1
|
Choi G, Rohlman DS, Kwok RK, Werder EJ, Lawrence KG, Blair A, Miller AK, Jackson WB, Sandler DP, Engel LS. Concentrations of blood styrene and neurobehavioral function among Gulf state residents in the U.S. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-13. [PMID: 39936180 DOI: 10.1080/09603123.2025.2464086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVES To investigate relationships between blood styrene concentrations and neurobehavioral function among US Gulf State residents. METHODS Our study includes 328 Gulf state residents enrolled in the Gulf Long-term Follow-up Study with data on blood styrene concentrations (2012-2013) and neurobehavioral test results (2014-2016, Behavioral Assessment and Research System and trail making test). We estimated the differences in test scores by blood styrene quartiles and explored effect measure modification by smoking. RESULTS Styrene was detected in 77% of participants (median: 0.06 ng/ml). We observed only weak associations and no apparent dose-response relationships between styrene levels and performance on any neurobehavioral tests, although some associations were more prominent in males. For some neurobehavioral tests, we observed modestly stronger associations among participants with higher cotinine levels (>15 ng/mL). CONCLUSION We found limited support for an association between low-level blood styrene concentration and neurobehavioral test performance, although some associations were stronger among smokers.
Collapse
Affiliation(s)
- Giehae Choi
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Diane S Rohlman
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | - Richard K Kwok
- Population Studies and Genetics Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Gaithersburg, MD, USA
| | - Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | | | - W Braxton Jackson
- Social & Scientific Systems, Inc., a DLH Holding Company, Durham, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Lin JJY, Koffman LJ, Tehrani MW, Chen R, Han SG, Sandler DP, Lawrence KG, Jackson WB, Dickerson AS, Ramachandran G, Engel LS, Rule AM. Reliability of low mass toenail samples as biomarkers of chronic metal exposure. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:945-953. [PMID: 37296232 PMCID: PMC10709526 DOI: 10.1038/s41370-023-00560-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Toenails are a promising matrix for chronic metal exposure assessment, but there are currently no standard methods for collection and analysis. Questions remain about sample mass requirements and the extent to which metals measured in this matrix are representative of chronic body burden. OBJECTIVE This study proposes a method to maximize sample conservation for toenail metals analysis using inductively coupled plasma mass spectrometry (ICP-MS). We demonstrate the reliability of an ~25 mg toenail sample (typically 1-2 clippings) for metals analysis and evaluate the intra-individual variability of multiple metals in this matrix over time in men from the Gulf Long-term Follow-up (GuLF) Study. METHODS Toenail samples from 123 GuLF Study participants were collected at two visits 3 years apart and analyzed for 18 elements using ICP-MS. Participants with samples exceeding 200 mg at the first visit (n = 29) were selected for triplicate sub-sample analysis. Kendall's coefficient of concordance (W) was used to assess sub-sample reliability and Spearman's correlation coefficients (ρ) were used to evaluate fluctuations in elemental concentrations over time. RESULTS Results were not reported for Cd, Co, Mo, Sb, and V (detected in <60% of the samples). There was strong agreement among triplicate samples (Kendall's W: 0.72 (Cu)-0.90 (Cu)) across all elements evaluated, moderate correlations of elemental concentrations (Spearman's ρ: 0.21-0.42) over 3 years for As, Ca, Cr, Fe, Pb, Mn, and Zn, and strong correlations (>0.50) for Se, Cu, and Hg. IMPACT STATEMENT This toenail reliability study found that a low-mass (~25 mg) toenail sample (1-2 clippings) is suitable for the determination of most elements using ICP-MS and helps to increase the analytical capacity of limited toenail biospecimens collected in cohort studies. The results highlight differences in the suitability of toenails for chronic metal exposure assessment by element and underscore the need to consider intra-person variability, especially when comparing results across studies. We also provide recommendations for analytical standardization and the partitioning of the total collected toenail sample into multiple analytic sub-samples for future studies using toenail biospecimen for multiple assays.
Collapse
Affiliation(s)
- Joyce J Y Lin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Lily J Koffman
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mina W Tehrani
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Seok Gyu Han
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Lin JJ, Werder E, Lawrence KG, Jackson WB, Sandler DP, Dickerson AS, Engel LS, Rule AM. Residential proximity to metal emitting industries and toenail metal concentration in the US Gulf States. RESEARCH SQUARE 2023:rs.3.rs-3210942. [PMID: 37609314 PMCID: PMC10441474 DOI: 10.21203/rs.3.rs-3210942/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Objective The US Gulf region is heavily reliant on metal-emitting petrochemical and manufacturing industries. We characterized the effect of residential proximity to metal-emitting sites and metal body burden in Gulf states residents with particular attention to potential differential exposure burden by race. Methods We measured toenail concentrations of arsenic, chromium, lead, manganese, mercury, and selenium using inductively coupled plasma mass spectrometry in 413 non-smoking men from the Gulf Long-term Follow-Up Study. Point sources of industrial metal emissions were identified using the US EPA's National Emissions Inventory (NEI) database and geocoded to participant residential addresses. For each metal, we assessed associations of toenail metal concentrations with the inverse-distance weighted number of emissions sites and volume of air-metal emissions within 30 km radial buffers of participant residences using multivariable linear regression. Results were stratified by race. Results Compared to self-identified Non-Hispanic (NH) White participants, NH Black participants lived closer to NEI sites but had 23-70% lower toenail metal concentrations adjusting for other personal/behavioral factors. Residential proximity to lead-emitting NEI sites was positively associated with toenail Pb concentration while proximity to mercury-emitting NEI sites was inversely associated with toenail Hg concentration. Findings for lead were significantly attenuated after adjustment for neighborhood-level socioeconomic factors. Conclusion Residential proximity to lead-emitting NEI sites in the US Gulf region is associated with a higher body burden of lead. However, this relationship may be driven in part by non-NEI factors related to residence in industry-adjacent neighborhoods.
Collapse
Affiliation(s)
- Joyce Jy Lin
- Johns Hopkins University Bloomberg School of Public Health
| | - Emily Werder
- National Institute of Environmental Health Sciences Laboratory of Pharmacology and Chemistry: National Institute of Environmental Health Sciences
| | | | | | | | | | - Lawrence S Engel
- The University of North Carolina at Chapel Hill Gillings School of Global Public Health
| | - Ana M Rule
- Johns Hopkins University Bloomberg School of Public Health
| |
Collapse
|
4
|
Chen D, Sandler DP, Keil AP, Heiss G, Whitsel EA, Pratt GC, Stewart PA, Stenzel MR, Groth CP, Banerjee S, Huynh TB, Edwards JK, Jackson WB, Engeda J, Kwok RK, Werder EJ, Lawrence KG, Engel LS. Fine particulate matter and incident coronary heart disease events up to 10 years of follow-up among Deepwater Horizon oil spill workers. ENVIRONMENTAL RESEARCH 2023; 217:114841. [PMID: 36403648 PMCID: PMC9825646 DOI: 10.1016/j.envres.2022.114841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND During the 2010 Deepwater Horizon (DWH) disaster, in-situ burning and flaring were conducted to remove oil from the water. Workers near combustion sites were potentially exposed to burning-related fine particulate matter (PM2.5). Exposure to PM2.5 has been linked to increased risk of coronary heart disease (CHD), but no study has examined the relationship among oil spill workers. OBJECTIVES To investigate the association between estimated PM2.5 from burning/flaring of oil/gas and CHD risk among the DWH oil spill workers. METHODS We included workers who participated in response and cleanup activities on the water during the DWH disaster (N = 9091). PM2.5 exposures were estimated using a job-exposure matrix that linked modelled PM2.5 concentrations to detailed DWH spill work histories provided by participants. We ascertained CHD events as the first self-reported physician-diagnosed CHD or a fatal CHD event that occurred after each worker's last day of burning exposure. We estimated hazard ratios (HR) and 95% confidence intervals (95%CI) for the associations between categories of average or cumulative daily maximum PM2.5 exposure (versus a referent category of water workers not near controlled burning) and subsequent CHD. We assessed exposure-response trends by examining continuous exposure parameters in models. RESULTS We observed increased CHD hazard among workers with higher levels of average daily maximum exposure (low vs. referent: HR = 1.26, 95% CI: 0.93, 1.70; high vs. referent: HR = 2.11, 95% CI: 1.08, 4.12; per 10 μg/m3 increase: HR = 1.10, 95% CI: 1.02, 1.19). We also observed suggestively elevated HRs among workers with higher cumulative daily maximum exposure (low vs. referent: HR = 1.19, 95% CI: 0.68, 2.08; medium vs. referent: HR = 1.38, 95% CI: 0.88, 2.16; high vs. referent: HR = 1.44, 95% CI: 0.96, 2.14; per 100 μg/m3-d increase: HR = 1.03, 95% CI: 1.00, 1.05). CONCLUSIONS Among oil spill workers, exposure to PM2.5 from flaring/burning of oil/gas was associated with increased risk of CHD.
Collapse
Affiliation(s)
- Dazhe Chen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alexander P Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gregory C Pratt
- Division of Environmental Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Mark R Stenzel
- Exposure Assessment Applications, LLC, Arlington, VA, USA
| | - Caroline P Groth
- Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Sudipto Banerjee
- Department of Biostatistics, Fielding School of Public Health, University of California - Los Angeles, Los Angeles, CA, USA
| | - Tran B Huynh
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Jessie K Edwards
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - W Braxton Jackson
- Social & Scientific Systems, Inc, a DLH Holdings Company, Durham, NC, USA
| | - Joseph Engeda
- Social & Scientific Systems, Inc, a DLH Holdings Company, Durham, NC, USA
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA; Office of the Director, National Institute of Environmental Health Sciences, Bethesda, MD, USA
| | - Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Gorman Ng M, Cherrie JW, Sleeuwenhoek A, Stenzel M, Kwok RK, Engel LS, Cavallari JM, Blair A, Sandler DP, Stewart P. GuLF DREAM: A Model to Estimate Dermal Exposure Among Oil Spill Response and Clean-up Workers. Ann Work Expo Health 2022; 66:i218-i233. [PMID: 31334553 PMCID: PMC8989037 DOI: 10.1093/annweh/wxz037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 02/14/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2023] Open
Abstract
Tens of thousands of individuals performed oil spill response and clean-up (OSRC) activities following the 'Deepwater Horizon' oil drilling rig explosion in 2010. Many were exposed to oil residues and dispersants. The US National Institute of Environmental Health Sciences assembled a cohort of nearly 33 000 workers to investigate potential adverse health effects of oil spill exposures. Estimates of dermal and inhalation exposure are required for those individuals. Ambient breathing-zone measurements taken at the time of the spill were used to estimate inhalation exposures for participants in the GuLF STUDY (Gulf Long-term Follow-up Study), but no dermal measurements were collected. Consequently, a modelling approach was used to estimate dermal exposures. We sought to modify DREAM (DeRmal Exposure Assessment Method) to optimize the model for assessing exposure to various oil spill-related substances and to incorporate advances in dermal exposure research. Each DREAM parameter was reviewed in the context of literature published since 2000 and modified where appropriate. To reflect the environment in which the OSRC work took place, the model treatment of evaporation was expanded to include vapour pressure and wind speed, and the effect of seawater on exposure was added. The modified model is called GuLF DREAM and exposure is estimated in GuLF DREAM units (GDU). An external validation to assess the performance of the model for oils, tars, and fuels was conducted using available published dermal wipe measurements of heavy fuel oil (HFO) and dermal hand wash measurements of asphalt. Overall, measured exposures had moderate correlations with GDU estimates (r = 0.59) with specific correlations of -0.48 for HFO and 0.68 for asphalt. The GuLF DREAM model described in this article has been used to generate dermal exposure estimates for the GuLF STUDY. Many of the updates made were generic, so the updated model may be useful for other dermal exposure scenarios.
Collapse
Affiliation(s)
- Melanie Gorman Ng
- Centre for Human Exposure Science, Institute of Occupational Medicine, Research Avenue North, Edinburgh, EH14 4AP, UK
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John W Cherrie
- Centre for Human Exposure Science, Institute of Occupational Medicine, Research Avenue North, Edinburgh, EH14 4AP, UK
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh EH14 4AS, UK
| | - Anne Sleeuwenhoek
- Centre for Human Exposure Science, Institute of Occupational Medicine, Research Avenue North, Edinburgh, EH14 4AP, UK
| | - Mark Stenzel
- Exposure Assessment Applications, LLC, Arlington, VA 22207, USA
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer M Cavallari
- Department of Community Medicine, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD 27709, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
6
|
Takeshita R, Bursian SJ, Colegrove KM, Collier TK, Deak K, Dean KM, De Guise S, DiPinto LM, Elferink CJ, Esbaugh AJ, Griffitt RJ, Grosell M, Harr KE, Incardona JP, Kwok RK, Lipton J, Mitchelmore CL, Morris JM, Peters ES, Roberts AP, Rowles TK, Rusiecki JA, Schwacke LH, Smith CR, Wetzel DL, Ziccardi MH, Hall AJ. A review of the toxicology of oil in vertebrates: what we have learned following the Deepwater Horizon oil spill. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:355-394. [PMID: 34542016 DOI: 10.1080/10937404.2021.1975182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the wake of the Deepwater Horizon (DWH) oil spill, a number of government agencies, academic institutions, consultants, and nonprofit organizations conducted lab- and field-based research to understand the toxic effects of the oil. Lab testing was performed with a variety of fish, birds, turtles, and vertebrate cell lines (as well as invertebrates); field biologists conducted observations on fish, birds, turtles, and marine mammals; and epidemiologists carried out observational studies in humans. Eight years after the spill, scientists and resource managers held a workshop to summarize the similarities and differences in the effects of DWH oil on vertebrate taxa and to identify remaining gaps in our understanding of oil toxicity in wildlife and humans, building upon the cross-taxonomic synthesis initiated during the Natural Resource Damage Assessment. Across the studies, consistency was found in the types of toxic response observed in the different organisms. Impairment of stress responses and adrenal gland function, cardiotoxicity, immune system dysfunction, disruption of blood cells and their function, effects on locomotion, and oxidative damage were observed across taxa. This consistency suggests conservation in the mechanisms of action and disease pathogenesis. From a toxicological perspective, a logical progression of impacts was noted: from molecular and cellular effects that manifest as organ dysfunction, to systemic effects that compromise fitness, growth, reproductive potential, and survival. From a clinical perspective, adverse health effects from DWH oil spill exposure formed a suite of signs/symptomatic responses that at the highest doses/concentrations resulted in multi-organ system failure.
Collapse
Affiliation(s)
- Ryan Takeshita
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
| | - Kathleen M Colegrove
- College of Veterinary Medicine, Illinois at Urbana-Champaign, Brookfield, Illinois, United States
| | - Tracy K Collier
- Zoological Pathology Program, Huxley College of the Environment, Western Washington University, Bellingham, Washington, United States
| | - Kristina Deak
- College of Marine Sciences, University of South Florida, St. Petersburg, Florida, United States
| | | | - Sylvain De Guise
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, Connecticut, United States
| | - Lisa M DiPinto
- Office of Response and Restoration, NOAA, Silver Spring, Maryland, United States
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, United States
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, United States
| | - Martin Grosell
- RSMAS, University of Miami, Miami, Florida, United States
| | | | - John P Incardona
- NOAA Environmental Conservation Division, Northwest Fisheries Science Center, Seattle, Washington, United States
| | - Richard K Kwok
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, United States
| | | | - Carys L Mitchelmore
- University of Maryland Center of Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, United States
| | - Jeffrey M Morris
- Health and Environment Division, Abt Associates, Boulder, Colorado, United States
| | - Edward S Peters
- Department of Epidemiology, LSU School of Public Health, New Orleans, Louisiana, United States
| | - Aaron P Roberts
- Advanced Environmental Research Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, United States
| | - Teresa K Rowles
- NOAA Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, United States
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland, United States
| | - Lori H Schwacke
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Cynthia R Smith
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Dana L Wetzel
- Environmental Laboratory of Forensics, Mote Marine Laboratory, Sarasota, Florida, United States
| | - Michael H Ziccardi
- School of Veterinary Medicine, One Health Institute, University of California, Davis, California, United States
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
7
|
Xu J, Engel LS, Rhoden J, Jackson WB, Kwok RK, Sandler DP. The association between blood metals and hypertension in the GuLF study. ENVIRONMENTAL RESEARCH 2021; 202:111734. [PMID: 34303682 PMCID: PMC8578391 DOI: 10.1016/j.envres.2021.111734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Both essential and non-essential metals come from natural and anthropogenic sources. Metals can bioaccumulate in humans and may impact human health, including hypertension. METHODS Blood metal (cadmium, lead, mercury, manganese, and selenium) concentrations were measured at baseline for a sample of participants in the Gulf Long-Term Follow-up (GuLF) Study. The GuLF Study is a prospective cohort study focused on potential health effects following the 2010 Deepwater Horizon oil spill. Hypertension was defined as high systolic (≥140 mm Hg) or diastolic (≥90 mm Hg) blood pressure or taking anti-hypertensive medications. A total of 957 participants who had blood measurement for at least one metal, baseline blood pressure measurements, information on any anti-hypertensive medication use, and relevant covariates were included in this cross-sectional analysis. We used Poisson regression to explore the association between individual blood metal levels and hypertension. Quantile-based g-computation was used to investigate the association between the metal mixture and hypertension. We also explored the association between individual blood metal levels and continuous blood pressure measurements using general linear regression. RESULTS Comparing the highest quartile of blood metals with the lowest (Q4vs1), the hypertension prevalence ratio (PR) was 0.92 (95 % confidence interval (CI) = 0.73,1.15) for cadmium, 0.86 (95%CI = 0.66,1.12) for lead, 0.89 (95%CI = 0.71,1.12) for mercury, 1.00 (95%CI = 0.80,1.26) for selenium, and 1.22 (95%CI = 0.95,1.57) for manganese. We observed some qualitative differences across race and BMI strata although none of these differences were statistically significant. In stratified analyses, the PR (Q4vs1) for mercury was 0.69 (95%CI = 0.53, 0.91) in White participants and 1.29 (95%CI = 0.86,1.92) in Black participants (p for interaction = 0.5). The PR (Q4vs1) for manganese was relatively higher in Black participants (PR = 1.37, 95%CI = 0.92,2.05) than in White participants (PR = 1.15, 95%CI = 0.83,1.60, p for interaction = 0.5), with a suggestive dose-response among Blacks. After stratifying by obesity (BMI ≥30 and < 30), positive associations of of hypertension with cadmium (PR [Q4vs1] = 1.19, 95%CI = 0.91,1.56, p for interaction = 0.5), lead (PR [Q4vs1] = 1.14, 95%CI = 0.84,1.55, p for interaction = 1.0) and manganese (PR = 1.25, 95%CI = 0.93,1.68, p for interaction = 0.8) were observed in participants with BMI≥30, but not in participants with BMI<30. The joint effect of the metal mixture was 0.96 (95%CI = 0.73,1.27). We did not observe clear associations between blood metal levels and continuous blood pressure measurements. CONCLUSION We did not find overall cross-sectional associations between blood cadmium, lead, mercury, selenium levels and hypertension or blood pressure. We found some evidence suggesting that manganese might be positively associated with risk of hypertension. Associations varied somewhat by race and BMI.
Collapse
Affiliation(s)
- Jing Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA; Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Joyce Rhoden
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - W Braxton Jackson
- Social & Scientific Systems, Inc., DLH Holdings Company, Durham, NC, USA
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA; Office of the Director, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
8
|
Lawrence KG, Jackson WB, Ramsey S, Kwok RK, Engel LS, Curry MD, Sandler DP. Spirometry quality predictors in a large multistate prospective study. Respir Med 2021; 188:106618. [PMID: 34571455 DOI: 10.1016/j.rmed.2021.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The Gulf Long-Term Follow-up (GuLF) Study is a prospective cohort study of health effects associated with oil spill response and clean-up following the 2010 Deepwater Horizon Disaster (DWH). As part of the study, spirometry testing of lung function was carried out in home visits across multiple states. Few studies have described factors associated with spirometry test failure in field-based settings. OBJECTIVE Our objective was to identify what factors, if any, predict test failure among GuLF Study participants who completed spirometry testing in a non-traditional setting. METHODS Trained examiners administered spirometry (May 2011-May 2013) to 10,019 participants living in US Gulf States (LA, MS, TX, AL, FL) using an Easy-on ultrasonic spirometer. We applied American Thoracic Society/European Respiratory Society quality criteria to determine quality test failure and identified factors predictive of failure using both a Stepwise and a LASSO model. We calculated odds ratios and 95% confidence intervals (CIs) for associations of selected factors with test failure. RESULTS Among GuLF Study participants who conducted spirometry, self-reported African American/Black participants (OR: 1.39, 95% CI: 1.23,1.56); men (OR:1.61, 95% CI: 1.41,1.83); and those making less than $20,000 per year (OR: 1.45, 95% CI: 1.26,1.67) were more likely to fail quality testing, while those who were obese were less likely to fail (OR: 0.61, 95% CI: 0.42,0.89). CONCLUSION Field-based studies involving spirometry should identify and account for participant factors that may influence test failure. Coaching that is tailored to those less likely to have experience with spirometry may help reduce test failure rates.
Collapse
Affiliation(s)
- Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - W Braxton Jackson
- Social & Scientific Systems, Inc., a DLH Holding Company, Durham, NC, USA
| | - Steven Ramsey
- Social & Scientific Systems, Inc., a DLH Holding Company, Durham, NC, USA
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Office of the Director, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Dept. of Epidemiology, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Matthew D Curry
- Social & Scientific Systems, Inc., a DLH Holding Company, Durham, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
9
|
Hu MD, Lawrence KG, Gall M, Emrich CT, Bodkin MR, Jackson WB, MacNell N, Kwok RK, Engel LS, Sandler DP. Natural hazards and mental health among US Gulf Coast residents. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:842-851. [PMID: 33603095 PMCID: PMC8371064 DOI: 10.1038/s41370-021-00301-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/02/2021] [Accepted: 01/21/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Individuals affected by disasters are at risk for adverse mental health sequelae. Individuals living in the US Gulf Coast have experienced many recent major disasters, but few studies have explored the cumulative burden of experiencing multiple disasters on mental health. OBJECTIVE The objective of this study was to evaluate the relationship between disaster burden and mental health. METHODS We used data from 9278 Gulf Long-term Follow-up Study participants who completed questionnaires on perceived stress, anxiety, depression, and post-traumatic stress disorder (PTSD) in 2011-2013. We linked 2005-2010 county-level data from the Spatial Hazard Events and Losses Database for the United States, a database of loss-causing events, to participant's home address. Exposure measures included total count of loss events as well as severity quantified as property/crop losses per capita from all hazards. We used multilevel modeling to estimate odds ratios (OR) and 95% confidence intervals (CI) for each exposure-outcome relationship. RESULTS Total count of loss events was positively associated with perceived stress (ORQ4:1.40, 95% CI:1.21-1.61) and was inversely associated with PTSD (ORQ4:0.66, 95% CI:0.45-0.96). Total duration of exposure was also associated with stress (ORQ4:1.16, 95% CI:1.01-1.33) but not with other outcomes. Severity based on cumulative fatalities/injuries was associated with anxiety (ORQ4:1.31, 95% CI:1.05-1.63) and stress (ORQ4:1.34, 95% CI:1.15-1.57), and severity based on cumulative property/crop losses was associated with anxiety (ORQ4:1.42, 95% CI:1.12-1.81), depression (ORQ4:1.22, 95% CI:0.95-1.57) and PTSD (ORQ4:1.99, 95% CI:1.44-2.76).
Collapse
Affiliation(s)
- Michael D Hu
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Melanie Gall
- Center for Emergency Management and Homeland Security, Arizona State University, Phoenix, AZ, USA
| | - Christopher T Emrich
- College of Community Innovation and Education, University of Central Florida, Orlando, FL, USA
| | | | | | | | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA.
| |
Collapse
|
10
|
Ambient particulate matter, ozone, and neurologic symptoms in U.S. Gulf states adults. Environ Epidemiol 2021; 5:e160. [PMID: 34414344 DOI: 10.1097/ee9.0000000000000160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/01/2021] [Indexed: 01/24/2023] Open
Abstract
Research on neurologic effects of air pollution has focused on neurodevelopment or later-life neurodegeneration; other effects throughout adulthood have received less attention. We examined air pollution levels and neurologic symptoms among 21,467 adults in US Gulf Coast states. We assigned exposure using Environmental Protection Agency estimates of daily ambient particulate matter 2.5 (PM2.5) and ozone. Gulf Long-term Follow-up Study participants reported neurologic symptoms at enrollment (2011-2013). We estimated cross-sectional associations between each air pollutant and prevalence of "any" neurologic, central nervous system (CNS), or peripheral nervous system (PNS) symptoms. Ambient PM2.5 was consistently associated with prevalence of neurologic symptoms. The highest quartile of 30-day PM2.5 was associated with any neurologic symptom (prevalence ratio [PR] = 1.16; 95% confidence interval [CI] = 1.09, 1.23) and there were increasing monotonic relationships between 30-day PM2.5 and each symptom category (P-trend ≤ 0.01). Associations with PM2.5 were slightly stronger among nonsmokers and during colder seasons. The highest quartile of 7-day ozone was associated with increased prevalence of PNS symptoms (PR = 1.09; 95% CI = 1.00, 1.19; P-trend = 0.03), but not with other outcomes. Ozone concentrations above regulatory levels were suggestively associated with neurologic symptoms (PR = 1.06; 95% CI = 0.99, 1.14). Mutual adjustment in co-pollutant models suggests that PM2.5 is more relevant than ozone in relation to prevalence of neurologic symptoms.
Collapse
|
11
|
Hu MD, Lawrence KG, Bodkin MR, Kwok RK, Engel LS, Sandler DP. Neighborhood Deprivation, Obesity, and Diabetes in Residents of the US Gulf Coast. Am J Epidemiol 2021; 190:295-304. [PMID: 33524122 DOI: 10.1093/aje/kwaa206] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Socioeconomic status has been associated with cardiovascular disease risk factors. However, few studies have examined this relationship among populations in the US Gulf Coast region. We assessed neighborhood deprivation in relation to obesity and diabetes in 9,626 residents participating in the Gulf Long-Term Follow-Up Study (2011-present) who completed a home visit (2011-2013) with height, weight, waist, and hip measurements. Obesity was categorized as body mass index of at least 30, and diabetes was defined by doctor's diagnosis or prescription medication. Participant home addresses were linked to an established Area Deprivation Index and categorized into 4 levels (1 = least deprived). In adjusted, modified Poisson regression models, participants with greatest deprivation were more likely to have obesity compared with those with least deprivation (adjusted prevalence ratio (aPR) = 1.21, 95% confidence interval (CI): 1.08, 1.35), central obesity (aPR = 1.11, 95% CI: 1.04, 1.19), and diabetes (aPR = 1.49, 95% CI: 1.03, 2.14). Repeated analyses among a subgroup of participants (n = 3,016) whose hemoglobin A1C values were measured 3 years later indicated the association with diabetes (defined as diagnosis, medications, or hemoglobin A1C ≥ 6.5) was similar (aPR = 1.46, 95% CI: 1.14, 1.86). Results suggest neighborhood deprivation is associated with obesity and diabetes in a US region with high baseline prevalence.
Collapse
|
12
|
Werder EJ, Engel LS, Curry MD, Sandler DP. Selenium modifies associations between multiple metals and neurologic symptoms in Gulf states residents. Environ Epidemiol 2020; 4:e115. [PMID: 33336134 PMCID: PMC7727467 DOI: 10.1097/ee9.0000000000000115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Metals have been shown to have a wide range of neurologic effects across the life course, but most studies consider neurodevelopment or neurodegenerative diseases in older adults. We investigated exposure to metals during adulthood in association with subclinical neurologic endpoints, considering the metals individually and as a mixture, and potential interactions among exposures. METHODS We measured blood levels of cadmium, lead, mercury, manganese, and selenium in 1007 Gulf state residents and estimated cross-sectional associations between ranked levels of blood metals and the presence of self-reported neurologic symptoms. Single pollutant models were mutually adjusted for other metals and we used quantile g-computation to evaluate associations with exposure to the combined mixture. In stratified analyses, we assessed heterogeneity by smoking and blood selenium. RESULTS The highest quartile of cadmium was associated with a higher prevalence of central nervous system symptoms (prevalence ratio [PR] = 1.50; 95% confidence interval [CI] = 1.13, 1.99), with stronger associations among nonsmokers (PR = 1.63; 95% CI = 1.11, 2.38) and those with low selenium (PR = 2.29, 95% CI = 1.50, 3.49). Selenium also modified associations between lead and peripheral nervous system symptoms, with increased symptoms in the low selenium group at all quartiles of exposure (P-trend = 0.07). Conversely, those with the highest co-exposure to mercury and selenium had reduced neurologic symptoms (PR = 0.73, 95% CI = 0.55, 0.96). Results of the mixture analysis were consistent with single chemical results. CONCLUSIONS Cadmium exhibited the most consistent relationship with increased neurologic symptoms, though lead was an important exposure in subgroup analyses. Selenium may modify subclinical neurotoxic effects of metals at non-occupational levels in adults.
Collapse
Affiliation(s)
- Emily J. Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina
| | - Lawrence S. Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | | | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina
| |
Collapse
|
13
|
Lawrence KG, Keil AP, Garantziotis S, Umbach DM, Stewart PA, Stenzel MR, McGrath JA, Jackson WB, Kwok RK, Curry MD, Engel LS, Sandler DP. Lung function in oil spill responders 4-6 years after the Deepwater Horizon disaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:233-248. [PMID: 32249687 PMCID: PMC7837370 DOI: 10.1080/15287394.2020.1745111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oil spill response and clean-up (OSRC) workers were exposed to hazardous airborne chemicals following the 2010 Deepwater Horizon disaster. The aim of this study was to evaluate lung function in workers 4-6 years following the disaster using a prospective cohort. Participants who completed two spirometry test sessions 1-3 years, and 4-6 years after the spill (N = 1,838) were included and forced expiratory volume in 1 s (FEV1; ml), forced vital capacity (FVC; ml), and ratio (FEV1/FVC; %) determined. Linear mixed models were utilized to estimate relationships between OSRC exposures and lung function 4-6 years after the spill and changes since the prior measurement. Despite suggestive reduced lung function at 1-3 years, at the 4-6-year exam workers with total hydrocarbon (THC) exposure 1-2.99 ppm and ≥3 ppm compared to those with ≤0.29 ppm exhibited higher FEV1 (β: 108 ml, 95% CI: 17, 198) and (β: 118 ml, 95% CI: 5, 232), respectively. Compared with support workers, those in higher exposed jobs displayed greater improvement in FEV1 between visits: cleanup on water (β: 143 ml, 95% CI: 35, 250), operations (β: 132 ml, 95% CI: 30, 234) and response (β: 149 ml, 95% CI: 43, 256). Greater FEV1 improvement was also associated with higher versus the lowest level THC exposure: 1-2.99 ppm (β: 134 ml, 95% CI: 57, 210) and ≥3 ppm (β: 205 ml, 95% CI: 109, 301). Lung function decrements seen shortly after the spill were no longer apparent 4-6 years later, with the greatest improvement among those with the highest exposures.
Collapse
Affiliation(s)
- Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Alexander P Keil
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Stavros Garantziotis
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Mark R Stenzel
- Exposure Assessment Applications, LLC, Arlington, VA, USA
| | | | | | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
14
|
Werder EJ, Sandler DP, Richardson DB, Emch ME, Kwok RK, Engel LS. Determinants of environmental styrene exposure in Gulf coast residents. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:831-841. [PMID: 30546124 PMCID: PMC6763388 DOI: 10.1038/s41370-018-0098-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/25/2018] [Accepted: 10/19/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND In a previous study of exposure to oil-related chemicals in Gulf coast residents, we measured blood levels of volatile organic compounds. Levels of styrene were substantially elevated compared to a nationally representative sample. We sought to identify factors contributing to these levels, given the opportunities for styrene exposure in this community. METHODS We measured blood styrene levels in 667 Gulf coast residents and compared participants' levels of blood styrene to a nationally representative sample. We assessed personal and environmental predictors of blood styrene levels using linear regression and predicted the risk of elevated blood styrene (defined as above the National Health and Nutrition Examination Survey 95th percentile) using modified Poisson regression. We assessed exposure to styrene using questionnaire data on recent exposure opportunities and leveraged existing databases to assign ambient styrene exposure based on geocoded residential location. RESULTS These Gulf coast residents were 4-6 times as likely as the nationally representative sample to have elevated blood styrene levels. The change in styrene (log ng/mL) was 0.42 (95% CI: 0.34, 0.51) for smoking, 0.34 (0.09, 0.59) for time spent in vehicles and 1.10 (0.31, 1.89) for boats, and -0.41 (-0.73, -0.10) for fall/winter blood draws. Residential proximity to industrial styrene emissions did not predict blood styrene levels. Ambient styrene predicted elevated blood styrene in subgroups. CONCLUSIONS Personal predictors of increasing blood styrene levels included smoking, vehicle emissions, and housing characteristics. There was a suggestive association between ambient and blood styrene. Our measures of increased regional exposure opportunity do not fully explain the observed elevated blood styrene levels in this population.
Collapse
Affiliation(s)
- Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - David B Richardson
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Michael E Emch
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Kwok RK, Miller AK, Gam KB, Curry MD, Ramsey SK, Blair A, Engel LS, Sandler DP. Developing Large-Scale Research in Response to an Oil Spill Disaster: a Case Study. Curr Environ Health Rep 2019; 6:174-187. [PMID: 31376082 PMCID: PMC6699641 DOI: 10.1007/s40572-019-00241-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Research conducted in the wake of a disaster can provide information to help mitigate health consequences, support future recovery efforts, and improve resilience. However, a number of barriers have prevented time-sensitive research responses following previous disasters. Furthermore, large-scale disasters present their own special challenges due to the number of people exposed to disaster conditions, the number of groups engaged in disaster response, and the logistical challenges of rapidly planning and implementing a large study. In this case study, we illustrate the challenges in planning and conducting a large-scale post-disaster research study by drawing on our experience in establishing the Gulf Long-term Follow-up (GuLF) Study following the 2010 Deepwater Horizon disaster. We describe considerations in identifying at-risk populations and appropriate comparison groups, garnering support for the study from different stakeholders, obtaining timely scientific and ethics review, measuring and characterizing complex exposures, and addressing evolving community health concerns and unmet medical needs. We also describe the NIH Disaster Research Response (DR2) Program, which provides a suite of resources, including data collection tools, research protocols, institutional review board guidance, and training materials to enable the development and implementation of time-critical studies following disasters and public health emergencies. In describing our experiences related to the GuLF Study and the ongoing efforts through the NIH DR2 Program, we aim to help improve the timeliness, quality, and value of future disaster-related data collection and research studies.
Collapse
Affiliation(s)
- Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA.
| | | | - Kaitlyn B Gam
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Matthew D Curry
- Social & Scientific Systems, Inc., Durham, North Carolina, USA
| | - Steven K Ramsey
- Social & Scientific Systems, Inc., Durham, North Carolina, USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
16
|
Werder EJ, Engel LS, Blair A, Kwok RK, McGrath JA, Sandler DP. Blood BTEX levels and neurologic symptoms in Gulf states residents. ENVIRONMENTAL RESEARCH 2019; 175:100-107. [PMID: 31108353 PMCID: PMC6571161 DOI: 10.1016/j.envres.2019.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND The chemicals benzene, toluene, ethylbenzene, and xylenes (BTEX) are neuroactive. Exposures often co-occur because they share common sources. We examined neurologic effects of environmental BTEX exposure among U.S. Gulf coast residents taking into account concomitant exposures. METHODS We measured blood concentrations of BTEX in 690 Gulf state residents. Neurologic symptoms were ascertained via telephone interview. We used log-binomial regression to estimate associations between blood BTEX levels and self-reported neurologic symptoms independently for the presence of any neurologic, central (CNS), or peripheral nervous system (PNS) symptoms. We estimated associations in single chemical models mutually adjusted for co-occurring BTEX and used weighted quantile sum regression to model associations between the combined BTEX mixture and neurologic symptoms. RESULTS Half (49%) of participants reported at least one neurologic symptom. Each BTEX chemical was associated with increased CNS and PNS symptoms in single-chemical models comparing the highest to lowest quartile of exposure. After adjusting for coexposures, benzene was associated with CNS symptoms among all participants (PR = 2.13, 95% CI: 1.27, 3.57) and among nonsmokers (PR = 2.30, 95% CI: 1.35, 3.91). After adjusting for coexposures, associations with toluene were apparent only for reporting multiple PNS symptoms (PR = 2.00, 95% CI: 0.96, 4.16). In mixture analyses, a one-quartile increase in BTEX exposure was associated with neurologic symptoms (OR = 1.47, 95% CI: 1.11, 1.98). The weighted quantile sum index weighted benzene most heavily, which was consistent with single chemical analyses. CONCLUSIONS Increasing blood benzene concentration was associated with increased prevalence of CNS symptoms. In this sample, BTEX-associated neurologic effects are likely driven by exposure to benzene and, to a lesser extent, toluene.
Collapse
Affiliation(s)
- Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA; Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Aaron Blair
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA.
| |
Collapse
|
17
|
Werder EJ, Sandler DP, Richardson DB, Emch ME, Kwok RK, Gerr FE, Engel LS. Environmental Styrene Exposure and Sensory and Motor Function in Gulf Coast Residents. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:47006. [PMID: 31009265 PMCID: PMC6785236 DOI: 10.1289/ehp3954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Although styrene is an established neurotoxicant at occupational exposure levels, its neurotoxicity has not been characterized in relation to general population exposures. Further, occupational research to date has focused on central nervous system impairment. OBJECTIVE We assessed styrene-associated differences in sensory and motor function among Gulf coast residents. METHODS We used 2011 National Air Toxics Assessment estimates of ambient styrene to determine exposure levels for 2,956 nondiabetic Gulf state residents enrolled in the Gulf Long-term Follow-up Study, and additionally measured blood styrene concentration in a subset of participants 1 to 2 y after enrollment ([Formula: see text]). Participants completed an enrollment telephone interview and a comprehensive test battery to assess sensory and motor function during a clinical follow-up exam 2 to 4 y later. Detailed covariate information was ascertained at enrollment via telephone interview. We used multivariate linear regression to estimate continuous differences in sensory and motor function, and log-binomial regression to estimate prevalence ratios for dichotomous outcomes. We estimated associations of both ambient and blood styrene exposures with sensory and motor function, independently for five unique tests. RESULTS Those participants in the highest 25% vs. lowest 75% of ambient exposure and those in the highest 10% vs. lowest 90% of blood styrene had slightly diminished visual contrast sensitivity. Mean vibrotactile thresholds were lower among those in the highest vs. lowest quartile of ambient styrene and the highest 10% vs. lowest 90% of blood styrene ([Formula: see text] log microns; 95% CI: [Formula: see text], [Formula: see text] and [Formula: see text] log microns; 95% CI: [Formula: see text], [Formula: see text], respectively). The highest vs. lowest quartile of ambient styrene was associated with significantly poorer postural stability, and (unexpectedly) with significantly greater grip strength. DISCUSSION We observed associations between higher styrene exposure and poorer visual, sensory, and vestibular function, though we did not detect associations with reduced voluntary motor system performance. Associations were more consistent for ambient exposures, but we also found notable associations with measured blood styrene. https://doi.org/10.1289/EHP3954.
Collapse
Affiliation(s)
- Emily J. Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Epidemiology Department, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - David B. Richardson
- Epidemiology Department, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Michael E. Emch
- Epidemiology Department, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Richard K. Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Fredric E. Gerr
- Department of Occupational and Environmental Health, University of Iowa College of Public Health, Iowa City, Iowa
| | - Lawrence S. Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Epidemiology Department, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Gam KB, Engel LS, Kwok RK, Curry MD, Stewart PA, Stenzel MR, McGrath JA, Jackson WB, Lichtveld MY, Sandler DP. Association between Deepwater Horizon oil spill response and cleanup work experiences and lung function. ENVIRONMENT INTERNATIONAL 2018; 121:695-702. [PMID: 30317099 PMCID: PMC6400458 DOI: 10.1016/j.envint.2018.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 05/15/2023]
Abstract
INTRODUCTION Oil spill response and cleanup (OSRC) workers had potentially stressful experiences during mitigation efforts following the 2010 Deepwater Horizon disaster. Smelling chemicals; skin or clothing contact with oil; heat stress; handling oily plants/wildlife or dead animal recovery; and/or being out of regular work may have posed a risk to worker respiratory health through psychological stress mechanisms. OBJECTIVE To evaluate the association between six potentially stressful oil spill experiences and lung function among OSRC workers 1-3 years following the Deepwater Horizon disaster, while controlling for primary oil spill inhalation hazards and other potential confounders. METHODS Of 6811 GuLF STUDY participants who performed OSRC work and completed a quality spirometry test, 4806 provided information on all exposures and confounders. We carried out complete case analysis and used multiple imputation to assess risk among the larger sample. Potentially stressful work experiences were identified from an earlier study of these workers. The lung function parameters of interest include the forced expiratory volume in 1 s (FEV1, mL), the forced vital capacity (FVC, mL) and the ratio (FEV1/FVC, %). RESULTS On average, participants in the analytic sample completed spirometry tests 1.7 years after the spill. Among workers with at least 2 acceptable FEV1 and FVC curves, workers with jobs that involved oily plants/wildlife or dead animal recovery had lower values for FEV1 (Mean difference: -53 mL, 95% CI: -84, -22), FVC (Mean difference: -45 mL, 95% CI: -81, -9) and FEV1/FVC (Mean difference: -0.44%, 95% CI: -0.80, -0.07) compared to unexposed workers in analyses using multiple imputation. CONCLUSIONS Workers involved in handling oily plants/wildlife or dead animal recovery had lower lung function than unexposed workers after accounting for other OSRC inhalation hazards.
Collapse
Affiliation(s)
- Kaitlyn B Gam
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America; Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States of America
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America
| | - Matthew D Curry
- Social & Scientific Systems Inc., Durham, NC, United States of America
| | - Patricia A Stewart
- Stewart Exposure Assessments, LLC, Arlington, VA, United States of America
| | - Mark R Stenzel
- Exposure Assessment Applications, LLC, Arlington, VA, United States of America
| | - John A McGrath
- Social & Scientific Systems Inc., Durham, NC, United States of America
| | - W Braxton Jackson
- Social & Scientific Systems Inc., Durham, NC, United States of America
| | - Maureen Y Lichtveld
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America.
| |
Collapse
|
19
|
Werder EJ, Engel LS, Richardson DB, Emch ME, Gerr FE, Kwok RK, Sandler DP. Environmental styrene exposure and neurologic symptoms in U.S. Gulf coast residents. ENVIRONMENT INTERNATIONAL 2018; 121:480-490. [PMID: 30278311 PMCID: PMC6712572 DOI: 10.1016/j.envint.2018.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Styrene is an established neurotoxicant at occupational levels, but effects at levels relevant to the general population have not been studied. We examined the neurologic effects of environmental styrene exposure among U.S. Gulf coast residents. METHODS We used National Air Toxics Assessment (NATA) 2011 estimates of ambient styrene concentrations to assign exposure levels for 21,962 non-diabetic Gulf state residents, and additionally measured blood styrene concentration in a subset of participants (n = 874). Neurologic symptoms, as well as detailed covariate information, were ascertained via telephone interview. We used log-binomial regression to estimate prevalence ratios (PR) and 95% confidence intervals (95% CI) for cross-sectional associations between both ambient and blood styrene levels and self-reported neurologic symptoms. We estimated associations independently for ten unique symptoms, as well as for the presence of any neurologic, central nervous system (CNS), or peripheral nervous system (PNS) symptoms. We also examined heterogeneity of associations with estimated ambient styrene levels by race and sex. RESULTS One-third of participants reported at least one neurologic symptom. The highest quartile of estimated ambient styrene was associated with one or more neurologic (PR, 1.12; 95% CI: 1.07,1.18), CNS (PR, 1.17; 95% CI: 1.11,1.25), and PNS (PR, 1.16; 95% CI: 1.09,1.25) symptom. Results were less consistent for biomarker analyses, but blood styrene level was suggestively associated with nausea (PR, 1.78; 95% CI: 1.04, 3.03). In stratified analyses, we observed the strongest effects among non-White participants. CONCLUSIONS Increasing estimated ambient styrene concentration was consistently associated with increased prevalence of neurologic symptoms. Associations between blood styrene levels and some neurologic symptoms were suggestive. Environmental styrene exposure levels may be sufficient to elicit symptomatic neurotoxic effects.
Collapse
Affiliation(s)
- Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America; Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America; Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| | - David B Richardson
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| | - Michael E Emch
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| | - Fredric E Gerr
- Department of Occupational and Environmental Health, University of Iowa College of Public Health, Iowa City, IA, United States of America
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America.
| |
Collapse
|
20
|
Stewart PA, Stenzel MR, Ramachandran G, Banerjee S, Huynh T, Groth C, Kwok RK, Blair A, Engel LS, Sandler DP. Development of a total hydrocarbon ordinal job-exposure matrix for workers responding to the Deepwater Horizon disaster: The GuLF STUDY. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:223-230. [PMID: 29064482 PMCID: PMC6104396 DOI: 10.1038/jes.2017.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/22/2017] [Indexed: 05/20/2023]
Abstract
The GuLF STUDY is a cohort study investigating the health of workers who responded to the Deepwater Horizon oil spill in the Gulf of Mexico in 2010. The objective of this effort was to develop an ordinal job-exposure matrix (JEM) of airborne total hydrocarbons (THC), dispersants, and particulates to estimate study participants' exposures. Information was collected on participants' spill-related tasks. A JEM of exposure groups (EGs) was developed from tasks and THC air measurements taken during and after the spill using relevant exposure determinants. THC arithmetic means were developed for the EGs, assigned ordinal values, and linked to the participants using determinants from the questionnaire. Different approaches were taken for combining exposures across EGs. EGs for dispersants and particulates were based on questionnaire responses. Considerable differences in THC exposure levels were found among EGs. Based on the maximum THC level participants experienced across any job held, ∼14% of the subjects were identified in the highest exposure category. Approximately 10% of the cohort was exposed to dispersants or particulates. Considerable exposure differences were found across the various EGs, facilitating investigation of exposure-response relationships. The JEM is flexible to allow for different assumptions about several possibly relevant exposure metrics.
Collapse
Affiliation(s)
| | - Mark R. Stenzel
- Exposure Assessment Applications, LLC, Arlington, Virginia, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sudipto Banerjee
- Department of Biostatistics, University of California-Los Angeles, Los Angeles, California, USA
| | - Tran Huynh
- Drexel University, Philadelphia, Pennsylvania, USA
| | - Caroline Groth
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Richard K. Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD USA
| | - Lawrence S. Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC USA
| |
Collapse
|
21
|
D'Andrea MA, Reddy GK. The Development of Long-Term Adverse Health Effects in Oil Spill Cleanup Workers of the Deepwater Horizon Offshore Drilling Rig Disaster. Front Public Health 2018; 6:117. [PMID: 29755965 PMCID: PMC5932154 DOI: 10.3389/fpubh.2018.00117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/05/2018] [Indexed: 12/16/2022] Open
Abstract
Background The purpose of this study was to assess the long-term adverse health effects of the 2010 Deepwater Horizon Gulf oil spill exposure in workers who participated in its cleanup work. Methods Medical charts of both the oil spill exposed and unexposed subjects were reviewed. The changes in the white blood cells, platelets, hemoglobin, hematocrit, blood urea nitrogen, creatinine, alkaline phosphatase (ALP), aspartate amino transferase (AST), alanine amino transferase (ALT) levels, as well as their pulmonary and cardiac functions were evaluated. Results Medical records from 88 subjects (oil spill cleanup workers, n = 44 and unexposed, n = 44) were reviewed during initial and 7 years follow up visits after the disaster occurred. Compared with the unexposed subjects, oil spill exposed subjects had significantly reduced platelet counts (×103/µL) at their initial (254.1 ± 46.7 versus 289.7 ± 63.7, P = 0.000) and follow-up (242.9 ± 55.6 versus 278.4 ± 67.6, P = 0.000) visits compared with the unexposed subjects (254.6 ± 51.9 versus 289.7 ± 63.7, P = 0.008). The hemoglobin and hematocrit levels were increased significantly both at their initial and follow-up visits in the oil spill exposed subjects compared to the unexposed subjects. Similarly, the oil spill exposed subjects had significantly increased ALP, AST, and ALT levels at their initial and follow-up visits compared with those of the unexposed subjects. Illness symptoms that were reported during their initial visit still persisted at their 7-year follow-up visit. Notably, at their 7-year follow-up visit, most of the oil spill exposed subjects had also developed chronic rhinosinusitis and reactive airway dysfunction syndrome as new symptoms that were not reported during their initial visit. Additionally, more abnormalities in pulmonary and cardiac functions were also seen in the oil spill exposed subjects. Conclusion This long-term follow-up study demonstrates that those people involved in the oil spill cleanup operations experiences persistent alterations or worsening of their hematological, hepatic, pulmonary, and cardiac functions. In addition, these subjects experienced prolonged or worsening illness symptoms even 7 years after their exposure to the oil spill.
Collapse
Affiliation(s)
- Mark A D'Andrea
- University Cancer and Diagnostic Centers, Houston, TX, United States
| | - G Kesava Reddy
- University Cancer and Diagnostic Centers, Houston, TX, United States
| |
Collapse
|
22
|
Kwok RK, Engel LS, Miller AK, Blair A, Curry MD, Jackson WB, Stewart PA, Stenzel MR, Birnbaum LS, Sandler DP. The GuLF STUDY: A Prospective Study of Persons Involved in the Deepwater Horizon Oil Spill Response and Clean-Up. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:570-578. [PMID: 28362265 PMCID: PMC5382003 DOI: 10.1289/ehp715] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND The 2010 Deepwater Horizon disaster led to the largest ever marine oil spill. Individuals who worked on the spill were exposed to toxicants and stressors that could lead to adverse effects. OBJECTIVES The GuLF STUDY was designed to investigate relationships between oil spill exposures and multiple potential physical and mental health effects. METHODS Participants were recruited by telephone from lists of individuals who worked on the oil spill response and clean-up or received safety training. Enrollment interviews between 2011 and 2013 collected information about spill-related activities, demographics, lifestyle, and health. Exposure measurements taken during the oil spill were used with questionnaire responses to characterize oil exposures of participants. Participants from Gulf states completed a home visit in which biological and environmental samples, anthropometric and clinical measurements, and additional health and lifestyle information were collected. Participants are being followed for changes in health status. RESULTS Thirty-two thousand six hundred eight individuals enrolled in the cohort, and 11,193 completed a home visit. Most were young (56.2% ≤ 45 years of age), male (80.8%), lived in a Gulf state (82.3%), and worked at least 1 day on the oil spill (76.5%). Workers were involved in response (18.0%), support operations (17.5%), clean-up on water (17.4%) or land (14.6%), decontamination (14.3%), and administrative support (18.3%). Using an ordinal job exposure matrix, 45% had maximum daily total hydrocarbon exposure levels ≥ 1.0 ppm. CONCLUSIONS The GuLF STUDY provides a unique opportunity to study potential adverse health effects from the Deepwater Horizon oil spill.
Collapse
Affiliation(s)
- Richard K. Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina USA
- Address correspondence to R.K. Kwok, Epidemiology Branch, NIEHS, P.O. Box 12233, MD A3-05, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709-2233 USA. Telephone: (919) 627-8892. , or D.P. Sandler, Epidemiology Branch, NIEHS, P.O. Box 12233, MD A3-05, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709-2233 USA. Telephone: (919) 541-4668.
| | - Lawrence S. Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina USA
- Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Aubrey K. Miller
- Office of the Director, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Maryland, USA
| | | | | | | | - Mark R. Stenzel
- Exposure Assessment Applications, LLC, Arlington, Virginia, USA
| | - Linda S. Birnbaum
- Office of the Director, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina USA
- Address correspondence to R.K. Kwok, Epidemiology Branch, NIEHS, P.O. Box 12233, MD A3-05, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709-2233 USA. Telephone: (919) 627-8892. , or D.P. Sandler, Epidemiology Branch, NIEHS, P.O. Box 12233, MD A3-05, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709-2233 USA. Telephone: (919) 541-4668.
| | | |
Collapse
|