1
|
Wykowski JH, Phillips C, Ngo T, Drain PK. A systematic review of potential screening biomarkers for active TB disease. J Clin Tuberc Other Mycobact Dis 2021; 25:100284. [PMID: 34805557 PMCID: PMC8590066 DOI: 10.1016/j.jctube.2021.100284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION The standard TB Four Symptom Screen does not meet the World Health Organization (WHO) ideal screening criteria for having greater than 90% sensitivity to identify active TB disease, regardless of HIV status. To identify novel screening biomarkers for active TB, we performed a systematic review of any cohort or case-control study reporting associations between screening biomarkers and active TB disease. METHODS We searched PubMed and Embase for articles published before October 10, 2021. We included studies from high or medium tuberculosis burden countries. We excluded articles focusing on C-reactive protein and lipoarabinomannan. For all included biomarkers, we calculated sensitivity, specificity and 95% confidence intervals, and assessed study quality using a tool adapted from the QUADAS-2 risk of bias. RESULTS From 8,062 abstracts screened, we included 79 articles. The articles described 302 unique biomarkers, including host antibodies, host proteins, TB antigens, microRNAs, whole blood gene PCRs, and combinations of biomarkers. Of these, 23 biomarkers had sensitivity greater than 90% and specificity greater than 70%, meeting WHO criteria for an ideal screening test. Among the eleven biomarkers described in people living with HIV, only one had a sensitivity greater than 90% and specificity greater than 70% for active TB. CONCLUSION Further evaluation of biomarkers of active TB should be pursued to accelerate identification of TB disease.
Collapse
Affiliation(s)
- James H. Wykowski
- Department of Medicine, 925 9 Ave Seattle, WA 98104, University of Washington, Seattle, USA
| | - Chris Phillips
- Department of Global Health, 925 9 Ave Seattle, WA 98104, University of Washington, Seattle, USA
| | - Thao Ngo
- Department of Global Health, 925 9 Ave Seattle, WA 98104, University of Washington, Seattle, USA
| | - Paul K. Drain
- Department of Medicine, 925 9 Ave Seattle, WA 98104, University of Washington, Seattle, USA
- Department of Global Health, 925 9 Ave Seattle, WA 98104, University of Washington, Seattle, USA
- Department of Epidemiology, 925 9 Ave Seattle, WA 98104, University of Washington, Seattle, USA
| |
Collapse
|
2
|
Venkatesan MM, Ballou C, Barnoy S, McNeal M, El-Khorazaty J, Frenck R, Baqar S. Antibody in Lymphocyte Supernatant (ALS) responses after oral vaccination with live Shigella sonnei vaccine candidates WRSs2 and WRSs3 and correlation with serum antibodies, ASCs, fecal IgA and shedding. PLoS One 2021; 16:e0259361. [PMID: 34793505 PMCID: PMC8601580 DOI: 10.1371/journal.pone.0259361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
The levels of antigen-specific Antibodies in Lymphocyte Supernatant (ALS) using an ELISA are being used to evaluate mucosal immune responses as an alternate to measuring the number of Antibody Secreting Cells (ASCs) using an ELISpot assay. A recently completed trial of two novel S. sonnei live oral vaccine candidates WRSs2 and WRSs3 established that both candidates were safe, well tolerated and immunogenic in a vaccine dose-dependent manner. Previously, mucosal immune responses were measured by assaying IgA- and IgG-ASC in peripheral blood mononuclear cells (PBMCs). In this report, the magnitude of the S. sonnei antigen-specific IgA- and IgG-ALS responses was measured and correlated with previously described ASCs, serum antibodies, fecal IgA and vaccine shedding. Overall, the magnitude of S. sonnei anti-Invaplex50 ALS was higher than that of LPS or IpaB, and both vaccines demonstrated a more robust IgA-ALS response than IgG; however, compared to WRSs3, the magnitude and percentage of responders were higher among WRSs2 recipients for IgA- or IgG-ALS. All WRSs2 vaccinees at the two highest doses responded for LPS and Invaplex50-specific IgA-ALS and 63-100% for WRSs3 vaccinees responded. Regardless of the vaccine candidate, vaccine dose or detecting antigen, the kinetics of ALS responses were similar peaking on days 7 to 9 and returning to baseline by day 14. The ALS responses were vaccine-specific since no responses were detected among placebo recipients at any time. A strong correlation and agreement between responders/non-responders were noted between ALS and other mucosal (ASC and fecal IgA) and systemic (serum antibody) immune responses. These data indicate that the ALS assay can be a useful tool to evaluate mucosal responses to oral vaccination, an observation noted with trials of other bacterial diarrheal pathogens. Furthermore, this data will guide the list of immunological assays to be conducted for efficacy trials in different populations. It is hoped that an antigen-specific-ALS titer may be a key mucosal correlate of protection, a feature not currently available for any Shigella vaccines candidates. https://clinicaltrials.gov/show/NCT01336699.
Collapse
Affiliation(s)
- Malabi M. Venkatesan
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | | | - Shoshana Barnoy
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Monica McNeal
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | | | - Robert Frenck
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Shahida Baqar
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Darton TC, Jones C, Dongol S, Voysey M, Blohmke CJ, Shrestha R, Karkey A, Shakya M, Arjyal A, Waddington CS, Gibani M, Carter MJ, Basnyat B, Baker S, Pollard AJ. Assessment and Translation of the Antibody-in-Lymphocyte Supernatant (ALS) Assay to Improve the Diagnosis of Enteric Fever in Two Controlled Human Infection Models and an Endemic Area of Nepal. Front Microbiol 2017; 8:2031. [PMID: 29109704 PMCID: PMC5660281 DOI: 10.3389/fmicb.2017.02031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 10/04/2017] [Indexed: 11/17/2022] Open
Abstract
New diagnostic tests for enteric fever are urgently needed to assist with timely antimicrobial treatment of patients and to measure the efficacy of prevention measures such as vaccination. In a novel translational approach, here we use two recently developed controlled human infection models (CHIM) of enteric fever to evaluate an antibody-in-lymphocyte supernatant (ALS) assay, which can detect recent IgA antibody production by circulating B cells in ex vivo mononuclear cell culture. We calculated the discriminative ability of the ALS assay to distinguish diagnosed cases in the two CHIM studies in Oxford, prior to evaluating blood culture-confirmed diagnoses of patients presenting with fever to hospital in an endemic areas of Kathmandu, Nepal. Antibody responses to membrane preparations and lipopolysaccharide provided good sensitivity (>90%) for diagnosing systemic infection after oral challenge with Salmonella Typhi or S. Paratyphi A. Assay specificity was moderate (~60%) due to imperfect sensitivity of blood culture as the reference standard and likely unrecognized subclinical infection. These findings were augmented through the translation of the assay into the endemic setting in Nepal. Anti-MP IgA responses again exhibited good sensitivity (86%) but poor specificity (51%) for detecting blood culture-confirmed enteric fever cases (ROC AUC 0.79, 95%CI 0.70–0.88). Patients with anti-MP IgA ALS titers in the upper quartile exhibited a clinical syndrome synonymous with enteric fever. While better reference standards are need to assess enteric fever diagnostics, routine use of this ALS assay could be used to rule out infection and has the potential to double the laboratory detection rate of enteric fever in this setting over blood culture alone.
Collapse
Affiliation(s)
- Thomas C Darton
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom.,Wellcome Trust Major Overseas Programme, Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Merryn Voysey
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Christoph J Blohmke
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Rajendra Shrestha
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Abhilasha Karkey
- Wellcome Trust Major Overseas Programme, Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Mila Shakya
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Amit Arjyal
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Claire S Waddington
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Malick Gibani
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Michael J Carter
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom.,Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Stephen Baker
- Wellcome Trust Major Overseas Programme, Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
4
|
Carter MJ, Mitchell RM, Meyer Sauteur PM, Kelly DF, Trück J. The Antibody-Secreting Cell Response to Infection: Kinetics and Clinical Applications. Front Immunol 2017; 8:630. [PMID: 28620385 PMCID: PMC5451496 DOI: 10.3389/fimmu.2017.00630] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/12/2017] [Indexed: 01/15/2023] Open
Abstract
Despite the availability of advances in molecular diagnostic testing for infectious disease, there is still a need for tools that advance clinical care and public health. Current methods focus on pathogen detection with unprecedented precision, but often lack specificity. In contrast, the host immune response is highly specific for the infecting pathogen. Serological studies are rarely helpful in clinical settings, as they require acute and convalescent antibody testing. However, the B cell response is much more rapid and short-lived, making it an optimal target for determining disease aetiology in patients with infections. The performance of tests that aim to detect circulating antigen-specific antibody-secreting cells (ASCs) has previously been unclear. Test performance is reliant on detecting the presence of ASCs in the peripheral blood. As such, the kinetics of the ASC response to infection, the antigen specificity of the ASC response, and the methods of ASC detection are all critical. In this review, we summarize previous studies that have used techniques to enumerate ASCs during infection. We describe the emergence, peak, and waning of these cells in peripheral blood during infection with a number of bacterial and viral pathogens, as well as malaria infection. We find that the timing of antigen-specific ASC appearance and disappearance is highly conserved across pathogens, with a peak response between day 7 and day 8 of illness and largely absent following day 14 since onset of symptoms. Data show a sensitivity of ~90% and specificity >80% for pathogen detection using ASC-based methods. Overall, the summarised work indicates that ASC-based methods may be very sensitive and highly specific for determining the etiology of infection and have some advantages over current methods. Important areas of research remain, including more accurate definition of the timing of the ASC response to infection, the biological mechanisms underlying variability in its magnitude and the evolution and the B cell receptor in response to immune challenge. Nonetheless, there is potential of the ASC response to infection to be exploited as the basis for novel diagnostic tests to inform clinical care and public health priorities.
Collapse
Affiliation(s)
- Michael J Carter
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Ruth M Mitchell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | | | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Johannes Trück
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.,University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
5
|
Evaluation of the Antibody in Lymphocyte Supernatant Assay to Detect Active Tuberculosis. PLoS One 2017; 12:e0169118. [PMID: 28085899 PMCID: PMC5234774 DOI: 10.1371/journal.pone.0169118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/12/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We aimed to evaluate the antibody in lymphocyte supernatant (ALS) assay as a biomarker to diagnose tuberculosis among adults from Tanzania with and without HIV. METHODS Adults admitted with suspicion for tuberculosis had sputa obtained for GeneXpert MTB/RIF, acid-fast bacilli smear and mycobacterial culture; blood was obtained prior to treatment initiation and after 4 weeks. Adults hospitalized with non-infectious conditions served as controls. Peripheral blood mononuclear cells were cultured unstimulated for 72 hours. Anti-mycobacterial antibodies were measured from culture supernatants by ELISA, using BCG vaccine as the coating antigen. Median ALS responses were compared between cases and controls at baseline and between cases over time. RESULTS Of 97 TB cases, 85 were microbiologically confirmed and 12 were clinically diagnosed. Median ALS responses from TB cases (0.366 OD from confirmed cases and 0.285 from clinical cases) were higher compared to controls (0.085, p<0.001). ALS responses did not differ based on HIV status, CD4 count or sputum smear status. Over time, the median ALS values declined significantly (0.357 at baseline; 0.198 after 4-weeks, p<0.001). CONCLUSIONS Robust ALS responses were mounted by patients with TB regardless of HIV status, CD4 count, or low sputum bacillary burden, potentially conferring a unique niche for this immunologic biomarker for TB.
Collapse
|