1
|
Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Hogstrand C, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Vejdovszky K, Viviani B, Barregård L, Benford D, Dogliotti E, Francesconi K, Gómez Ruiz JÁ, Steinkellner H, Schwerdtle T. Risk assessment of complex organoarsenic species in food. EFSA J 2024; 22:e9112. [PMID: 39655151 PMCID: PMC11626214 DOI: 10.2903/j.efsa.2024.9112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The European Commission asked EFSA for a risk assessment on complex organoarsenic species in food. They are typically found in marine foods and comprise mainly arsenobetaine (AsB), arsenosugars and arsenolipids. For AsB, no reference point (RP) could be derived because of insufficient toxicity data. AsB did not show adverse effects in the two available repeat dose toxicity tests in rodents. It has not shown genotoxicity in in vitro assays. There is no indication of an association with adverse outcomes in human studies. The highest 95th percentile exposure for AsB was observed in 'Toddlers' with an estimate of 12.5 μg As/kg bw per day (AsB expressed as elemental arsenic). There is sufficient evidence to conclude that AsB at current dietary exposure levels does not raise a health concern. For glycerol arsenosugar (AsSugOH) a RP of 0.85 mg As/kg bw per day was derived based on the BMDL10 values for cognitive and motor function in mice. A margin of exposure (MOE) of ≥ 1000 would not raise a health concern. The highest 95th percentile estimate of exposure for AsSugOH (for adult consumers of red seaweed Nori/Laver) was 0.71 μg As/kg bw per day (AsSugOH expressed as elemental arsenic), which results in an MOE > 1000, not raising a health concern. Based on qualitative consideration of all identified uncertainties, it is regarded likely that the dietary exposures to AsB and AsSugOH do not raise a health concern. No conclusions could be drawn regarding other arsenosugars. No risk characterisation could be conducted for arsenolipids, due to the lack of data.
Collapse
|
2
|
Abstract
Arsenic is a naturally occurring metalloid and one of the few metals that can be metabolized inside the human body. The pervasive presence of arsenic in nature and anthropogenic sources from agricultural and medical use have perpetuated human exposure to this toxic and carcinogenic element. Highly exposed individuals are susceptible to various illnesses, including skin disorders; cognitive impairment; and cancers of the lung, liver, and kidneys. In fact, across the globe, approximately 200 million people are exposed to potentially toxic levels of arsenic, which has prompted substantial research and mitigation efforts to combat this extensive public health issue. This review provides an up-to-date look at arsenic-related challenges facing the global community, including current sources of arsenic, global disease burden, arsenic resistance, and shortcomings of ongoing mitigation measures, and discusses potential next steps.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10010, USA;
| |
Collapse
|
3
|
Souza ACF, Machado-Neves M, Bastos DSS, Couto Santos F, Guimarães Ervilha LO, Coimbra JLDP, Araújo LDS, Oliveira LLD, Guimarães SEF. Impact of prenatal arsenic exposure on the testes and epididymides of prepubertal rats. Chem Biol Interact 2020; 333:109314. [PMID: 33171135 DOI: 10.1016/j.cbi.2020.109314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023]
Abstract
Arsenic is a pollutant widely found in the environment due to natural and anthropogenic sources. Exposure to arsenic forms in drinking water has been related with male reproductive dysfunctions in humans and experimental animals at adult age. However, the impact of this pollutant on postnatal reproductive development of male offspring exposed in utero to arsenic is still unknown. Therefore, this study aimed to investigate the effects of prenatal arsenic exposure on the postnatal development of the testes and epididymides of rats, during prepuberty. For this purpose, pregnant female Wistar rats were provided drinking water containing 0 or 10 mg/L sodium arsenite (AsNaO2) from gestational day 1 (GD 1) until GD 21 and the male offspring was evaluated in different periods of prepuberty. Our results showed that prenatal arsenic exposure affected the initial sexual development of male pups, reducing their body weight and relative anogenital distance at postnatal day 1. At different periods of prepuberty, male pups from arsenic exposed dams showed a reduction of body and reproductive organs weights, testosterone levels and testis morphometric parameters. Moreover, these pups presented changes in the expression of SOD1, SOD2, CAT and GSTK1 genes and in the activity of superoxide dismutase, catalase and glutathione s-transferase in the testes and epididymides during prepuberty. Taken together, our results show that prenatal arsenic exposure provoked reproductive disorders in prepubertal male rats, probably due to reproductive reprograming and oxidative stress induced by this pollutant.
Collapse
Affiliation(s)
- Ana Cláudia Ferreira Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil; Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Mariana Machado-Neves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Felipe Couto Santos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Kozłowska L, Janasik B, Nowicka K, Wąsowicz W. A urinary metabolomics study of a Polish subpopulation environmentally exposed to arsenic. J Trace Elem Med Biol 2019; 54:44-54. [PMID: 31109620 DOI: 10.1016/j.jtemb.2019.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Almost every organ in the human body can be affected by arsenic (As) exposure associated with various industrial processes, as well as with contaminated food, drinking water and polluted air. Much is known about high exposure to inorganic As but there is little data on the metabolic changes connected to a low exposure e.g. in people living in smelter areas. OBJECTIVES The objectives of the study were: (1) characterise urinary concentration of total arsenic (AsT) in Polish inhabitants of the vicinity of a copper smelter area, (2) speciation analysis of various forms of arsenic in girls (GL), boys (BL), women (WL) and men (ML) with a slightly elevated AsT concentration and age/sex matched groups with a substantially higher AsT concentration, (GH, BH, WH and MH - respectively), (3) comparison of metabolomics profiles of urine between the age/sex matched people with low and high AsT concentrations. METHODS Urine samples were analysed for total arsenic and its chemical forms (AsIII; AsV, methylarsonic acid, dimethylarsinic acid, arsenobetaine) using HPLC-ICP-MS. Untargeted metabolomics analysis of the urine samples was performed using UPLC system connected to Q-TOF-MS equipped with an electrospray source. The XCMS Online program was applied for feature detection, retention time correction, alignment, statistics, annotation and identification. Potentially identified compounds were fragmented and resulting spectra were compared to the spectra in the Human Metabolome Database. RESULTS Urine concentration of AsT was, as follows: GL 16.40 ± 0.83; GH 115.23 ± 50.52; BL 16.48 ± 0.83; BH 95.00 ± 50.03; WL 16.93 ± 1.21; WH 170.13 ± 96.47; ML 16.91 ± 1.20; MH 151.71 ± 84.31 μg/l and percentage of arsenobetaine in AsT was, as follows: GL 65.5 ± 13.8%, GH 87.2 ± 4.7%, BL 59.8 ± 12.5%, BH 90.5 ± 2.4%, WL 50.8 ± 14.1%, WH 90.4 ± 3.5%, ML 53.3 ± 10.0%, MH 74.6 ± 20.2%. In the people with low and high AsT concentrations there were significant differences in the intensity of signal (is.) from numerous compounds being metabolites of neurotransmitters, nicotine and hormones transformation (serotonin in the girls and women; catecholamines in the girls, boys and women; mineralocorticoids and glucocorticoids in the boys, androgens in the women and men and nicotine in the boys, women and men). These changes might have been associated with higher is. from metabolites of leucine, tryptophan, purine degradation (in the GH, WH), urea cycle (in the WH and MH), glycolysis (in the WH) and with lower is. from metabolites of tricarboxylic acid cycle (in the BH) in comparison with low AsT matched groups. In the MH vs. ML higher is. from metabolite of lipid peroxidation (4-hydroxy-2-nonenal) was observed. Additionally, the presence of significant differences was reported in is. from food components metabolites, which might have modulated the negative effects of As (vitamin C in the girls, boys and men, vitamin B6 in the girls, boys and women as well as phenolic compounds in the boys and girls). We hypothesize that the observed higher is. from metabolites of sulphate (in MH) and glucoronate degradation (in BH, WH and MH) than in the matched low AsT groups may be related to the impaired glucuronidation and sulfonation and higher is. from catecholamines, nicotine and hormones. CONCLUSION Our results indicated that even a low exposure to As is associated with metabolic changes and that urine metabolomics studies could be a good tool to reflect their wide spectrum connected to specific environmental exposure to As, e.g. in smelter areas.
Collapse
Affiliation(s)
- Lucyna Kozłowska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Beata Janasik
- Departament of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Św. Teresy od Dzieciątka Jezus 8, 91-348, Łódź, Poland.
| | - Katarzyna Nowicka
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Wojciech Wąsowicz
- Departament of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Św. Teresy od Dzieciątka Jezus 8, 91-348, Łódź, Poland.
| |
Collapse
|
5
|
Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, Lee JS, Thomas DJ, Thompson C, Tokar EJ, Waalkes MP, Birnbaum LS, Suk WA. Arsenic and Environmental Health: State of the Science and Future Research Opportunities. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:890-9. [PMID: 26587579 PMCID: PMC4937867 DOI: 10.1289/ehp.1510209] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/10/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to inorganic and organic arsenic compounds is a major public health problem that affects hundreds of millions of people worldwide. Exposure to arsenic is associated with cancer and noncancer effects in nearly every organ in the body, and evidence is mounting for health effects at lower levels of arsenic exposure than previously thought. Building from a tremendous knowledge base with > 1,000 scientific papers published annually with "arsenic" in the title, the question becomes, what questions would best drive future research directions? OBJECTIVES The objective is to discuss emerging issues in arsenic research and identify data gaps across disciplines. METHODS The National Institutes of Health's National Institute of Environmental Health Sciences Superfund Research Program convened a workshop to identify emerging issues and research needs to address the multi-faceted challenges related to arsenic and environmental health. This review summarizes information captured during the workshop. DISCUSSION More information about aggregate exposure to arsenic is needed, including the amount and forms of arsenic found in foods. New strategies for mitigating arsenic exposures and related health effects range from engineered filtering systems to phytogenetics and nutritional interventions. Furthermore, integration of omics data with mechanistic and epidemiological data is a key step toward the goal of linking biomarkers of exposure and susceptibility to disease mechanisms and outcomes. CONCLUSIONS Promising research strategies and technologies for arsenic exposure and adverse health effect mitigation are being pursued, and future research is moving toward deeper collaborations and integration of information across disciplines to address data gaps. CITATION Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, Lee JS, Thomas DJ, Thompson C, Tokar EJ, Waalkes MP, Birnbaum LS, Suk WA. 2016. Arsenic and environmental health: state of the science and future research opportunities. Environ Health Perspect 124:890-899; http://dx.doi.org/10.1289/ehp.1510209.
Collapse
Affiliation(s)
- Danielle J. Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Karen D. Bradham
- Human Exposure & Atmospheric Science Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - John Cowden
- National Center for Computational Toxicology, and
| | - Michelle Heacock
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Heather F. Henry
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Janice S. Lee
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. EPA, Research Triangle Park, North Carolina, USA
| | - David J. Thomas
- Integrated Systems Toxicology Division, National Human and Environmental Health Effects Research Laboratory, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | | | - Erik J. Tokar
- National Toxicology Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Michael P. Waalkes
- National Toxicology Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Toxicology Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
- NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - William A. Suk
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
6
|
Thomas S, Arbuckle TE, Fisher M, Fraser WD, Ettinger A, King W. Metals exposure and risk of small-for-gestational age birth in a Canadian birth cohort: The MIREC study. ENVIRONMENTAL RESEARCH 2015; 140:430-9. [PMID: 25967284 DOI: 10.1016/j.envres.2015.04.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lead, mercury, cadmium and arsenic are some of the most common toxic metals to which Canadians are exposed. The effect of exposure to current low levels of toxic metals on fetal growth restriction is unknown. OBJECTIVE The aim of this study was to examine relationships between exposure to lead, mercury, cadmium and arsenic during pregnancy, and risk of small for gestational age (SGA) birth. METHODS Lead, mercury, cadmium and arsenic levels were measured in blood samples from the first and third trimesters in 1835 pregnant women from across Canada. Arsenic species in first trimester urine were also assessed. Relative risks and 95% confidence intervals were estimated using log binomial multivariate regression. Important covariates including maternal age, parity, pre-pregnancy BMI, and smoking, were considered in the analysis. An exploratory analysis was performed to examine potential effect modification of these relationships by single nucleotide polymorphisms (SNPs) in GSTP1 and GSTO1 genes. RESULTS No association was found between blood lead, cadmium or arsenic and risk for SGA. We observed an increased risk for SGA for the highest compared to the lowest tertile of exposure for mercury (>1.6 µg/L, RR=1.56.; 95% CI=1.04-2.58) and arsenobetaine (>2.25 µg/L, RR=1.65; 95% CI=1.10-2.47) after adjustment for the effects of parity and smoking. A statistically significant interaction was observed in the relationship between dimethylarsinic acid (DMA) levels in urinary arsenic and SGA between strata of GSTO1 A104A (p for interaction=0.02). A marginally significant interaction was observed in the relationship between blood lead and SGA between strata of GSTP1 A114V (p for interaction=0.06). CONCLUSIONS These results suggest a small increase in risk for SGA in infants born to women exposed to mercury and arsenic. Given the conflicting evidence in the literature this warrants further investigation in other pregnant populations.
Collapse
Affiliation(s)
- Shari Thomas
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tye E Arbuckle
- Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada.
| | - Mandy Fisher
- Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - William D Fraser
- Sainte Justine University Hospital Research Center, University of Montreal, Montreal, Canada
| | - Adrienne Ettinger
- Center for Perinatal, Pediatric & Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Will King
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Rangkadilok N, Siripriwon P, Nookabkaew S, Suriyo T, Satayavivad J. Arsenic, cadmium, and manganese levels in shellfish from Map Ta Phut, an industrial area in Thailand, and the potential toxic effects on human cells. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:169-180. [PMID: 24986306 DOI: 10.1007/s00244-014-0054-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Map Ta Phut Industrial Estate is a major industrial area in Thailand for both petrochemical and heavy industries. The release of hazardous wastes and other pollutants from these industries increases the potential for contamination in foods in the surrounding area, especially farmed shellfish. This study determined the arsenic (As), cadmium (Cd), and manganese (Mn) concentrations in the edible flesh of farmed shellfish, including Perna viridis, Meretrix meretrix, and Scapharca inaequivalvis, around the Map Ta Phut area using inductively coupled plasma mass spectrometry. The results showed that shellfish samples contained high levels of total As [1.84-6.42 mg kg(-1) wet weight (ww)]. High Mn concentrations were found in P. viridis and M. meretrix, whereas S. inaequivalis contained the highest Cd. Arsenobetaine (AsB) was found to be the major As species in shellfish (>45% of total As). The in vitro cytotoxicity of these elements was evaluated using human cancer cells (T47D, A549, and Jurkat cells). An observed decrease in cell viability in T47D and Jurkat cells was mainly caused by exposure to inorganic As (iAs) or Mn but not to AsB or Cd. The combined elements (AsB+Mn+Cd) at concentrations predicted to result from the estimated daily intake of shellfish flesh by the local people showed significant cytotoxicity in T47D and Jurkat cells.
Collapse
Affiliation(s)
- Nuchanart Rangkadilok
- Laboratory of Pharmacology, Chulabhorn Research Institute (CRI), Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | | | | | | | | |
Collapse
|
8
|
García-Arevalo M, Alonso-Magdalena P, Rebelo Dos Santos J, Quesada I, Carneiro EM, Nadal A. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice. PLoS One 2014; 9:e100214. [PMID: 24959901 PMCID: PMC4069068 DOI: 10.1371/journal.pone.0100214] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/22/2014] [Indexed: 12/17/2022] Open
Abstract
Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.
Collapse
Affiliation(s)
- Marta García-Arevalo
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Paloma Alonso-Magdalena
- Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Junia Rebelo Dos Santos
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Biologia Estructural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | - Ivan Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Everardo M. Carneiro
- Departamento de Biologia Estructural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | - Angel Nadal
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
- * E-mail:
| |
Collapse
|
9
|
Kwack SJ, Yoon KS, Lim SK, Gwak HM, Kim JY, Um YM, Lee JD, Hyeon JH, Kim YJ, Kim HS, Lee BM. A one-generation reproductive toxicity study of 3,4-methylenedioxy-n-methamphetamine (MDMA, Ecstasy), an amphetamine derivative, in C57BL/6 mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:1431-1442. [PMID: 25343292 DOI: 10.1080/15287394.2014.951759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
3,4-Methylenedioxy-N-methamphetamine (MDMA, ecstasy) is an amphetamine derivative and is a popular type of drug that is abused due to its effects on the central nervous system (CNS), including alertness and euphoria. However, life-threatening (brain edema, heart failure, and coma) and fatal hyperthermia sometimes occur in some individuals taking MDMA. In a one-generation reproductive toxicity study, the potential toxicity of chronic exposure of MDMA was investigated on the reproductive capabilities of parental mice (F0), as well as the survival/development of their subsequent offspring (F1). Male and female C57BL/6 mice were administered orally MDMA at 0, 1.25, 5 or 20 mg/kg body weight (b.w.) throughout the study, beginning at the premating period, through mating, gestation, and lactation periods. MDMA did not produce any apparent clinical signs in F0 or F1 mice, and produced no significant changes in body weight, feed/water intake, or organ weights. In contrast, administration of MDMA produced external abnormalities in fetuses, stillbirth and labored delivery, and diminished viability and weaning indices in offspring, but these data were not significant. In addition, physical development of F1 mice was not markedly influenced by MDMA treatment. Nonetheless, serum biochemistry markers showed that levels of alkaline phosphatase (ALP), aspartate aminotransferase (AST), and blood urea nitrogen (BUN) were markedly elevated in a dose-dependent manner from 5 mg and higher MDMA/kg b.w., whereas levels of triglycerides (TG), potassium (K), and uric acid (UA) were reduced. Data suggest that MDMA may exert a weak reproductive and developmental toxicity, and the no-observed-adverse-effect level (NOAEL) of MDMA is estimated to be 1.25 mg/kg b.w./d.
Collapse
Affiliation(s)
- Seung Jun Kwack
- a Department of Biochemistry and Health Science , College of Natural Sciences, Changwon National University , Changwon , Gyeongnam , South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|