1
|
Nielsen AF, Baun A, Andersen SI, Skjolding LM. Critical review of the OSPAR risk-based approach for offshore-produced water discharges. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1172-1187. [PMID: 36461708 DOI: 10.1002/ieam.4715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The management of produced water (PW) discharges from offshore oil and gas installations in the North Atlantic is under the auspices of OSPAR (Oslo/Paris convention for Protection of the Marine Environment of the North-East Atlantic). In 2010, OSPAR introduced the risk-based approach (RBA) for PW management. The RBA includes a hazard assessment estimating PW ecotoxicity using two approaches: whole-effluent toxicity (WET) and substance-based (SB). Set against the framework of the WET and SB approach, we conducted a literature review on the magnitude and cause of PW ecotoxicity, respectively, and on the challenges of estimating these. A large variability in the reported magnitude of PW WET was found, with EC50 or LC50 values ranging from <1% to >100%, and a median of 11% (n = 301). Across the literature, metals, hydrocarbons, and production chemicals were identified as causing ecotoxicity. However, this review reveals how knowledge gaps on PW composition and high sample and species dependency of PW ecotoxicity make clear identification and generalization difficult. It also highlights how limitations regarding the availability and reliability of ecotoxicity data result in large uncertainties in the subsequent risk estimates, which is not adequately reflected in the RBA output (e.g., environmental impact factors). Thus, it is recommended to increase the focus on improving ecotoxicity data quality before further use in the RBA, and that WET should play a more pronounced role in the testing strategy. To increase the reliability of the SB approach, more attention should be paid to the actual composition of PW. Bioassay-directed chemical analysis, combining outcomes of WET and SB in toxicity identification evaluations, may hold the key to identifying drivers of ecotoxicity in PW. Finally, an uncertainty appraisal must be an integrated part of all reporting of risk estimates in the RBA, to avoid mitigation actions based on uncertainties rather than reliable ecotoxicity estimations. Integr Environ Assess Manag 2023;19:1172-1187. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Ann F Nielsen
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders Baun
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simon I Andersen
- Danish Offshore Technology Centre, Elektrovej, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lars M Skjolding
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Viana TS, Campos D, Bartilotti M, Leite FG, Zanoni MVB, Dorta DJ, Oliveira DP, Pestana JLT. Magnetized vermiculite as a tool for the treatment of produced water generated by oil companies: Effects on aquatic organisms before and after treatment. J Appl Toxicol 2023; 43:1393-1405. [PMID: 37055923 DOI: 10.1002/jat.4473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Produced water (PW) generated by oil companies is a highly impacting waste that contains chemicals such as metals and organic and inorganic compounds. Given its polluting potential, PW requires effective treatment before being discharged into the environment. Conventional treatments have limited efficiency in removing PW toxicity, so alternative approaches must be developed and standardized. In this context, treatment with adsorbent materials like magnetized vermiculite (VMT-mag) is highlighted. This work aimed to evaluate the efficiency of treatment with VMT-mag in reducing PW toxicity to aquatic biota. For this purpose, three aquatic species (the midge Chironomus riparius, the planarian Girardia tigrina, and the crustacean Daphnia magna) were exposed to untreated PW and to PW treated with VMT-mag at laboratory conditions. The assessed endpoints included mortality, growth, emergence, and developmental time of C. riparius; mortality, locomotion, feeding, and head regeneration of G. tigrina; and intrinsic population growth rate (r) and reproductive output of D. magna. The results showed that all the species exposed to raw PW were impaired: C. riparius had delayed development, G. tigrina had reduced locomotor activity and delayed head regeneration, and D. magna had reduced reproduction and delayed intrinsic population growth rate (r). Most of the analyzed parameters showed that treatment with VMT-mag diminished PW toxicity. Therefore, using VMT-mag to treat PW may be the key to reducing the PW effects on aquatic organisms.
Collapse
Affiliation(s)
- Tais S Viana
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Diana Campos
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Mariana Bartilotti
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Fernanda G Leite
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Valnice Boldrin Zanoni
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
| | - Daniel J Dorta
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danielle P Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
| | - João L T Pestana
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Viana TS, Rialto TCR, Brito JFD, Micas AFD, Abe FR, Savazzi EA, Boldrin Zanoni MVB, de Oliveira DP. Effects of water produced by oil segment on aquatic organisms after treatment using advanced oxidative processes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:901-913. [PMID: 34259612 DOI: 10.1080/15287394.2021.1951910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The water produced (PW) by the petroleum industry is a potential contaminant to aquatic biota, due to its complex mixture that may contain polycyclic aromatic hydrocarbons (PAHs), organic chemical compounds, including benzene, toluene, ethylbenzene and xylene (BTEX), metals and other components that are known to be toxic. The aim of this investigation was to examine the acute toxicity produced by a PW sample in aquatic organisms Vibrio fischeri and Daphnia similis prior to and after 4 treatments using advanced oxidative processes such as photocatalysis, photoelectrocatalysis, ozonation and photoelectrocatalytic ozonation. Data demonstrated that exposure to PW was toxic to both organisms, as evidenced by reduced luminescence in bacterium Vibrio fischeri and induced immobility in Daphnia similis. After treatment of PW with 4 different techniques, the PW remained toxic for both tested organisms. However, photoelectrocatalysis was more efficient in decreasing toxicity attributed to PW sample. Therefore, data demonstrate the importance of treating PW for later disposal in the environment in order to mitigate ecotoxicological impacts. Further photoelectrocatalysis appeared to be a promising tool for treating PW samples prior to disposal and exposure of aquatic ecosystems.
Collapse
Affiliation(s)
- T S Viana
- Department of Clinical Analyses, Toxicology and Food Science, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - T C R Rialto
- Department of Clinical Analyses, Toxicology and Food Science, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - J F D Brito
- Department of Analytical Chemistry, São Paulo State University (Unesp), Chemistry Institute, Araraquara, SP, Brazil
| | - A F D Micas
- Companhia Ambiental do Estado de São Paulo (CETESB), Divisão de Laboratório de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - F R Abe
- Department of Clinical Analyses, Toxicology and Food Science, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - E A Savazzi
- Companhia Ambiental do Estado de São Paulo (CETESB), Divisão de Laboratório de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - M V B Boldrin Zanoni
- Department of Analytical Chemistry, São Paulo State University (Unesp), Chemistry Institute, Araraquara, SP, Brazil
- Department of Analytical Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil
| | - D P de Oliveira
- Department of Clinical Analyses, Toxicology and Food Science, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Department of Analytical Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil
| |
Collapse
|
4
|
Babić S, Čižmek L, Maršavelski A, Malev O, Pflieger M, Strunjak-Perović I, Popović NT, Čož-Rakovac R, Trebše P. Utilization of the zebrafish model to unravel the harmful effects of biomass burning during Amazonian wildfires. Sci Rep 2021; 11:2527. [PMID: 33510260 PMCID: PMC7844006 DOI: 10.1038/s41598-021-81789-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Amazonian wildfires in 2019 have raised awareness about rainforest burning due to increased emissions of particulate matter and carbon. In the context of these emissions, by-products of lignin thermal degradation (i.e. methoxyphenols) are often neglected. Methoxyphenols entering the atmosphere may form intermediates with currently unknown reaction mechanisms and toxicity. This study for the first time provides a comprehensive insight into the impact of lignin degradation products [guaiacol, catechol], and their nitrated intermediates [4-nitrocatechol, 4,6-dinitroguaiacol, 5-nitroguaiacol] on zebrafish Danio rerio. Results revealed 4-nitrocatechol and catechol as the most toxic, followed by 4,6DNG > 5NG > GUA. The whole-organism bioassay integrated with molecular modeling emphasized the potential of methoxyphenols to inhibit tyrosinase, lipoxygenase, and carbonic anhydrase, consequently altering embryonic development (i.e. affected sensorial, skeletal, and physiological parameters, pigmentation formation failure, and non-hatching of larvae). The whole-organism bioassay integrated with in silico approach confirmed the harmful effects of lignin degradation products and their intermediates on aquatic organisms, emphasizing the need for their evaluation within ecotoxicity studies focused on aquatic compartments.
Collapse
Affiliation(s)
- Sanja Babić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Aleksandra Maršavelski
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Olga Malev
- Faculty of Science, Department of Biology, University of Zagreb, Roosevelt square 6, Zagreb, Croatia. .,Laboratory for Biological Diversity, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| | - Maryline Pflieger
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Beyer J, Goksøyr A, Hjermann DØ, Klungsøyr J. Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105155. [PMID: 32992224 DOI: 10.1016/j.marenvres.2020.105155] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Produced water (PW), a large byproduct of offshore oil and gas extraction, is reinjected to formations or discharged to the sea after treatment. The discharges contain dispersed crude oil, polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), metals, and many other constituents of environmental relevance. Risk-based regulation, greener offshore chemicals and improved cleaning systems have reduced environmental risks of PW discharges, but PW is still the largest operational source of oil pollution to the sea from the offshore petroleum industry. Monitoring surveys find detectable exposures in caged mussel and fish several km downstream from PW outfalls, but biomarkers indicate only mild acute effects in these sentinels. On the other hand, increased concentrations of DNA adducts are found repeatedly in benthic fish populations, especially in haddock. It is uncertain whether increased adducts could be a long-term effect of sediment contamination due to ongoing PW discharges, or earlier discharges of oil-containing drilling waste. Another concern is uncertainty regarding the possible effect of PW discharges in the sub-Arctic Southern Barents Sea. So far, research suggests that sub-arctic species are largely comparable to temperate species in their sensitivity to PW exposure. Larval deformities and cardiac toxicity in fish early life stages are among the biomarkers and adverse outcome pathways that currently receive much attention in PW effect research. Herein, we summarize the accumulated ecotoxicological knowledge of offshore PW discharges and highlight some key remaining knowledge needs.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Norway; Institute of Marine Research (IMR), Bergen, Norway
| | | | | |
Collapse
|
6
|
Galeane MC, Gomes PC, L Singulani JD, de Souza BM, Palma MS, Mendes-Giannini MJ, Almeida AM. Study of mastoparan analog peptides against Candida albicans and safety in zebrafish embryos ( Danio rerio). Future Microbiol 2020; 14:1087-1097. [PMID: 31512522 DOI: 10.2217/fmb-2019-0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: In this work, mastoparan analog peptides from wasp venom were tested against Candida albicans and safety assays were performed using cell culture and model zebrafish. Materials & methods: Minimal inhibitory concentration was determined and toxicity was performed using human skin keratinocyte and embryo zebrafish. Also, permeation of peptides through embryo chorion was performed. Results: The peptides demonstrated anti-C. albicans activity, with low cytotoxicity and nonteratogenicity in Danio rerio. The compounds had different permeation through chorion, suggesting that this occurs due to modifications in their amino acid sequence. Conclusion: The results showed that the studied peptides can be used as structural study models for novel potential antifungal agents.
Collapse
Affiliation(s)
- Mariana C Galeane
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, 14800-903 SP, Brazil
| | - Paulo C Gomes
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, 14800-903 SP, Brazil
| | - Junya de L Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, 14800-903 SP, Brazil
| | - Bibiana M de Souza
- Department of Biology, CEIS / LSBZ, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, 13506-900 SP, Brazil
| | - Mario S Palma
- Department of Biology, CEIS / LSBZ, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, 13506-900 SP, Brazil
| | - Maria Js Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, 14800-903 SP, Brazil
| | - Ana Mf Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, 14800-903 SP, Brazil
| |
Collapse
|
7
|
A cost-effective and environmentally sustainable process for phycoremediation of oil field formation water for its safe disposal and reuse. Sci Rep 2019; 9:15232. [PMID: 31645605 PMCID: PMC6811566 DOI: 10.1038/s41598-019-51806-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/07/2019] [Indexed: 11/22/2022] Open
Abstract
High volumes of formation water comprising of complex mixture of hydrocarbons is generated during crude oil exploration. Owing to ecotoxicological concerns, the discharge of the formation water without remediation of hydrocarbonaceous pollutants is not permitted. Keeping this into mind, we carried out phycoremediation of hydrocarbons in formation water so that it can be safely discharged or re-used. For this, a native algal species was isolated from formation water followed by its morphological and 18S ribosomal RNA based identification confirming the algal isolate to be Chlorella vulgaris BS1 (NCBI GenBank Accession No. MH732950). The algal isolate exhibited high biomass productivity of 1.76 gm L−1 d−1 (specific growth rate: 0.21 d−1, initial inoculum: 1500 mg L−1) along with remediation of 98.63% petroleum hydrocarbons present in formation water within 14 days of incubation indicating an efficient hydrocarbon remediation process. Concomitantly, the hydrocarbon remediation process resulted in reduction of 75% Chemical Oxygen Demand (COD) load and complete removal of sulfate from formation water making it suitable for safe disposal or reuse as oil well injection water respectively. The present process overcomes the bottlenecks of external growth nutrient addition or dilution associated with conventional biological treatment resulting in a practically applicable and cost-effective technology for remediation of oil field formation water.
Collapse
|
8
|
Babić S, Malev O, Pflieger M, Lebedev AT, Mazur DM, Kužić A, Čož-Rakovac R, Trebše P. Toxicity evaluation of olive oil mill wastewater and its polar fraction using multiple whole-organism bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:903-914. [PMID: 31412527 DOI: 10.1016/j.scitotenv.2019.06.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Olive mill wastewater (OMW) as a by-product of olive oil extraction process has significant polluting properties mainly related to high organic load, increased COD/BOD ratio, high phenolic content and relatively acidic pH. Raw OMW from Slovenian Istria olive oil mill and its polar fraction were investigated in this study. Chemical characterization of OMW polar fraction identified tyrosol as the most abundant phenolic product, followed by catechol. Lethal and sub-lethal effects of OMW matrix and its polar fraction were tested using a battery of bioassays with model organisms: bacteria Vibrio fischeri, algae Chlorella vulgaris, water fleas Daphnia magna, zebrafish Danio rerio embryos, clover Trifolium repens and wheat Triticum aestivum. Raw OMW sample was the most toxic to V. fischeri (EC50 = 0.24% of OMW sample final concentration), followed by D. magna (EC50 = 1.43%), C. vulgaris (EC50 = 5.20%), D. rerio (EC50 = 7.05%), seeds T. repens (EC50 = 8.68%) and T. aestivum (EC50 = 11.58%). Similar toxicity trend was observed during exposure to OMW polar fraction, showing EC50 values 2.75-4.11 times lower comparing to raw OMW. Tested samples induced also sub-acute effects to clover and wheat (decreased roots, sprouts elongation); and to zebrafish embryos (increased mortality, higher abnormality rate, decreased hatching and pigmentation formation rate). A comprehensive approach using a battery of bioassays, like those used in this study should be applied during ecotoxicity monitoring of untreated and treated OMW.
Collapse
Affiliation(s)
- Sanja Babić
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Aquaculture Biotechnology, Bijenička cesta 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Olga Malev
- Srebrnjak Children's Hospital, Department for Translational Medicine, Srebrnjak 100, Zagreb, Croatia; University of Zagreb, Faculty of Science, Department of Biology, Division of Zoology, Rooseveltov trg 6, Zagreb, Croatia
| | - Maryline Pflieger
- Faculty of Health Sciences, Biochemistry in Medical Science, Department for Sanitary Engineering, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Albert T Lebedev
- Lomonosov Moscow State University, Department of Organic Chemistry, Moscow, Russia
| | - Dmitry M Mazur
- Lomonosov Moscow State University, Department of Organic Chemistry, Moscow, Russia
| | - Anita Kužić
- TAPI/Analytical R&D, Pliva Croatia Ltd., prilaz Baruna Filipovića 28, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Aquaculture Biotechnology, Bijenička cesta 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Polonca Trebše
- Faculty of Health Sciences, Biochemistry in Medical Science, Department for Sanitary Engineering, Zdravstvena pot 5, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Hale SE, Škulcová L, Pípal M, Cornelissen G, Oen AMP, Eek E, Bielská L. Monitoring wastewater discharge from the oil and gas industry using passive sampling and Danio rerio bioassay as complimentary tools. CHEMOSPHERE 2019; 216:404-412. [PMID: 30384310 DOI: 10.1016/j.chemosphere.2018.10.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Produced water (PW) represents the largest volume waste stream in oil and gas production operations from most offshore platforms. PW is difficult to monitor as releases are rapidly diluted and concentrations can reach trace levels. The use of passive samplers can over come this. Here polyethylene (PE) was calibrated for a diverse range of PW pollutants. Zebrafish were exposed to dilutions of PW and passive sampler extracts in order to investigate the relationship between freely dissolved chemical concentrations and acute toxic effects. The raw PW had an LC50 of 13% (percentage of PW in the standardized zebrafish medium). Observed non-viable deformations to embryos (at 5 hpf) included heart and yolk edema, head, spine and tail deformations. The dose-response relationship of lethal effects showed that if 0.0041 g of PE is exposed to this PW, then extracted, 50% of exposed D. rerio will suffer lethal effects. The sum of tested freely dissolved concentrations that led to 50% lethal effects (mortality and non-viable deformations) was 2.32 × 10-4 mg/L for PW and 7.92 × 10-2 mg/L for PE. This implies that exposure to raw PW was more toxic than exposure to PE extracts. This toxicity was attributed both to the presence of contaminants as well as PW salinity. Passive samplers are able to detect very low freely dissolved pollutant concentrations which is important for assessing the spatial dilution of PW releases. Bioassays provide complimentary information as they account for all toxic compounds including those that are not taken up by passive samplers.
Collapse
Affiliation(s)
- Sarah E Hale
- Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, Oslo, Norway.
| | - Lucia Škulcová
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Pípal
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Amy M P Oen
- Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, Oslo, Norway
| | - Espen Eek
- Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, Oslo, Norway
| | - Lucie Bielská
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Gao X, Huang C, Rao K, Xu Y, Huang Q, Wang F, Ma M, Wang Z. Occurrences, sources, and transport of hydrophobic organic contaminants in the waters of Fildes Peninsula, Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:950-958. [PMID: 30029329 DOI: 10.1016/j.envpol.2018.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
As a pristine continent, Antarctica provides a good opportunity to study the spatial transport and temporal accumulation of environmental contaminants and the impacts of anthropogenic activities, both of which have given rise to ongoing public concern. In this research, an approach of coupling aquatic time-integrated passive sampling with chemical analysis and bioassays was used to assess pollution by hydrophobic organic contaminants in Antarctic waters. Passive samplers were deployed in waters of Fildes Peninsula, Antarctica, and their extracts were used for chemical analyses of sixty-six hydrophobic organic contaminants belonging to five groups [organophosphorus flame retardants (PFRs), phthalic acid esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs)] and in vitro bioassays for endocrine disruption and genotoxicity. In total, twenty pollutants (six PFRs, one PAE, two PAHs, six OCPs, and five PCBs) were quantified, and six PFRs had concentrations that ranged from ND (not detected) to 44.37 ng L-1 in Antarctic waters. The concentrations detected in the waters were generally low and insufficient to have significant in vitro endocrine disruption potential or genotoxicity. The source and transport pathways of PFRs and PAE in Fildes Peninsula were studied, and multiple local sources (wastewater, air traffic, research stations, and animal feces) for different PFRs were proposed. A spatial and temporal analysis showed slight changes in the exposure of OCPs and PCBs in Antarctic waters. Furthermore, a comparison among a variety of Antarctic water sampling cases revealed that passive sampling can be a tool for aquatic time-integrated investigations in polar regions.
Collapse
Affiliation(s)
- Xiaozhong Gao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifeng Rao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Feng Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Meireles G, Daam MA, Sanches ALM, Zanoni MV, Soares AM, Gravato C, Oliveira DPD. Red disperse dyes (DR 60, DR 73 and DR 78) at environmentally realistic concentrations impact biochemical profile of early life stages of zebrafish (Danio rerio). Chem Biol Interact 2018; 292:94-100. [DOI: 10.1016/j.cbi.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
|
12
|
Abe FR, Gravato C, Soares AMVM, de Oliveira DP. Biochemical approaches to assess oxidative stress induced by exposure to natural and synthetic dyes in early life stages in zebrafish. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1259-1268. [PMID: 28891787 DOI: 10.1080/15287394.2017.1371091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Zebrafish early life stages were found to be sensitive to several synthetic dyes widely used in industries. However, as environmental concentrations of such contaminants are often at sublethal levels, more sensitive methods are required to determine early-warning adverse consequences. The aim of this study was to utilize a multibiomarker approach to examine underlying oxidative stress mechanisms triggered by sublethal concentrations of synthetic azo dye Basic Red 51 (BR51), the natural dye erythrostominone (ERY), and its light-degraded product using zebrafish embryos. Biochemical biomarkers included parameters of detoxification and markers of antioxidant system, as well as oxidative damage. Results showed pro-oxidant mechanisms attributed to BR51 and ERY as evidenced by increased glutathione S-transferase (GST) activity, a phase II detoxification enzyme related to reactive oxygen species detoxification. BR51 also elevated total glutathione (GSH+GSSG) levels and catalase activity. However, both dyes induced oxidative damage as evidenced by elevated lipid peroxidation content. In contrast, when the natural dye was photodegraded, no marked effects were observed for all biomarkers assessed. Data indicate that such dyes are pro-oxidants at sublethal concentrations, predominantly involving GSH and/or related enzymes pathway.
Collapse
Affiliation(s)
- Flavia R Abe
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Carlos Gravato
- b Department of Biology and CESAM , University of Aveiro , Aveiro , Portugal
| | - Amadeu M V M Soares
- b Department of Biology and CESAM , University of Aveiro , Aveiro , Portugal
| | - Danielle P de Oliveira
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| |
Collapse
|
13
|
Babić S, Barišić J, Višić H, Sauerborn Klobučar R, Topić Popović N, Strunjak-Perović I, Čož-Rakovac R, Klobučar G. Embryotoxic and genotoxic effects of sewage effluents in zebrafish embryo using multiple endpoint testing. WATER RESEARCH 2017; 115:9-21. [PMID: 28254533 DOI: 10.1016/j.watres.2017.02.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Wastewater treatment plant (WWTP) effluents are often complex mixtures of various organic and inorganic substances. Quality control of wastewaters and sludges has been regulated with measuring several physico-chemical parameters and sometimes using biological methods with non-specific responses, while synergistic action mechanisms of contaminants in such complex mixtures is still unknown. Toxic effects of wastewaters within and downstream of the WWTP in City of Virovitica, Croatia, were tested on zebrafish Danio rerio using a set of biomarkers that enabled an insight in wastewaters toxic potential on embryos at the cellular, tissue and the whole organism level during an early ontogenesis (24 and 48 hpf). Exposure of embryos to the wastewater samples from WWTP Virovitica increased mortality and abnormality rate. Heart rate, spontaneous movements and pigmentation formation were also markedly affected. Biochemical markers confirmed the presence of MXR inhibitors in all tested wastewater samples, indicating the increase of pollutant accumulation in the cell/organism. Also, a tendency of DNA damage decrease measured with Comet assay was evident in wastewater samples downstream from WWTP although control levels were not reached in any environmental sample. Histopathological analysis showed that exposure to tested samples resulted in impaired muscle organization, notochord malformation and retardation in eye and brain development at embryos 48 hpf. Furthermore, semi-quantitative histopathology assessment indicated increased percentage of embryo defects in river water sampled several kilometers downstream from the WWTP, confirming toxic potential of WWTP effluents. Extension of the zebrafish embryotoxicity test (ZET) with biochemical and histopathological biomarkers could serve as a guiding principle in biomonitoring of wastewater contamination.
Collapse
Affiliation(s)
- Sanja Babić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Josip Barišić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Hrvoje Višić
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | | | - Natalija Topić Popović
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Göran Klobučar
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| |
Collapse
|
14
|
Xiong X, Luo S, Wu B, Wang J. Comparative Developmental Toxicity and Stress Protein Responses of Dimethyl Sulfoxide to Rare Minnow and Zebrafish Embryos/Larvae. Zebrafish 2017; 14:60-68. [DOI: 10.1089/zeb.2016.1287] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Xiaoqin Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Si Luo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Benli Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, People's Republic of China
| | - Jianwei Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
15
|
Hale SE, Oen AMP, Cornelissen G, Jonker MTO, Waarum IK, Eek E. The role of passive sampling in monitoring the environmental impacts of produced water discharges from the Norwegian oil and gas industry. MARINE POLLUTION BULLETIN 2016; 111:33-40. [PMID: 27514439 DOI: 10.1016/j.marpolbul.2016.07.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Stringent and periodic iteration of regulations related to the monitoring of chemical releases from the offshore oil and gas industry requires the use of ever changing, rapidly developing and technologically advancing techniques. Passive samplers play an important role in water column monitoring of produced water (PW) discharge to seawater under Norwegian regulation, where they are used to; i) measure aqueous concentrations of pollutants, ii) quantify the exposure of caged organisms and investigate PW dispersal, and iii) validate dispersal models. This article summarises current Norwegian water column monitoring practice and identifies research and methodological gaps for the use of passive samplers in monitoring. The main gaps are; i) the range of passive samplers used should be extended, ii) differences observed in absolute concentrations accumulated by passive samplers and organisms should be understood, and iii) the link between PW discharge concentrations and observed acute and sub-lethal ecotoxicological end points in organisms should be investigated.
Collapse
Affiliation(s)
- Sarah E Hale
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806, Oslo, Norway.
| | - Amy M P Oen
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806, Oslo, Norway
| | - Gerard Cornelissen
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806, Oslo, Norway; Department of Plant and Environmental Sciences (UMB), Norwegian University of Life Sciences, 5003 Ås, Norway; Department of Applied Environmental Sciences (ITM), Stockholm University, 10691, Stockholm, Sweden
| | - Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD, Utrecht, The Netherlands
| | - Ivar-Kristian Waarum
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806, Oslo, Norway
| | - Espen Eek
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806, Oslo, Norway
| |
Collapse
|
16
|
Mondal S. Polymeric membranes for produced water treatment: an overview of fouling behavior and its control. REV CHEM ENG 2016. [DOI: 10.1515/revce-2015-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractProduced water (PW) from the oil/gas field is an important waste stream. Due to its highly pollutant nature and large volume of generation, the management of PW is a significant challenge for the petrochemical industry. The treatment of PW can improve the economic viability of oil and gas exploration, and the treated water can provide a new source of water in the water-scarce region for some beneficial uses. The reverse osmosis (RO) and selective nanofiltration (NF) membrane treatment of PW can reduce the salt and organic contents to acceptable levels for some beneficial uses, such as irrigation, and different industrial reuses. However, membrane fouling is a major obstacle for the membrane-based treatment of PW. In this review, the author discusses the polymeric membrane (mainly RO/NF) fouling during PW treatment. Membrane fouling mechanisms by various types of foulants, such as organic, inorganic, colloidal, and biological matters, are discussed. The review concludes with some of the measures to control fouling by membrane surface modification approaches.
Collapse
|
17
|
Jensen LK, Halvorsen E, Song Y, Hallanger IG, Hansen EL, Brooks SJ, Hansen BH, Tollefsen KE. Individual and molecular level effects of produced water contaminants on nauplii and adult females of Calanus finmarchicus. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:585-601. [PMID: 27484140 DOI: 10.1080/15287394.2016.1171988] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the Barents Sea region new petroleum fields are discovered yearly and extraction of petroleum products is expected to increase in the upcoming years. Despite enhanced technology and stricter governmental legislation, establishment of the petroleum industry in the Barents Sea may potentially introduce a new source of contamination to the area, as some discharges of produced water will be allowed. Whether the presence of produced water poses a risk to the Arctic marine life remains to be investigated. The aim of this study was to examine effects of exposure to several compounds found in produced water-a mixture of selected organic compounds (APW), radium-226 ((226)Ra), barium (Ba), and a scale inhibitor-on the copepod species Calanus finmarchicus. Experiments were performed using exposure concentrations at realistic levels based on those detected in the vicinity of known discharge points. The influence of lethal and sublethal effects on early life stages was determined and significantly lower survival in the APW exposure groups was found. In the Ba treatment the life stage development did not proceed to the same advanced stages as observed in the control (filtered sea water). The scale inhibitor and (226)Ra treatments showed no significant difference from control. In addition, adult females were exposed to APW, (226)Ra, and a mixture of the two. Both individual-level effects (egg production and feeding) and molecular-level effects (gene expression) were assessed. On the individual level endpoints, only treatments including APW produced an effect compared to control. However, on the molecular level the possibility that also (226)Ra induced toxicologically relevant effects cannot be ruled out.
Collapse
Affiliation(s)
- Louise Kiel Jensen
- a Norwegian Radiation Protection Authority , FRAM-High North Research Centre on Climate and the Environment , Tromsø , Norway
- e CERAD Centre of Excellence in Environmental Radioactivity , Ås, Norway
| | - Elisabeth Halvorsen
- b Department for Arctic and Marine Biology , UiT The Arctic University of Norway , Tromsø , Norway
| | - You Song
- c Norwegian Institute for Water Research , Oslo , Norway
| | - Ingeborg G Hallanger
- b Department for Arctic and Marine Biology , UiT The Arctic University of Norway , Tromsø , Norway
| | - Elisabeth Lindbo Hansen
- d Department of Research , Norwegian Radiation Protection Authority , Østerås , Norway
- e CERAD Centre of Excellence in Environmental Radioactivity , Ås, Norway
| | | | - Bjørn Henrik Hansen
- f SINTEF Materials and Chemistry, Environmental Technology , Trondheim , Norway
| | - Knut Erik Tollefsen
- c Norwegian Institute for Water Research , Oslo , Norway
- e CERAD Centre of Excellence in Environmental Radioactivity , Ås, Norway
- g Department for Environmental Sciences, Faculty of Environmental Science & Technology , Norwegian University of Life Sciences (NMBU) , Ås , Norway
| |
Collapse
|
18
|
da Rosa JGS, Koakoski G, Piato AL, Bogo MR, Bonan CD, Barcellos LJG. Impaired brain StAR and HSP70 gene expression in zebrafish exposed to Methyl-Parathion based insecticide. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 79:1-7. [PMID: 26699931 DOI: 10.1080/15287394.2015.1099483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fish production ponds and natural water body areas located in close proximity to agricultural fields receive water with variable amounts of agrochemicals, and consequently, compounds that produce adverse effects may reach nontarget organisms. The aim of this study was to investigate whether waterborne methyl-parathion-based insecticide (MPBI) affected gene expression patterns of brain glucocorticoid receptor (GR), steroidogenic acute regulatory protein (StAR), and heat shock protein 70 (hsp70) in adult zebrafish (Danio rerio) exposed to this chemical for 96 h. Treated fish exposed to MPBI-contaminated water showed an inhibition of brain StAR and hsp70 gene expression. Data demonstrated that MPBI produced a decrease brain StAR and hsp70 gene expression.
Collapse
Affiliation(s)
- João Gabriel Santos da Rosa
- a Programa de Pós-Graduação em Farmacologia , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Rio Grande do Sul , Brazil
| | - Gessi Koakoski
- a Programa de Pós-Graduação em Farmacologia , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Rio Grande do Sul , Brazil
| | - Angelo L Piato
- b Programa de Pós-Graduação em Farmacologia e Terapêutica, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Maurício Reis Bogo
- c Programa de Pós-Graduação em Biologia Celular e Molecular , Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Carla Denise Bonan
- c Programa de Pós-Graduação em Biologia Celular e Molecular , Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Leonardo José Gil Barcellos
- a Programa de Pós-Graduação em Farmacologia , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Rio Grande do Sul , Brazil
- d Universidade de Passo Fundo (UPF), Campus Universitário do Bairro São José , Passo Fundo , Rio Grande do Sul , Brazil
- e Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF) , Campus Universitário do Bairro São José , Passo Fundo , Rio Grande do Sul , Brazil
| |
Collapse
|
19
|
Yu K, Li G, Feng W, Liu L, Zhang J, Wu W, Xu L, Yan Y. Chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish. Chem Biol Interact 2015; 239:26-33. [DOI: 10.1016/j.cbi.2015.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/09/2022]
|