1
|
Hassan RM, Elzayat EM, Eid JI, Abdelgayed SS, Hosney M. Protective effects of Moringa oleifera leaf extract against cyclophosphamide-induced ovarian dysfunction and follicular loss in rats. Tissue Cell 2025; 95:102916. [PMID: 40233669 DOI: 10.1016/j.tice.2025.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
The current study aims to determine whether Moringa oleifera (M. oleifera) leaf extract can reverse cyclophosphamide (CP)-induced ovarian dysfunction and follicle loss in rats, potentially through antioxidant or anti-inflammatory pathways. Female rats were divided into four experimental groups: (1) negative control (administrated distilled water), (2) premature ovarian failure (POF) model group (induced by a single intraperitoneal dose of CP), (3) M. Oleifera extract alone, and (4) M. oleifera + CP. CP induced multiple effects on the ovaries, including hormonal imbalances (increased FSH and decreased E2 levels), oxidative stress (elevated serum MDA and NO levels), altered gene expression (upregulated TNF-α and downregulated TGF-β), and histological changes (follicular atresia and stromal hyperplasia). Pretreatment with M. oleifera successfully mitigated CP-induced oxidative and inflammatory changes, as well as ovarian tissue damage, but failed to reverse serum hormonal imbalances. These findings demonstrate the protective potential of M. oleifera leaf extract against CP-induced ovarian toxicity, likely mediated by the synergistic antioxidant, anti-inflammatory, and organ-protective properties of its bioactive components.
Collapse
Affiliation(s)
- Rehab Mohamed Hassan
- Department of Biotechnology, Faculty of Biotechnology, MUST University, Giza, Egypt
| | - Emad M Elzayat
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Jehane I Eid
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Sherein S Abdelgayed
- Pathobiology Department, College of Veterinary Medicine, Tuskegee University, AL36088, USA; Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Zhou Q, Yang H, Wang X, Wang L, Yan X, Zhang B, Ma X, Li G, Li J, Zhang J, Yan Z, Bao N, Li C, Ge P, Liu J, Luo X. The dynamic effects of nutritional status on chemotherapy-related toxicity in patients with non-Hodgkin's lymphoma. Eur J Clin Nutr 2025:10.1038/s41430-025-01565-6. [PMID: 39810008 DOI: 10.1038/s41430-025-01565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND/OBJECTIVES Understanding the dynamic changes in nutritional status of patients with non-Hodgkin's lymphoma (NHL) during chemotherapy is crucial, as it significantly impacts chemotherapy-related toxicity and survival outcomes. SUBJECTS/METHODS This multi-center study included newly diagnosed NHL patients. Nutritional status and chemotherapy-related toxic effects were assessed over the first five chemotherapy sessions, with follow-ups conducted every 3 months. Patients were categorized into three groups based on pre-chemotherapy Patient-Generated Subjective Global Assessment (PG-SGA) scores: Group A (0-1), Group B (2-8), and Group C (>9). Repeated-measures ANOVA and Generalized Estimating Equations (GEE) models were used for analysis, with survival outcomes evaluated via Kaplan-Meier and Cox regression. RESULTS A total of 143 patients (mean age 50.26 ± 15.02 years) completed the study, over a median follow-up of 18.8 months. PG-SGA scores were highest in Group C during chemotherapy (P < 0.001), with significant time-group interaction effects (P < 0.001). Liver and kidney impairments worsened across all groups (P < 0.05), while gastrointestinal toxicity and bone marrow suppression initially decreased before increasing. GEE analysis showed that nutritional status positively influenced gastrointestinal toxicity (β = 0.05, P = 0.001) and bone marrow suppression (β = 0.04, P = 0.014). Malnourished patients exhibited worse pulmonary infection-free survival and overall survival (P < 0.05). CONCLUSIONS NHL patients are highly susceptible to malnutrition during chemotherapy, which exacerbates chemotherapy-related toxicities, particularly gastrointestinal effects and myelosuppression. Maintaining good initial nutrition is vital for reducing toxicities and improving survival outcomes.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, China
- Department of Hematology, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - HeXiang Yang
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Wang
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - LiHong Wang
- Department of Hematology, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - XueQian Yan
- Department of Hematology, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - BeiRong Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - XueHong Ma
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - GuoHua Li
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - JingLin Li
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - JiaHui Zhang
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - ZhiHong Yan
- Department of Gastroenterology, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Ni Bao
- Thoracic Surgery Department, Shaanxi Provincial Cancer Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Chao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Peng Ge
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jia Liu
- Thoracic Surgery Department, Shaanxi Provincial Cancer Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, China.
| | - Xiaoqin Luo
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China.
| |
Collapse
|
3
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024; 7:835-852. [PMID: 39219374 PMCID: PMC11680483 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| |
Collapse
|
4
|
Ogunro OB, Ofeniforo BE. Fertility protective effects of Brillantaisia patula leaf extract against cyclophosphamide-induced ovarian damage in Wistar rats. BMC Biotechnol 2024; 24:88. [PMID: 39516799 PMCID: PMC11546249 DOI: 10.1186/s12896-024-00916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The primary indication of infertility is the incapacity to conceive, and in females, the majority of instances of female infertility stem from ovulation disorders. This study evaluated the female fertility-enhancing effects and safety of aqueous leaf extract of Brillantaisia patula (ALEBP) in a cyclophosphamide (CYP) model of sterility in Wistar rats. METHOD Sixty-six female rats randomly allotted to six groups (n = 11) were administered with the appropriate regimen for 21 days and then mated with male rats. Group 1 (control) received distilled water. Groups 2-6 were treated with a single dose (200 mgkg- 1 body weight) of cyclophosphamide intraperitoneally and, in addition, received the same volume (0.5 mL) of distilled water, 18, 36, 72 mgkg- 1 body weight of ALEBP and 200 mg per body weight of vitamin C orally. Mating lasted 11 days; on day 20, the female Wistar rats were sacrificed. Data were analysed using One-way Analysis of Variance (ANOVA) followed by Dunett's posthoc analysis, and GraphPad (at p < 0.05). RESULTS Results herein showed that ALEBP significantly (p < 0.05) increased the diminution in activities/levels of glutathione peroxidase (GPx), reduced glutathione (GSH), total antioxidant capacity (TAC), cholesterol, alkaline phosphatase (ALP), acid phosphatase (ACP), estrogen (ES), and luteinising hormone (LH) induced by cyclophosphamide. ALEBP further reversed the increased level of malondialdehyde (MDA), tumour necrosis factor-α (TNFα), interleukin 8 (IL-8), and follicle-stimulating hormone (FSH) caused by cyclophosphamide (p < 0.05). In addition, ALEBP, while it significantly increased the cyclophosphamide-induced reduction in the number of implantations in each animal, the total number of viable fetuses, the total number of corpora lutea, and the fertility index, also significantly reduced the number of fetal resorptions in each animal and pre-implantation loss that was increased by cyclophosphamide. Moreover, the cyclophosphamide-induced degenerative and necrotic changes in the ovarian cells and uterus were reversed by ALEBP. CONCLUSIONS Considered as a whole, the aqueous leaf extract of Brillantaisia patula reversed oxidative stress and inflammatory side effects of cyclophosphamide, preserving ovarian function and fertility in the rats. This may suggest its exploration as a safe agent against toxic side effects of chemotherapy and fertility-related disorders of the uterus and ovary.
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Drug Discovery, Toxicology, and Pharmacology Research Laboratory, Department of Biological Sciences, KolaDaisi University, Ibadan, 200213, Nigeria.
| | - Bankole Emmanuel Ofeniforo
- Department of Chemical Sciences, Faculty of Natural and Applied Science, Oduduwa University Ipetumodu, Ile-Ife, 220211, Nigeria
| |
Collapse
|
5
|
Ahmed AI, Dowidar MF, Negm AF, Abdellatif H, Alanazi A, Alassiri M, Samy W, Mekawy DM, Abdelghany EMA, El-Naseery NI, Ibrahem MA, Albadawi EA, Salah W, Eldesoqui M, Tîrziu E, Bucur IM, Arisha AH, Khamis T. Bone marrow mesenchymal stem cells expressing Neat-1, Hotair-1, miR-21, miR-644, and miR-144 subsided cyclophosphamide-induced ovarian insufficiency by remodeling the IGF-1-kisspeptin system, ovarian apoptosis, and angiogenesis. J Ovarian Res 2024; 17:184. [PMID: 39267091 PMCID: PMC11396253 DOI: 10.1186/s13048-024-01498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/14/2024] [Indexed: 09/14/2024] Open
Abstract
Ovarian insufficiency is one of the common reproductive disorders affecting women with limited therapeutic aids. Mesenchymal stem cells have been investigated in such disorders before yet, the exact mechanism of MSCs in ovarian regeneration regarding their epigenetic regulation remains elusive. The current study is to investigate the role of the bone marrow-derived mesenchymal stem cells (BM-MSCs) lncRNA (Neat-1 and Hotair1) and miRNA (mir-21-5p, mir-144-5p, and mir-664-5p) in mitigating ovarian granulosa cell apoptosis as well as searching BM-MSCs in altering the expression of ovarian and hypothalamic IGF-1 - kisspeptin system in connection to HPG axis in a cyclophosphamide-induced ovarian failure rat model. Sixty mature female Sprague Dawley rats were divided into 3 equal groups; control group, premature ovarian insufficiency (POI) group, and POI + BM-MSCs. POI female rat model was established with cyclophosphamide. The result revealed that BM-MSCs and their conditioned media displayed a significant expression level of Neat-1, Hotair-1, mir-21-5p, mir-144-5p, and mir-664-5p. Moreover, BM-MSCs transplantation in POI rats improves; the ovarian and hypothalamic IGF-1 - kisspeptin, HPG axis, ovarian granulosa cell apoptosis, steroidogenesis, angiogenesis, energy balance, and oxidative stress. BM-MSCs expressed higher levels of antiapoptotic lncRNAs and microRNAs that mitigate ovarian insufficiency.
Collapse
Affiliation(s)
- Amany I Ahmed
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed F Dowidar
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa F Negm
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
- Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Asma Alanazi
- Collage of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alassiri
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Basic Medical Sciences, College of Science and Health Professions (COSHP), King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Walaa Samy
- Medical biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Dina Mohamed Mekawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Badr City, 11829, Egypt
| | - Eman M A Abdelghany
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Ibrahem
- Obstetrics and Gynecology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Emad Ali Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Wed Salah
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O.Box 71666, Riyadh, 11597, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Emil Tîrziu
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, "King Mihai I" from Timisoara [ULST], Aradului St. 119, Timisoara, 300645, Romania
| | - Iulia Maria Bucur
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, "King Mihai I" from Timisoara [ULST], Aradului St. 119, Timisoara, 300645, Romania.
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City, 11829, Egypt.
- Department of Physiology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
6
|
Zidan A, Elnady M, Khalifa BN. Donepezil protects against cyclophosphamide-induced premature ovarian failure in mice: A focus on proinflammatory cytokines and NLRP3/TLR-4/NF-κB interplay. Toxicol Appl Pharmacol 2024; 488:116989. [PMID: 38825044 DOI: 10.1016/j.taap.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND AND AIM Cyclophosphamide (CP) chemotherapy is a significant iatrogenic component of premature ovarian failure (POF). The aim of this work was to evaluate the potential protective effects of donepezil, a centrally acting acetylcholinesterase (AChE) inhibitor, on CP-induced POF in mice. METHODS 40 female Swiss albino mice were split into 5 equal groups: group 1 (control), group 2 (CP-POF); induced by intraperitoneal injection of CP on 8th day of the experiment, and group (3-5); mice received oral donepezil daily (1, 2, or 4 mg/kg, respectively) 8 days before CP injection. Mice were euthanized after 24 h of CP injection, and blood samples were collected to assay serum anti-Mullerian hormone (AMH) levels. Ovarian tissues were dissected, and the right ovary was processed for further assays of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), nucleotide-binding domain-like receptor family, the Pyrin domain-containing 3 (NLRP3) inflammasome, and Toll-like receptor 4 (TLR-4), while the left one was processed for histopathological and immunohistochemical examination of nuclear factor-Kappa beta (NF-κB) and caspase-3. RESULTS Donepezil, in a dose-dependent manner particularly (4 mg/kg), has an inhibitory action on NO (40 ± 2.85 vs. 28.20 ± 2.23, P < 0.001), proinflammatory cytokines (P < 0.001), the TLR-4/ NF-κB / NLRP3 inflammasome pathway (P < 0.001), and apoptosis (P < 0.001), with a significant elevation in the AMH levels (4.57 ± 1.08 vs. 8.57 ± 0.97, P < 0.001) versus CP-POF group. CONCLUSION Donepezil may be a potential protective agent against CP-induced POF in mice, but further research is needed to fully understand its therapeutic function experimentally and clinically.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of medicine, Tanta University, Egypt.
| | - Manar Elnady
- Department of Pathology, Faculty of medicine, Tanta University, Egypt
| | - Basma N Khalifa
- Department of Pharmacology, Faculty of medicine, Tanta University, Egypt
| |
Collapse
|
7
|
Mahmood NMA. Protective effects of Azilsartan against cyclophosphamide-induced ovarian toxicity in rats model. Toxicol Res (Camb) 2024; 13:tfae027. [PMID: 38450178 PMCID: PMC10913384 DOI: 10.1093/toxres/tfae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Background Cyclophosphamide (CP) is an effective alkylating anticancer agent that is widely used in cancer chemotherapy, and it can cause ototoxicity and infertility in women. Objectives So, this study aimed to evaluate the protective effects of Azilsartan (AZ) as an antioxidant and anti-inflammatory agent in a rat model of CP-induced ovarian toxicity. Materials and Methods After receiving the 28 female Wister rats, they were acclimatized in proper environmental conditions for a week and then randomly divided into four groups based on the study protocol. After 15 days of the experiment, they were sacrificed, and organs were collected for biomarker detection (Using the ELISA technique) and histopathological analysis. Results The level of IL-10 was significantly (P < 0.05) decreased in all treated groups compared to control hostile groups, while the TNF-α level was significantly (P < 0.05) increased in AZ (220.67 ± 7.88 ng/mL) and AZ + CP groups (221.78 ± 9.11 ng/mL) compared to control negative/CP groups. Regarding the oxidative biomarker level, a significant increase was only found in the AZ + CP group (176.02 ± 6.71 nmol/mL) compared to the control negative group. On the other hand, histopathological findings revealed that ovarian sections in animals that received a single dose of CP had severe ovarian atrophy with significant follicular regression and deterioration, as well as depletion of stromal supportive tissues. Conclusions Azilsartan drastically reduced CP-induced ovarian toxicity in vivo by enhancing oxidative stress and inhibiting inflammatory effects in ovarian cells.
Collapse
Affiliation(s)
- Naza Mohammed Ali Mahmood
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Sulaimani, Madam Meteeran Street, Sulaimaniyah 0046, Iraq
| |
Collapse
|
8
|
Wu Q, Chen M, Li Y, Zhao X, Fan C, Dai Y. Paeoniflorin Alleviates Cisplatin-Induced Diminished Ovarian Reserve by Restoring the Function of Ovarian Granulosa Cells via Activating FSHR/cAMP/PKA/CREB Signaling Pathway. Molecules 2023; 28:8123. [PMID: 38138611 PMCID: PMC10745843 DOI: 10.3390/molecules28248123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Paeoniflorin (PAE) is the main active compound of Radix Paeoniae Rubra (a valuable traditional Chinese medicine and a dietary supplement) and exerts beneficial effects on female reproductive function. However, the actions of PAE on diminished ovarian reserve (DOR, a very common ovarian function disorder) are still unclear. Herein, our study investigated the effect and potential mechanism of PAE on DOR by using cisplatin-induced DOR mice and functional impairment of estradiol (E2) synthesis of ovarian granulosa-like KGN cells. Our data show that PAE improved the estrous cycle, ovarian index, and serum hormones levels, including E2, and the number of antral follicles and corpora lutea in DOR mice. Further mechanism results reveal that PAE promoted aromatase expression (the key rate-limiting enzyme for E2 synthesis) and upregulated the FSHR/cAMP/PKA/CREB signaling pathway in the ovaries. Subsequently, PAE improved the levels of E2 and aromatase and activated the FSHR/cAMP/PKA/CREB signaling pathway in KGN cells, while these improving actions were inhibited by the siRNA-FSHR and FSHR antagonist treatments. In sum, PAE restored the function of E2 synthesis in ovarian granulosa cells to improve DOR by activating the FSHR/cAMP/PKA/CREB signaling pathway, which exhibited a new clue for the development of effective therapeutic agents for the treatment of DOR.
Collapse
Affiliation(s)
- Qingchang Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Miao Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Yao Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Xiangyun Zhao
- College of Medicine, Henan Engineering Research Center of Funiu Mountain’s Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China;
| | - Cailian Fan
- College of Medicine, Henan Engineering Research Center of Funiu Mountain’s Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China;
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| |
Collapse
|
9
|
Refaie MMM, Fouli Gaber Ibrahim M, Fawzy MA, Abdel-Hakeem EA, Shaaban Mahmoud Abd El Rahman E, Zenhom NM, Shehata S. Molecular mechanisms mediate roflumilast protective effect against isoprenaline-induced myocardial injury. Immunopharmacol Immunotoxicol 2023; 45:650-662. [PMID: 37335038 DOI: 10.1080/08923973.2023.2222228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Myocardial necrosis is one of the most common cardiac and pathological diseases. Unfortunately, using the available medical treatment is not sufficient to rescue the myocardium. So that, we aimed in our model to study the possible cardioprotective effect of roflumilast (ROF) in an experimental model of induced myocardial injury using a toxic dose of isoprenaline (ISO) and detecting the role of vascular endothelial growth factor/endothelial nitric oxide synthase (VEGF/eNOS) and cyclic guanosine monophosphate/cyclic adenosine monophosphate/ sirtuin1 (cGMP/cAMP/SIRT1) signaling cascade. MATERIALS AND METHODS Animals were divided into five groups; control, ISO given group (150 mg/kg) i.p. on the 4th and 5th day, 3 ROF co-administered groups in different doses (0.25, 0.5, 1 mg/kg/day) for 5 days. RESULTS Our data revealed that ISO could induce cardiac toxicity as manifested by significant increases in troponin I, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and cleaved caspase-3 with toxic histopathological changes. Meanwhile, there were significant decreases in reduced glutathione (GSH), total antioxidant capacity (TAC), VEGF, eNOS, cGMP, cAMP and SIRT1. However, co-administration of ROF showed significant improvement and normalization of ISO induced cardiac damage. CONCLUSION We concluded that ROF successfully reduced ISO induced myocardial injury and this could be attributed to modulation of PDE4, VEGF/eNOS and cGMP/cAMP/SIRT1 signaling pathways with antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
| | | | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | | | | | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
10
|
Othman EM, Habib HA, Zahran ME, Amin A, Heeba GH. Mechanistic Protective Effect of Cilostazol in Cisplatin-Induced Testicular Damage via Regulation of Oxidative Stress and TNF-α/NF-κB/Caspase-3 Pathways. Int J Mol Sci 2023; 24:12651. [PMID: 37628836 PMCID: PMC10454637 DOI: 10.3390/ijms241612651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Despite being a potent anticancer drug, cisplatin has limited applicability due to its adverse effects, such as testicular damage. Consequently, reducing its toxicity becomes necessary. In this study, a selective phosphodiesterase-3 inhibitor, cilostazol, which is used to treat intermittent claudication, was examined for its ability to abrogate cisplatin-induced testicular toxicity. Its ameliorative effect was compared to that of two phosphodiesterase inhibitors, tadalafil and pentoxifylline. The study also focused on the possible mechanisms involved in the proposed protective effect. Cisplatin-treated rats showed a significant decrease in sperm number and motility, serum testosterone, and testicular glutathione levels, as well as a significant elevation in malondialdehyde, total nitrite levels, and the protein expression of tumor necrosis factor-alpha, nuclear factor-kappa β, and caspase-3. These outcomes were confirmed by marked testicular architecture deterioration. Contrary to this, cilostazol, in a dose-dependent manner, showed potential protection against testicular toxicity, reversed the disrupted testicular function, and improved histological alterations through rebalancing of oxidative stress, inflammation, and apoptosis. In addition, cilostazol exerted a more pronounced protective effect in comparison to tadalafil and pentoxifylline. In conclusion, cilostazol ameliorates cisplatin-induced testicular impairment through alteration of oxidative stress, inflammation, and apoptotic pathways, offering a promising treatment for cisplatin-induced testicular damage.
Collapse
Affiliation(s)
- Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Heba A. Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | | | - Amr Amin
- Biology Department, College of Science, UAE University, Al-Ain 15551, United Arab Emirates
| | - Gehan H. Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| |
Collapse
|
11
|
Combined carvacrol and cilostazol ameliorate ethanol-induced liver fibrosis in rats: Possible role of SIRT1/Nrf2/HO-1 pathway. Int Immunopharmacol 2023; 116:109750. [PMID: 36709594 DOI: 10.1016/j.intimp.2023.109750] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023]
Abstract
Carvacrol is a natural phenolic monoterpenoid, and cilostazol is a selective phosphodiesterase-3 inhibitor with antioxidant, anti-inflammatory and antiapoptotic effects. This experiment aimed to explore the hepatoprotective effects of carvacrol and cilostazol alone and in combination against alcoholic liver fibrosis (ALF), and the underlying mechanisms, using silymarin as a reference anti-fibrotic product. ALF was induced by oral administration of ethanol (1 ml/100 g/day) thrice per week. Silymarin (100 mg/kg), carvacrol (70 mg/kg), cilostazol (50 mg/kg), or carvacrol + cilostazol combination were administered daily and concurrently with ethanol for six weeks. Hepatic changes were evaluated by quantifying serum biomarkers of liver injury, hepatic MDA, GSH and NOx as oxidative stress markers, interleukin (IL)-10 as an anti-inflammatory cytokine, 4-hydroxyproline (4-HYP) as a collagen synthesis indicator, transforming growth factor (TGF)-β1 as a profibrogenic cytokine, α-smooth muscle actin (α-SMA) as a marker of hepatic stellate cells (HSCs) activation, histopathological (necroinflammation and fibrosis) scores and hepatic sirtuin-1 (SIRT1), nuclear factor-erythroid 2-related factor 2 (Nrf2), and hemeoxygenase-1 (HO-1) mRNA levels. Our results showed that carvacrol, cilostazol, and their combination significantly ameliorated ethanol-induced hepatic fibrosis manifested as improving hepatic functions and histopathological features, attenuating α-SMA immunostaining, reducing TGF-β1 and 4-HYP levels, suppressing oxidativeinjury and elevating IL-10 contents. Such effects were accompanied by upregulating SIRT1, Nrf2 and HO-1 genes. This work disclosed for the first time the hepatoprotective effect of carvacrol against ALF and, to a greater extent, with carvacrol + cilostazol combination that could be partially accredited to SIRT1/Nrf2/HO-1 pathway with consequent antioxidant, anti-inflammatory, and anti-fibrotic features.
Collapse
|
12
|
Pirzaman AT, Ebrahimi P, Doostmohamadian S, Karim B, Almasi D, Madani F, Moghadamnia A, Kazemi S. 5-Flourouracil-induced toxicity in both male and female reproductive systems: A narrative review. Hum Exp Toxicol 2023; 42:9603271231217988. [PMID: 38064424 DOI: 10.1177/09603271231217988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The chemotherapeutic drug 5-flourouracil (5FU) is frequently used to treat a wide range of solid malignant tumors, such as colorectal, pancreatic, gastric, breast, and head and neck cancers. Its antitumoral effects are achieved by interfering with the synthesis of RNA and DNA and by inhibiting thymidylate synthase in both malignant and non-malignant cells. Therefore, it can be responsible for severe toxicities in crucial body organs, including heart, liver, kidney, and reproductive system. Given the fact that 5FU-induced reproductive toxicity may limit the clinical application of this drug, in this study, we aimed to discuss the main locations and mechanisms of the 5FU-induced reproductive toxicity. Initially, we discussed the impact of 5FU on the male reproductive system, which leads to damage of the seminiferous epithelial cells and the development of vacuoles in Sertoli cells. Although no noticeable changes occur at the histopathological level, there is a decrease in the weight of the prostate. Additionally, 5FU causes significant abnormalities in spermatogenesis, including germ cell shedding, spermatid halo formation, polynucleated giant cells, and decreased sperm count. Finally, in females, 5FU-induced reproductive toxicity is characterized by the presence of atretic secondary and antral follicles with reduced numbers of growing follicles, ovarian weight, and maturity impairment.
Collapse
Affiliation(s)
- Ali Tavakoli Pirzaman
- Student research committee, Health Research Center, Babol University of Medical Science, Babol, Iran
| | - Pouyan Ebrahimi
- Student research committee, Health Research Center, Babol University of Medical Science, Babol, Iran
| | | | - Bardia Karim
- Student research committee, Health Research Center, Babol University of Medical Science, Babol, Iran
| | - Darya Almasi
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Fatemeh Madani
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Science, Babol, Iran
| | - Ahmadreza Moghadamnia
- Student research committee, Health Research Center, Babol University of Medical Science, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| |
Collapse
|
13
|
Barberino RS, Silva RLS, Palheta Junior RC, Smitz JEJ, Matos MHT. Protective Effects of Antioxidants on Cyclophosphamide-Induced Ovarian Toxicity. Biopreserv Biobank 2022; 21:121-141. [PMID: 35696235 DOI: 10.1089/bio.2021.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most common limitation of anticancer chemotherapy is the injury to normal cells. Cyclophosphamide, which is one of the most widely used alkylating agents, can cause premature ovarian insufficiency and infertility since the ovarian follicles are extremely sensitive to their effects. Although little information is available about the pathogenic mechanism of cyclophosphamide-induced ovarian damage, its toxicity is attributed to oxidative stress, inflammation, and apoptosis. The use of compounds with antioxidant and cytoprotective properties to protect ovarian function from deleterious effects during chemotherapy would be a significant advantage. Thus, this article reviews the mechanism by which cyclophosphamide exerts its toxic effects on the different cellular components of the ovary, and describes 24 cytoprotective compounds used to ameliorate cyclophosphamide-induced ovarian injury and their possible mechanisms of action. Understanding these mechanisms is essential for the development of efficient and targeted pharmacological complementary therapies that could protect and prolong female fertility.
Collapse
Affiliation(s)
- Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Regina Lucia S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Raimundo C Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Johan E J Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, Free University Brussels-VUB, Brussels, Belgium
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| |
Collapse
|
14
|
Aboutalebi H, Alipour F, Ebrahimzadeh-Bideskan A. The protective effect of co-administration of platelet-rich plasma (PRP) and pentoxifylline (PTX) on cyclophosphamide-induced premature ovarian failure in mature and immature rats. Toxicol Mech Methods 2022; 32:588-596. [PMID: 35379072 DOI: 10.1080/15376516.2022.2057264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclophosphamide (CP), as an antineoplastic agent, causes premature ovarian failure (POF) due to ovarian toxicity and subsequent infertility in women. Platelet-rich plasma (PRP) has accumulated significant attention in regenerative medicine. Pentoxifylline (PTX) as a methylxanthine derivative has been shown to have antioxidant and antiapoptotic properties. The aim of this study was to evaluate the protective effect of PRP and PTX on CP-induced POF. Fifty mature and immature female rats were assigned into five groups: control, CP (75 mg/kg, intraperitoneal [ip] on days 1 and 10 to induce POF), CP + PRP (200 μl, ip, half an hour after CP injection on day 1 and 10), CP + PTX (50 mg/kg, orally, half an hour after CP injection daily for 21 day), and CP + PRP + PTX. At the end of experiments on day 21, measurement of body weight, ovarian parameters (ovarian volume, follicular granulosa cell layers diameter, oocyte diameter, and the number of granulosa cells), measurement of ovarian hormone in sera for estradiol (E2), and anti-Mullerian hormone (AMH), as well as biochemical assessment were performed.The results showed that CP significantly reduced the ovarian parameters, E2, AMH, superoxide dismutase (SOD) activity and increased Malondialdehyde (MDA) levels compared to the control group (p < 0.001). Our results also indicated that all histomorphometric parameters and biochemical markers in CP-induced POF, were preserved close to normal by PRP and PTX treatments in both mature and immature rats (p < 0.001). Therefore, it is concluded that the co-administration of PRP and PTX can protect the ovary from CP-induced POF.
Collapse
Affiliation(s)
- Hamideh Aboutalebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Refaie MMM, Ahmed Ibrahim R, Shehata S. Dose dependent effect of cilostazol in induced testicular ischemia reperfusion via modulation of HIF/VEGF and cAMP/SIRT1 pathways. Int Immunopharmacol 2021; 101:108197. [PMID: 34626874 DOI: 10.1016/j.intimp.2021.108197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
Twisting of the spermatic cord is a common dangerous health problem that may be accompanied with testicular necrosis and infertility. Cilostazol (CLZ) is a selective phosphodiesterase (PDE) 3A inhibitor used for treatment of intermittent claudication. It has a great role in myocardial, spinal cord and hepatic ischaemia/reperfusion. However, till now, there are no researches evaluating its role in testicular ischaemia/reperfusion (TIR). The current work studies its capability to improve TIR induced injury with more concentration on the mechanisms involved in such effect. Four groups of animals were included: sham, TIR induced group, TIR plus CLZ low dose (10 mg/kg), TIR plus CLZ high dose (30 mg/kg). Our results proved that TIR had significant decrease of the serum ELISA of testosterone, marked disturbances in oxidative stress evaluated parameters as malondialdehyde (MDA), reduced glutathione (GSH), total antioxidant capacity (TAC), ELISA measurement of tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL1β) inflammatory mediators, apoptotic marker (caspase3) using western blotting, immunohistochemistry of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). TIR reduced the protective agents as cyclic adenosine monophosphate (cAMP) and sirtuin-1 (SIRT1) by ELISA method with marked germinal cell apoptosis. The biochemical results were confirmed by the histopathological findings that showed marked decrease in both Johnsen's score and Cosentino's score. However, treatment with CLZ significantly reversed the profound TIR damaging effects, on the basis of its anti-inflammatory, anti-oxidant, and anti-apoptotic activities with recuperation of the testicular vascularity. Modulation of HIF/VEGF and cAMP/SIRT1 pathways showed a great role in mediating such effect.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt.
| | - Randa Ahmed Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt
| |
Collapse
|
16
|
Chen L, Yan Y, Li Z, Li H. Hesperidin Reduces Ovary Toxicity Induces by Cyclophosphamide in Female Rats via Anti-inflammatory and Antioxidant Effects. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.328.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|