asparagine conferred affinity for adenosine on the mutant transporter at the expense of inosine and guanosine affinity due to weakened contacts to the purine ring of the ligand. Following systematic cysteine-scanning mutagenesis, thiol-specific modification of several positions within transmembrane domain 4 was found to interfere with inosine transport capability, indicating that this helix lines the water-filled ligand translocation channel. Additionally, the pattern of modification of transmembrane domain 4 suggested that it may deviate from helicity in the vicinity of residue 155. Position 155 was also protected from modification in the presence of ligand, suggesting that lysine 155 is in or near the ligand binding site. Transmembrane domain 4 and particularly lysine 155 appear to play key roles in ligand discrimination and translocation by CfNT2.
Collapse
Affiliation(s)
- Cassandra S Arendt
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon 97123, USA.
| | | |
Collapse
|
31
|
Rose JB, Naydenova Z, Bang A, Eguchi M, Sweeney G, Choi DS, Hammond JR, Coe IR. Equilibrative nucleoside transporter 1 plays an essential role in cardioprotection. Am J Physiol Heart Circ Physiol 2009; 298:H771-7. [PMID: 20035027 DOI: 10.1152/ajpheart.00711.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To better understand the role of equilibrative nucleoside transporters (ENT) in purine nucleoside-dependent physiology of the cardiovascular system, we investigated whether the ENT1-null mouse heart was cardioprotected in response to ischemia (coronary occlusion for 30 min followed by reperfusion for 2 h). We observed that ENT1-null mouse hearts showed significantly less myocardial infarction compared with wild-type littermates. We confirmed that isolated wild-type adult mouse cardiomyocytes express predominantly ENT1, which is primarily responsible for purine nucleoside uptake in these cells. However, ENT1-null cardiomyocytes exhibit severely impaired nucleoside transport and lack ENT1 transcript and protein expression. Adenosine receptor expression profiles and expression levels of ENT2, ENT3, and ENT4 were similar in cardiomyocytes isolated from ENT1-null adult mice compared with cardiomyocytes isolated from wild-type littermates. Moreover, small interfering RNA knockdown of ENT1 in the cardiomyocyte cell line, HL-1, mimics findings in ENT1-null cardiomyocytes. Taken together, our data demonstrate that ENT1 plays an essential role in cardioprotection, most likely due to its effects in modulating purine nucleoside-dependent signaling and that the ENT1-null mouse is a powerful model system for the study of the role of ENTs in the physiology of the cardiomyocyte.
Collapse
|
32
|
Collar CJ, Al-Salabi MI, Stewart ML, Barrett MP, Wilson WD, de Koning HP. Predictive computational models of substrate binding by a nucleoside transporter. J Biol Chem 2009; 284:34028-35. [PMID: 19808668 PMCID: PMC2797173 DOI: 10.1074/jbc.m109.049726] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 08/21/2009] [Indexed: 11/06/2022] Open
Abstract
Transporters play a vital role in both the resistance mechanisms of existing drugs and effective targeting of their replacements. Melarsoprol and diamidine compounds similar to pentamidine and furamidine are primarily taken up by trypanosomes of the genus Trypanosoma brucei through the P2 aminopurine transporter. In standardized competition experiments with [(3)H]adenosine, P2 transporter inhibition constants (K(i)) have been determined for a diverse dataset of adenosine analogs, diamidines, Food and Drug Administration-approved compounds and analogs thereof, and custom-designed trypanocidal compounds. Computational biology has been employed to investigate compound structure diversity in relation to P2 transporter interaction. These explorations have led to models for inhibition predictions of known and novel compounds to obtain information about the molecular basis for P2 transporter inhibition. A common pharmacophore for P2 transporter inhibition has been identified along with other key structural characteristics. Our model provides insight into P2 transporter interactions with known compounds and contributes to strategies for the design of novel antiparasitic compounds. This approach offers a quantitative and predictive tool for molecular recognition by specific transporters without the need for structural or even primary sequence information of the transport protein.
Collapse
Affiliation(s)
- Catharine J Collar
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | |
Collapse
|
33
|
Roa H, Gajardo C, Troncoso E, Fuentealba V, Escudero C, Yáñez A, Sobrevia L, Pastor-Anglada M, Quezada C, San Martin R. Adenosine mediates transforming growth factor-beta 1 release in kidney glomeruli of diabetic rats. FEBS Lett 2009; 583:3192-8. [PMID: 19737558 DOI: 10.1016/j.febslet.2009.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/18/2009] [Accepted: 09/02/2009] [Indexed: 01/13/2023]
Abstract
Up regulation of the transforming growth factor-beta 1 (TGF-beta1) axis has been recognized as a pathogenic event for progression of glomerulosclerosis in diabetic nephropathy. We demonstrate that glomeruli isolated from diabetic rats accumulate up to sixfold more extracellular adenosine than normal rats. Both decreased nucleoside uptake activity by the equilibrative nucleoside transporter 1 and increased AMP hydrolysis contribute to raise extracellular adenosine. Ex vivo assays indicate that activation of the low affinity adenosine A2B receptor subtype (A2BAR) mediates TGF-beta1 release from glomeruli of diabetic rats, a pathogenic event that could support progression of glomerulopathy when the bioavailability of adenosine is increased.
Collapse
Affiliation(s)
- H Roa
- Laboratorio Patología Molecular, Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
He L, Vasiliou K, Nebert DW. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 2009; 3:195-206. [PMID: 19164095 PMCID: PMC2752037 DOI: 10.1186/1479-7364-3-2-195] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The solute-carrier gene (SLC) superfamily encodes membrane-bound transporters. The SLC superfamily comprises 55 gene families having at least 362 putatively functional protein-coding genes. The gene products include passive transporters, symporters and antiporters, located in all cellular and organelle membranes, except, perhaps, the nuclear membrane. Transport substrates include amino acids and oligopeptides, glucose and other sugars, inorganic cations and anions (H+, HCO3-, Cl-, Na+, K+, Ca2+, Mg2+, PO43-, HPO42-, H2PO4-, SO42-, C2O42-, OH-,CO32-), bile salts, carboxylate and other organic anions, acetyl coenzyme A, essential metals, biogenic amines, neurotransmitters, vitamins, fatty acids and lipids, nucleosides, ammonium, choline, thyroid hormone and urea. Contrary to gene nomenclature commonly assigned on the basis of evolutionary divergence http://www.genenames.org/, the SLC gene superfamily has been named based largely on transporter function by proteins having multiple transmembrane domains. Whereas all the transporters exist for endogenous substrates, it is likely that drugs, non-essential metals and many other environmental toxicants are able to 'hitch-hike' on one or another of these transporters, thereby enabling these moieties to enter (or leave) the cell. Understanding and characterising the functions of these transporters is relevant to medicine, genetics, developmental biology, pharmacology and cancer chemotherapy.
Collapse
Affiliation(s)
- Lei He
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
35
|
Yee SW, Shima JE, Hesselson S, Nguyen L, De Val S, Lafond RJ, Kawamoto M, Johns SJ, Stryke D, Kwok PY, Ferrin TE, Black BL, Gurwitz D, Ahituv N, Giacomini KM. Identification and characterization of proximal promoter polymorphisms in the human concentrative nucleoside transporter 2 (SLC28A2). J Pharmacol Exp Ther 2009; 328:699-707. [PMID: 19098160 PMCID: PMC2682268 DOI: 10.1124/jpet.108.147207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/16/2008] [Indexed: 11/22/2022] Open
Abstract
The human concentrative nucleoside transporter 2 (CNT2) plays an important role in the absorption, disposition, and biological effects of endogenous nucleosides and nucleoside analog drugs. We identified genetic variation in the basal promoter region of CNT2 and characterized the function of the variants. We screened DNA from an ethnically diverse population and identified five basal promoter variants in CNT2. Three major haplotypes in the CNT2 basal promoter region were identified and were found at different allele frequencies in various ethnic groups. The common promoter variants and haplotypes were constructed and characterized for their promoter activity using luciferase reporter assays. One polymorphic variant, rs2413775 (-146T>A), with an allele frequency >20% in all populations, showed a gain of function in luciferase activity. Furthermore, in vivo mouse promoter assays of these nucleotide variants using the hydrodynamic tail vein injection, leading to their expression in the liver, demonstrated similar results. Transcription factor binding site (TFBS) analysis indicated this variant alters a hepatic nuclear factor (HNF) 1 TFBS. Electrophoretic mobility shift assay demonstrated stronger binding of HNF1alpha and weaker binding of HNF1beta to the -146T and -146A regions, whereas the single nucleotide polymorphism (SNP), -146A, exhibited enhanced binding to both HNF1alpha and HNF1beta, consistent with its greater activity in reporter assays. The data collectively suggest that the common variant, -146T>A, in the proximal promoter of CNT2 may result in an enhanced transcription rate of the gene and, thus, expression levels of CNT2. This SNP may play a role in variation in the pharmacokinetics and pharmacological effects of nucleoside analogs.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Biopharmaceutical Sciences, University of California, 1550 4th Street, RH584, Box 2911, San Francisco, CA 94158-2911, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|