1
|
Ward K, Kitchen MO, Mathias SJ, Khanim FL, Bryan RT. Novel intravesical therapeutics in the treatment of non-muscle invasive bladder cancer: Horizon scanning. Front Surg 2022; 9:912438. [PMID: 35959122 PMCID: PMC9360612 DOI: 10.3389/fsurg.2022.912438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Non-muscle-invasive bladder cancer (NMIBC) is a common and heterogeneous disease; many patients develop recurrent or progress to muscle-invasive disease. Intravesical drug therapy is a pillar in the current management of NMIBC; notwithstanding, Mitomycin C (MMC) and Bacillus Calmette-Guérin (BCG) have numerous limitations including international supply issues, and local and systemic toxicity. Here we review novel intravesical therapeutic options and drug delivery devices with potential for clinical use in the treatment of NMIBC. Methods PubMed, ClinicalTrials.gov and Cochrane Library searches were undertaken. Systematic reviews, meta-analyses, randomised controlled trials, single-arm clinical trials and national/international conference proceedings were included. Results Novel intravesical drugs, including chemotherapeutic agents, immune checkpoint inhibitors, monoclonal antibodies and gene therapies, have demonstrated varying efficacy in the treatment of NMIBC. Current evidence for the majority of treatments is mostly limited to single-arm trials in patients with recurrent NMIBC. Various novel methods of drug delivery have also been investigated, with encouraging preliminary results supporting the intravesical delivery of hyperthermic MMC and MMC hydrogel formulations. Conclusions Novel therapeutic agents and drug delivery systems will be important in the future intravesical management of NMIBC. As our understanding of the molecular diversity of NMIBC develops, molecular subtyping will become fundamental in the personalisation of intravesical treatments. Further randomised studies are urgently required to investigate the efficacy of novel intravesical treatments and novel regimens, in comparison to current standards-of-care, particularly in the context of international BCG shortages.
Collapse
Affiliation(s)
- Kelly Ward
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Mark O Kitchen
- School of Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Suresh-Jay Mathias
- New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Farhat L Khanim
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Richard T Bryan
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Gemcitabine Cooperates with Everolimus to Inhibit the Growth of and Sensitize Malignant Meningioma Cells to Apoptosis Induced by Navitoclax, an Inhibitor of Anti-Apoptotic BCL-2 Family Proteins. Cancers (Basel) 2022; 14:cancers14071706. [PMID: 35406478 PMCID: PMC8997110 DOI: 10.3390/cancers14071706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Meningioma is the most common intracranial neoplasm derived from the arachnoid cap cells of the leptomeninges. Malignant meningioma is generally more aggressive than other meningioma and frequently recurs even after surgery and radiation therapy. Clinical trials have been performed on candidate drugs, including everolimus, an inhibitor of mammalian target of rapamycin. However, an effective standard systemic therapy has not yet been established and the prognosis of patients with malignant meningioma is still poor. We recently reported the radiosensitization effects of gemcitabine in malignant meningioma cells, which suggests its potential to enhance the efficacy of candidate drugs for meningioma. In the present study, we demonstrated that gemcitabine enhanced the therapeutic effects of everolimus in malignant meningioma cells, and these effects were further augmented by navitoclax, an inhibitor of anti-apoptotic BCL-2 family proteins, both in vitro and in vivo. The present results provide support for the clinical application of gemcitabine and navitoclax in combination with everolimus to the treatment of patients with malignant meningioma. Abstract Despite several clinical trials with encouraging findings, effective standard systemic therapies have yet to be established for malignant meningioma and the prognosis of these patients remains poor. Accumulating preclinical and clinical evidence suggests that gemcitabine is effective against malignant meningioma. To identify drugs with therapeutic effects that may be enhanced in combination with gemcitabine, we screened drugs that have been tested in preclinical and clinical trials for meningioma. In IOMM-Lee and HKBMM malignant meningioma cells, gemcitabine enhanced the growth inhibitory effects of the mTOR inhibitor everolimus, the clinical benefits of which have been demonstrated in patients with meningioma. The synergistic growth inhibitory effects of this combination were accompanied by cellular senescence characterized by an increase in senescence-associated β-galactosidase activity. To enhance the effects of this combination, we screened senolytic drugs that selectively kill senescent cells, and found that navitoclax, an inhibitor of anti-apoptotic BCL-2 family proteins, effectively reduced the number of viable malignant meningioma cells in combination with everolimus and gemcitabine by inducing apoptotic cell death. The suppression of tumor growth in vivo by the combination of everolimus with gemcitabine was significantly stronger than that by either treatment alone. Moreover, navitoclax, in combination with everolimus and gemcitabine, significantly reduced tumor sizes with an increase in the number of cleaved caspase-3-positive apoptotic cells. The present results suggest that the addition of gemcitabine with or without navitoclax to everolimus is a promising strategy that warrants further evaluation in future clinical trials for malignant meningioma.
Collapse
|
3
|
Gao X, Liu J, Fan D, Li X, Fang Z, Yan K, Fan Y. Berberine enhances gemcitabine‑induced cytotoxicity in bladder cancer by downregulating Rad51 expression through inactivating the PI3K/Akt pathway. Oncol Rep 2021; 47:33. [PMID: 34935059 DOI: 10.3892/or.2021.8244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xinghua Gao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jikai Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Daming Fan
- Department of Pathology, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Xiaofeng Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Keqiang Yan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yidong Fan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
4
|
Elucidating the mechanisms of action of parecoxib in the MG-63 osteosarcoma cell line. Anticancer Drugs 2021; 31:507-517. [PMID: 31934887 DOI: 10.1097/cad.0000000000000901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Different types of tumors often present an overexpression of cyclooxygenase-2. The aim of this study was to evaluate the effects of parecoxib (NSAID, cyclooxygenase-2 selective inhibitor) in the behavior of the human osteosarcoma MG-63 cell line, concerning several biological features. Cells were exposed to several concentrations of parecoxib for 48 hours. Cell viability/proliferation, cyclooxygenase-2 expression, morphologic alterations, membrane integrity, cell cycle evaluation, cell death and genotoxicity were evaluated. When compared with untreated cells, parecoxib led to a marked decrease in cell viability/proliferation, in COX-2 expression and changes in cell morphology, in a concentration-dependent manner. Cell recuperation was observed after incubation with drug-free medium. Parecoxib exposure increased lactate dehydrogenase release, an arrest of the cell cycle at S-phase and G2/M-phase, as well as growth of the sub-G0/G1-fraction and increased DNA damage. Parecoxib led to a slight increase of necrosis regulated cell death in treated cells, and an increase of autophagic vacuoles, in a concentration-dependent manner. In this study, parecoxib showed antitumor effects in the MG-63 human osteosarcoma cells. The potential mechanism was inhibiting cell proliferation and promoting necrosis. These results further suggested that parecoxib might be a potential candidate for in-vivo studies.
Collapse
|
5
|
Formisano L, Napolitano F, Rosa R, D'Amato V, Servetto A, Marciano R, De Placido P, Bianco C, Bianco R. Mechanisms of resistance to mTOR inhibitors. Crit Rev Oncol Hematol 2020; 147:102886. [PMID: 32014673 DOI: 10.1016/j.critrevonc.2020.102886] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
In several tumors the PI3K/AKT/mTOR pathway is frequently disrupted, an event that results in uncontrolled cell proliferation and tumor growth. Through the years, several compounds have been developed to inhibit the pathway at different steps: the mammalian target of rapamycin (mTOR) seemed to be the most qualified target. However, this kinase has such a key role in cell survival that mechanisms of resistance are rapidly developed. Nevertheless, clinical results obtained with mTOR inhibitors in breast cancer, renal cell carcinoma, neuroendocrine tumors and mantle cell lymphoma push oncologists to actively further develop these drugs, maybe by better selecting the population to which they are offered, through the research of predictive factors of responsiveness. In this review, we aim to describe mechanisms of resistance to mTOR inhibitors, from preclinical and clinical perspectives.
Collapse
Affiliation(s)
- Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberta Rosa
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Valentina D'Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberta Marciano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Cataldo Bianco
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", 88100, Catanzaro, Italy.
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
6
|
Dalbagni G, Benfante N, Sjoberg DD, Bochner BH, Machele Donat S, Herr HW, Mc Coy AS, Fahrner AJ, Retinger C, Rosenberg JE, Bajorin DF. Single Arm Phase I/II Study of Everolimus and Intravesical Gemcitabine in Patients with Primary or Secondary Carcinoma In Situ of the Bladder who failed Bacillus Calmette Guerin (NCT01259063). Bladder Cancer 2017; 3:113-119. [PMID: 28516156 PMCID: PMC5409047 DOI: 10.3233/blc-170095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Standard treatment for BCG-refractory urothelial cancer is radical cystectomy. Identification of active agents is clearly warranted. Objective: To determine a safe dose of oral everolimus in combination with standard intravesical gemcitabine and to evaluate the efficacy of this combination. Methods: Patients with carcinoma in situ refractory to intravesical bacillus Calmette-Guérin and refusing cystectomy were eligible. Patients in the phase I part of the trial received one of three dose levels of oral everolimus. Patients also received a fixed dose of intravesical gemcitabine. Maintenance everolimus was given for 12 months in patients achieving a complete response confirmed by cystoscopy and cytology. Patients in phase II received continuous everolimus administered at 10 mg daily with intravesical gemcitabine followed by everolimus maintenance for 12 months of total therapy. The enrollment goal for the phase II was 33 patients. Results: 14 patients were enrolled in phase I of the trial. 23 patients were enrolled in phase II of the trial and 19 were evaluable for primary and secondary endpoints. Four patients withdrew consent prior to treatment initiation. Of the 19 patients evaluable for response, 3 (16%, 95% confidence interval [CI] 3% – 40%) were disease free at 1 yr. The probability of RFS was 20% (95% CI 5% – 42%) at 12 months. Ten patients out of 19 had grade 3 or greater toxicity events. Seven withdrew consent or were taken off study. Conclusions: Many patients withdrew, and enrollment was halted. Continuous oral everolimus plus intravesical gemcitabine was not well tolerated in this patient population where the threshold for tolerability is low.
Collapse
Affiliation(s)
- Guido Dalbagni
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole Benfante
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel D Sjoberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernard H Bochner
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Machele Donat
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harry W Herr
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Asia S Mc Coy
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia J Fahrner
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caitlyn Retinger
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dean F Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Oliveira PA, Gil da Costa RM, Vasconcelos-Nóbrega C, Arantes-Rodrigues R, Pinto-Leite R. Challenges within vitroandin vivoexperimental models of urinary bladder cancer for novel drug discovery. Expert Opin Drug Discov 2016; 11:599-607. [DOI: 10.1080/17460441.2016.1174690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Bogoeva V, Siksjø M, Sæterbø KG, Melø TB, Bjørkøy A, Lindgren M, Gederaas OA. Ruthenium porphyrin-induced photodamage in bladder cancer cells. Photodiagnosis Photodyn Ther 2016; 14:9-17. [PMID: 26845686 DOI: 10.1016/j.pdpdt.2016.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT) is a noninvasive treatment for solid malignant and flat tumors. Light activated sensitizers catalyze photochemical reactions that produce reactive oxygen species which can cause cancer cell death. In this work we investigated the photophysical properties of the photosensitizer ruthenium(II) porphyrin (RuP), along with its PDT efficiency onto rat bladder cancer cells (AY27). Optical spectroscopy verified that RuP is capable to activate singlet oxygen via blue and red absorption bands and inter system crossing (ISC) to the triplet state. In vitro experiments on AY27 indicated increased photo-toxicity of RuP (20μM, 18h incubation) after cell illumination (at 435nm), as a function of blue light exposure. Cell survival fraction was significantly reduced to 14% after illumination of 20μM RuP with 15.6J/cm(2), whereas the "dark toxicity" of 20μM RuP was 17%. Structural and morphological changes of cells were observed, due to RuP accumulation, as well as light-dependent cell death was recorded by confocal microscopy. Flow cytometry verified that PDT-RuP (50μM) triggered significant photo-induced cellular destruction with a photoxicity of (93%±0.9%). Interestingly, the present investigation of RuP-PDT showed that the dominating mode of cell death is necrosis. RuP "dark toxicity" compared to the conventional chemotherapeutic drug cisplatin was higher, both evaluated by the MTT assay (24h). In conclusion, the present investigation shows that RuP with or without photoactivation induces cell death of bladder cancer cells.
Collapse
Affiliation(s)
- Vanya Bogoeva
- Department Molecular Biology of Cell Cycle, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. "G. Bonchev" Str., Bl. 21, Sofia 1113, Bulgaria.
| | - Monica Siksjø
- Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Kristin G Sæterbø
- Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Thor Bernt Melø
- Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Astrid Bjørkøy
- Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | - Odrun A Gederaas
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
9
|
Abida W, Milowsky MI, Ostrovnaya I, Gerst SR, Rosenberg JE, Voss MH, Apolo AB, Regazzi AM, McCoy AS, Boyd ME, Bajorin DF. Phase I Study of Everolimus in Combination with Gemcitabine and Split-Dose Cisplatin in Advanced Urothelial Carcinoma. Bladder Cancer 2016; 2:111-117. [PMID: 27376132 PMCID: PMC4927849 DOI: 10.3233/blc-150038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Cisplatin-based combination chemotherapy is standard first-line treatment for patients with advanced urothelial carcinoma (UC). Molecular profiling studies reveal that the PI3K/AKT/mTOR pathway is altered in a significant percentage of UCs. Objective: We conducted a phase I trial to evaluate the feasibility of combining the mTOR inhibitor everolimus with gemcitabine and split-dose cisplatin (GC) in advanced UC in the first-line setting. Methods: Patients received gemcitabine 800 mg/m2 and cisplatin 35 mg/m2 on days 1 and 8 of 21-day cycles for a total of 6 cycles in combination with everolimus at increasing dose levels (DL1:5 mg QOD, DL2:5 mg daily, DL3:10 mg daily) following a standard 3+3 design. Responses were assessed every 2 cycles. Patients with at least stable disease (SD) continued everolimus until progression. Goals were to establish dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) for the combination. Results: 12 patients were enrolled, 3 at DL1, 3 at DL2, and an additional 6 at DL1 *(DL1 following de-escalation). 3/3 patients at DL2 had DLTs during cycle 1. 2/8 evaluable patients at DL1/DL1 * had DLTs during cycle 1. DLTs were primarily hematologic. Further toxicities, also primarily hematologic, were observed during later treatment cycles, leading to 8 chemotherapy dose reductions overall. Partial responses were observed in 4/10 evaluable patients, and SD in 5/10. Median overall survival was 10.8 months (95% CI 6.9, not reached). Conclusions: The maximum tolerated dose was reached at the lowest dose level, 5 mg QOD, for everolimus in combination with gemcitabine and split-dose cisplatin in advanced UC. The regimen was limited by hematologic toxicity.
Collapse
Affiliation(s)
- Wassim Abida
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Matthew I Milowsky
- Division of Hematology and Oncology, UNC Lineberger Comprehensive Cancer Center , Chapel Hill, NC, USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Scott R Gerst
- Department of Radiology, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Martin H Voss
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | | | - Ashley M Regazzi
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Asia S McCoy
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Mariel E Boyd
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Dean F Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
10
|
Tang DH, Chang SS. Management of carcinoma in situ of the bladder: best practice and recent developments. Ther Adv Urol 2015; 7:351-64. [PMID: 26622320 DOI: 10.1177/1756287215599694] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Management of carcinoma in situ of the bladder remains a complex and challenging endeavor due to its high rate of recurrence and progression. Although it is typically grouped with other nonmuscle invasive bladder cancers, its higher grade and aggressiveness make it a unique clinical entity. Intravesical bacillus Calmette-Guérin is the standard first-line treatment given its superiority to other agents. However, high rates of bacillus Calmette-Guérin failure highlight the need for additional therapies. Radical cystectomy has traditional been the standard second-line therapy, but additional intravesical therapies may be more appealing for non-surgical candidates and patients refusing cystectomy. The subject of this review is the treatment strategies and available therapies currently available for carcinoma in situ of the bladder. It discusses alternative intravesical treatment options for patients whose condition has failed to respond to bacillus Calmette-Guérin therapy and who are unfit or unwilling to undergo cystectomy.
Collapse
Affiliation(s)
- Dominic H Tang
- Department of Urologic Surgery, Vanderbilt University Medical Center, MCN A-1302, Nashville, TN 37027, USA
| | - Sam S Chang
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
11
|
Costa C, Pereira S, Lima L, Peixoto A, Fernandes E, Neves D, Neves M, Gaiteiro C, Tavares A, Gil da Costa RM, Cruz R, Amaro T, Oliveira PA, Ferreira JA, Santos LL. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics. PLoS One 2015; 10:e0141253. [PMID: 26569621 PMCID: PMC4646664 DOI: 10.1371/journal.pone.0141253] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/06/2015] [Indexed: 01/01/2023] Open
Abstract
Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin). This decreased the number of invasive lesions and, concomitantly, the expression of STn and also pS6, the downstream effector of the PI3K/Akt/mTOR pathway. In conclusion, STn was found to be marker of poor prognosis in bladder cancer and, in combination with PI3K/Akt/mTOR pathway evaluation, holds potential to improve the stratification of stage disease. Animal experiments suggest that mTOR pathway inhibition could be a potential therapeutic approach for this specific subtype of MIBC.
Collapse
Affiliation(s)
- Céu Costa
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
- Health Sciences Faculty of University Fernando Pessoa, Porto, Portugal
| | - Sofia Pereira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
- Health Sciences Faculty of University Fernando Pessoa, Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
- Nucleo de Investigação e Informação em Farmácia - Centro de Investigação em Saúde e Ambiente (CISA), School of Allied Health Sciences – Polytechnic Institute of Oporto, Porto, Portugal
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - Diogo Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
- Department of Pathology, Portuguese Institute of Oncology, Porto, Portugal
| | - Rui M. Gil da Costa
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
- Faculty of Engineering, Laboratory for Process, Environment, Biotechnology and Energy Engineering (LEPABE), University of Porto, Porto, Portugal
| | - Ricardo Cruz
- Department of Urology, Portuguese Institute of Oncology, Porto, Portugal
| | - Teresina Amaro
- Department of Urology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Paula A. Oliveira
- Department of Veterinary Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
- Mass Spectrometry Center of the University of Aveiro, Campus de Santiago, Aveiro, Portugal
- * E-mail: (JAF); (LLS)
| | - Lúcio L. Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, Porto, Portugal
- Health Sciences Faculty of University Fernando Pessoa, Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
- * E-mail: (JAF); (LLS)
| |
Collapse
|
12
|
Afonso J, Longatto-Filho A, DA Silva VM, Amaro T, Santos LL. Phospho-mTOR in non-tumour and tumour bladder urothelium: Pattern of expression and impact on urothelial bladder cancer patients. Oncol Lett 2014; 8:1447-1454. [PMID: 25202348 PMCID: PMC4156165 DOI: 10.3892/ol.2014.2392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 06/24/2014] [Indexed: 12/28/2022] Open
Abstract
Urothelial bladder carcinoma (UBC) is heterogeneous in its pathology and clinical behaviour. Evaluation of prognostic and predictive biomarkers is necessary, in order to produce personalised treatment options. The present study used immunohistochemistry to evaluate UBC sections containing tumour and non-tumour areas from 76 patients, for the detection of p-mTOR, CD31 and D2-40 (blood and lymphatic vessels identification, respectively). Of the non-tumour and tumour sections, 36 and 20% were scored positive for p-mTOR expression, respectively. Immunoexpression was observed in umbrella cells from non-tumour urothelium, in all cell layers from non-muscle-invasive (NMI) tumours (including expression in superficial cells), and in spots of cells from muscle-invasive (MI) tumours. Positive expression decreased from non-tumour to tumour urothelium, and from pT1/pTis to pT3/pT4 tumours; however, the few pT3/pT4 positive cases had worse survival rates, with 5-year disease-free survival being significantly lower. Angiogenesis occurrence was impaired in pT3/pT4 tumours that did not express p-mTOR. In conclusion, p-mTOR expression in non-tumour umbrella cells is likely a reflection of their metabolic plasticity, and extension to the inner layers of the urothelium in NMI tumours is consistent with an enhanced malignant potential. The expression in cell spots in a few MI tumours and absence of expression in the remaining tumours is intriguing and requires further research. Additional studies regarding the up- and downstream effectors of the mTOR pathway should be conducted.
Collapse
Affiliation(s)
- Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Healh Sciences (ECS) University of Minho, Braga 4710-057, Portugal ; ICVS/3B's, PT Government Associate Laboratory, Braga 4710-057/Guimarães 4806-909, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Healh Sciences (ECS) University of Minho, Braga 4710-057, Portugal ; ICVS/3B's, PT Government Associate Laboratory, Braga 4710-057/Guimarães 4806-909, Portugal ; Laboratory of Medical Investigation (LIM 14), Faculty of Medicine, São Paulo State University, São Paulo 01246-000, Brazil ; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | | | - Teresina Amaro
- Experimental Pathology and Therapeutics Research Center, Portuguese Institute of Oncology (IPO), Porto 4200-072, Portugal
| | - Lúcio L Santos
- Department of Surgical Oncology, Portuguese Institute of Oncology (IPO), Porto 4200-072, Portugal ; Faculty of Health Sciences, University Fernando Pessoa, Porto 4200-150, Portugal
| |
Collapse
|
13
|
Pinto-Leite R, Arantes-Rodrigues R, Ferreira R, Palmeira C, Oliveira PA, Santos L. Treatment of muscle invasive urinary bladders tumors: A potential role of the mTOR inhibitors. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2014.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Pinto-Leite R, Carreira I, Melo J, Ferreira SI, Ribeiro I, Ferreira J, Filipe M, Bernardo C, Arantes-Rodrigues R, Oliveira P, Santos L. Genomic characterization of three urinary bladder cancer cell lines: understanding genomic types of urinary bladder cancer. Tumour Biol 2014; 35:4599-617. [PMID: 24459064 DOI: 10.1007/s13277-013-1604-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022] Open
Abstract
Several genomic regions are frequently altered and associated with the type, stage and progression of urinary bladder cancer (UBC). We present the characterization of 5637, T24 and HT1376 UBC cell lines by karyotyping, fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MLPA) analysis. Some cytogenetic anomalies present in UBC were found in the three cell lines, such as chromosome 20 aneuploidy and the loss of 9p21. Some gene loci losses (e.g. CDKN2A) and gains (e.g. HRAS, BCL2L1 and PTPN1) were coincident across all cell lines. Although some significant heterogeneity and complexity were detected between them, their genomic profiles exhibited a similar pattern to UBC. We suggest that 5637 and HT1376 represent the E2F3/RB1 pathway due to amplification of 6p22.3, concomitant with loss of one copy of RB1 and mutation of the remaining copy. The HT1376 presented a 10q deletion involving PTEN region and no alteration of PIK3CA region which, in combination with the inactivation of TP53, bears more invasive and metastatic properties than 5637. The T24 belongs to the alternative pathway of FGFR3/CCND1 by presenting mutated HRAS and over-represented CCND1. These cell lines cover the more frequent subtypes of UBC and are reliable models that can be used, as a group, in preclinical studies.
Collapse
Affiliation(s)
- Rosário Pinto-Leite
- Cytogenetic Laboratory, Department of Human Genetics, Hospital Center of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Synergistic effect between cisplatin and sunitinib malate on human urinary bladder-cancer cell lines. BIOMED RESEARCH INTERNATIONAL 2013; 2013:791406. [PMID: 24369536 PMCID: PMC3863483 DOI: 10.1155/2013/791406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/31/2013] [Indexed: 12/18/2022]
Abstract
The aim of this paper is to analyse sunitinib malate in vitro ability to enhance cisplatin cytotoxicity in T24, 5637, and HT1376 human urinary bladder-cancer cell lines. Cells were treated with cisplatin (3, 6, 13, and 18 μM) and sunitinib malate (1, 2, 4, 6, and 20 μM), either in isolation or combined, over the course of 72 hours. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, acridine orange, and monodansylcadaverine staining and flow cytometry were performed. The combination index (CI) was calculated based on the Chou and Talalay method. In isolation, cisplatin and sunitinib malate statistically (P < 0.05) decrease cell viability in all cell lines in a dose-dependent manner, with the presence of autophagic vacuoles. A cell cycle arrest in early S-phase and in G0/G1-phase was also found after exposure to cisplatin and sunitinib malate, in isolation, respectively. Treatment of urinary bladder-cancer cells with a combination of cisplatin and sunitinib malate showed a synergistic effect (CI < 1). Autophagy and apoptosis studies showed a greater incidence when the combined treatment was put into use. This hints at the possibility of a new combined therapeutic approach. If confirmed in vivo, this conjugation may provide a means of new perspectives in muscle-invasive urinary bladder cancer treatment.
Collapse
|
16
|
Temsirolimus improves cytotoxic efficacy of cisplatin and gemcitabine against urinary bladder cancer cell lines. Urol Oncol 2013; 32:41.e11-22. [PMID: 24035472 DOI: 10.1016/j.urolonc.2013.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To analyze the cytotoxic action of temsirolimus using 3 established human bladder cancer cell lines and to assess whether temsirolimus potentiates the anticancer activity of gemcitabine and cisplatin. METHODS Temsirolimus (500, 1,000, 2,000, and 4,000 nM), in isolation, and combined with gemcitabine (100 nM) and cisplatin (2.5 µg/ml), was given to 5637, T24, and HT1376 bladder cancer cell lines. Cell proliferation, autophagy, early apoptosis, and cell cycle distribution were analyzed after a 72-hour period. The expression of mammalian target of rapamycin baseline, Akt, and their phosphorylated forms, before and after treatment with temsirolimus, was evaluated by immunoblotting. RESULTS Temsirolimus slightly decreased the bladder cancer cell proliferation in all 3 cell lines. No significant differences in the expression of mammalian target of rapamycin, Akt, and their phosphorylated forms because of temsirolimus exposure were found in the 3 cell lines. As part of a combined regime along with gemcitabine, and especially with cisplatin, there was a more pronounced antiproliferative effect. This pattern of response was similar to the other parameters analyzed (increased autophagy and apoptosis). Also, in the combined regime, an enhanced cell cycle arrest in the G0/G1 phase was observed. The non-muscle invasive 5637 bladder cancer cell line was most sensitive to both combinations. CONCLUSIONS Temsirolimus makes a moderate contribution in terms of cell proliferation, apoptosis, and autophagy. However, it does potentiate the activity of gemcitabine and particularly cisplatin. Therefore, cisplatin- or gemcitabine-based chemotherapy regimen used in combination with temsirolimus to treat bladder cancer represents a novel and valuable treatment option, which should be tested for future studies in urinary bladder xenograft models.
Collapse
|
17
|
Meloxicam in the treatment of in vitro and in vivo models of urinary bladder cancer. Biomed Pharmacother 2013; 67:277-84. [DOI: 10.1016/j.biopha.2013.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/24/2013] [Indexed: 12/13/2022] Open
|
18
|
Tang K, Lin Y, Li LM. The Role of Phenethyl Isothiocyanate on Bladder Cancer ADM Resistance Reversal and Its Molecular Mechanism. Anat Rec (Hoboken) 2013; 296:899-906. [PMID: 23495258 DOI: 10.1002/ar.22677] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/20/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Tang
- Department of Urology, Tianjin Medical University General Hospital, 300052, China
| | | | | |
Collapse
|
19
|
CAI YUCHEN, XIA QING, SU QUANGUAN, LUO RONGZHEN, SUN YUELI, SHI YANXIA, JIANG WENQI. mTOR inhibitor RAD001 (everolimus) induces apoptotic, not autophagic cell death, in human nasopharyngeal carcinoma cells. Int J Mol Med 2013; 31:904-12. [DOI: 10.3892/ijmm.2013.1282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/27/2012] [Indexed: 11/05/2022] Open
|
20
|
Pinto-Leite R, Arantes-Rodrigues R, Palmeira C, Colaço B, Lopes C, Colaço A, Costa C, da Silva VM, Oliveira P, Santos L. Everolimus combined with cisplatin has a potential role in treatment of urothelial bladder cancer. Biomed Pharmacother 2012; 67:116-21. [PMID: 23433853 DOI: 10.1016/j.biopha.2012.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/23/2012] [Indexed: 12/26/2022] Open
Abstract
Cisplatin (CDDP)-based chemotherapy is a commonly treatment for advanced urothelial carcinoma. However, episodes of cisplatin resistance have been referenced. Recently it has been reported that everolimus (RAD001) could have an important role to play in bladder-cancer treatment and that mTOR inhibitors may restore chemosensitivity in resistant tumours. The aim of this study was to assess RAD001 in vitro ability to enhance CDDP cytotoxicity in three human bladder-cancer cell lines. Over the course of 72h, the cells were exposed to different concentrations of CDDP and RAD001, isolated or combined. Treatment with CDDP statistically (P<0.05) decreased cell proliferation in cell lines in a dose-dependent manner. The anti-proliferative activity of CDDP used in combination with RAD001 was statistically significant (P<0.05) in the cell lines at all concentrations tested. RAD001 had a therapeutic effect when used in combination with CDDP and could therefore be a useful anti-cancer drug combination for patients with bladder cancer.
Collapse
Affiliation(s)
- Rosário Pinto-Leite
- Genetic Service, Cytogenetic Laboratory, Hospital Center of Trás-os-Montes and Alto Douro, 5000-508, Vila Real, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu L, Gong L, Zhang Y, Li N. Glycolysis in Panc-1 human pancreatic cancer cells is inhibited by everolimus. Exp Ther Med 2012; 5:338-342. [PMID: 23251295 PMCID: PMC3523959 DOI: 10.3892/etm.2012.787] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to evaluate the effects and molecular mechanisms of everolimus on Panc-1 human pancreatic cancer cells. Panc-1 human pancreatic cancer cells were treated with everolimus (10 μg/ml) at selected time points (6, 12 and 24 h). Cell proliferation and apoptosis were evaluated by MTT and flow cytometric analyses. The glycolytic activity was determined by measuring the activity of the key enzyme lactate dehydrogenase (LDH) and lactate production. The activity of mammalian target of rapamycin (mTOR) signaling was measured by western blotting. The expression of genes, including hexokinase 2 (HK2) and microRNA-143 (miR-143), was evaluated by real-time polymerase chain reaction (PCR). The administration of everolimus time-dependently inhibited proliferation and glycolysis and induced apoptosis in the Panc-1 human pancreatic cancer cells. As the time of treatment with everolimus increased, the mTOR signaling activity decreased, indicated by lower phosphorylation levels of S6 kinase; however, the phosphorylation levels of mTOR barely changed. Moreover, our data showed an everolimus-induced increase in miR-143 and decrease in HK2 in Panc-1 cells in a time-dependent manner. In conclusion, the current study indicates a novel role of everolimus in its antitumor effect as an inhibitor of glycolysis in Panc-1 human pancreatic cancer cells. Furthermore, our data highlights the significance of exploring the mechanisms of everolimus and miR-143 in malignant tumors.
Collapse
Affiliation(s)
- Ling Liu
- National Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | | | | | | |
Collapse
|