1
|
Resch EE, Makri SC, Ghanem P, Baraban EG, Cohen KJ, Cohen AR, Lipson EJ, Pratilas CA. Relapse-free survival in a pediatric patient with recurrent EZH2-mutant melanoma treated with adjuvant tazemetostat. NPJ Precis Oncol 2025; 9:48. [PMID: 39984702 PMCID: PMC11845573 DOI: 10.1038/s41698-025-00826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/28/2025] [Indexed: 02/23/2025] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is an essential epigenetic regulator of H3K27 histone methylation and is mutated or overexpressed in a wide variety of cancers. In melanoma, EZH2 overexpression contributes to excessive trimethylation of H3K27 on tumor suppressor genes and has been proposed to be a mechanism of tumor progression and metastasis. EZH2-targeted therapies have been successfully used to treat patients with follicular lymphoma and epithelioid sarcoma, but their clinical use in melanoma has not been described. Here, we describe a pediatric patient with multiply relapsed melanoma harboring an EZH2 A692V missense mutation, treated adjuvantly with the EZH2 inhibitor tazemetostat, who experienced a prolonged relapse-free survival.
Collapse
Affiliation(s)
- Erin E Resch
- Division of Pediatric Oncology, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stavriani C Makri
- Division of Pediatric Oncology, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paola Ghanem
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ezra G Baraban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth J Cohen
- Division of Pediatric Oncology, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan R Cohen
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan J Lipson
- Department of Oncology, Bloomberg~Kimmel Institute for Cancer Immunotherapy and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Kumar A, Jeyakumar A, Lam AK, Gopalan V. Epidemiological and genetic insights into the co-occurrence of cutaneous melanoma and hematologic malignancies: A meta-analytic review. Leuk Res 2024; 147:107610. [PMID: 39476615 DOI: 10.1016/j.leukres.2024.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND The number of cancer survivors has been increasing in recent years due to advancements in early diagnosis and prolonged survival. Existing literature suggests a connection between cutaneous melanoma (CM) and hematologic malignancies (HM). AIM This study aims to examine epidemiological research on the link between CM and HM and explore genetic, biological, and environmental factors contributing to this association. METHODOLOGY A literature review and meta-analysis were performed to evaluate the risk of CM following HM and vice versa. Data from included studies, which reported standardized incidence ratios (SIR) or hazard ratios (HR) with 95 % confidence intervals (CI), were pooled using a random effects model. Heterogeneity among studies was assessed using I² and Cochrane Q test statistics. The incidence data were pooled using a random effects model. This review is registered on PROSPERO (CRD42022359887). RESULTS Ten studies focused on HM diagnosis in CM patients, comprising a combined cohort of 189,094 individuals and 11 focused on CM diagnosis in HM patients in a cohort of 306,967 individuals. The SIR for HM after CM ranged from 1.25 to 3.12, while the SIR for CM after HM ranged from 0.83 to 4.12. The pooled proportion of HM in CM patients was 62.4 %, and the proportion of CM in HM patients was 19.6 %. Statistical heterogeneity was high, with I² values of 99.19 % and 89.15 %, respectively. CONCLUSION This review confirms an association between CM and HM within the same patient. The link is primarily attributed to genetic factors involving BRAF-V600K, tyrosine kinase pathway genes, CDKN2A (P16), and BCL-2. Additionally, risk factors such as ultraviolet radiation and compromised immune function are associated with the incidence of these cancers.
Collapse
Affiliation(s)
- Ashmitha Kumar
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Gold Coast 4222, Australia
| | - Arunan Jeyakumar
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Gold Coast 4222, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Gold Coast 4222, Australia.
| | - Vinod Gopalan
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Gold Coast 4222, Australia.
| |
Collapse
|
3
|
Sobhiafshar U, Çakici B, Yilmaz E, Yildiz Ayhan N, Hedaya L, Ayhan MC, Yerinde C, Alankuş YB, Gürkaşlar HK, Firat‐Karalar EN, Emre NCT. Interferon regulatory factor 4 modulates epigenetic silencing and cancer-critical pathways in melanoma cells. Mol Oncol 2024; 18:2423-2448. [PMID: 38880659 PMCID: PMC11459048 DOI: 10.1002/1878-0261.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/14/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Interferon regulatory factor 4 (IRF4) was initially identified as a key controller in lymphocyte differentiation and function, and subsequently as a dependency factor and therapy target in lymphocyte-derived cancers. In melanocytes, IRF4 takes part in pigmentation. Although genetic studies have implicated IRF4 in melanoma, how IRF4 functions in melanoma cells has remained largely elusive. Here, we confirmed prevalent IRF4 expression in melanoma and showed that high expression is linked to dependency in cells and mortality in patients. Analysis of genes activated by IRF4 uncovered, as a novel target category, epigenetic silencing factors involved in DNA methylation (DNMT1, DNMT3B, UHRF1) and histone H3K27 methylation (EZH2). Consequently, we show that IRF4 controls the expression of tumour suppressor genes known to be silenced by these epigenetic modifications, for instance cyclin-dependent kinase inhibitors CDKN1A and CDKN1B, the PI3-AKT pathway regulator PTEN, and primary cilium components. Furthermore, IRF4 modulates activity of key downstream oncogenic pathways, such as WNT/β-catenin and AKT, impacting cell proliferation and survival. Accordingly, IRF4 modifies the effectiveness of pertinent epigenetic drugs on melanoma cells, a finding that encourages further studies towards therapeutic targeting of IRF4 in melanoma.
Collapse
Affiliation(s)
- Ulduz Sobhiafshar
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Betül Çakici
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Erdem Yilmaz
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Nalan Yildiz Ayhan
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Laila Hedaya
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Mustafa Can Ayhan
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Cansu Yerinde
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | | | - H. Kübra Gürkaşlar
- Department of Molecular Biology and GeneticsKoç UniversityIstanbulTurkey
| | | | - N. C. Tolga Emre
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
- Center for Life Sciences and TechnologiesBoğaziçi UniversityIstanbulTurkey
| |
Collapse
|
4
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
5
|
Guo S, Tang Q, Gao X, Hu L, Hu K, Zhang H, Zhang Q, Lai Y, Liu Y, Wang Z, Chang S, Zhang Y, Hu H, An D, Peng Y, Cai H, Shi J. EZH2 inhibition induces senescence via ERK1/2 signaling pathway in multiple myeloma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1055-1064. [PMID: 38804044 PMCID: PMC11322866 DOI: 10.3724/abbs.2024077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/04/2024] [Indexed: 05/29/2024] Open
Abstract
Epigenetic modifications play an important role in cellular senescence, and enhancer of zeste homolog 2 (EZH2) is a key methyltransferase involved in epigenetic remodeling in multiple myeloma (MM) cells. We have previously demonstrated that GSK126, a specific EZH2 inhibitor, exhibits anti-MM therapeutic efficacy and safety in vivo and in vitro; however, its specific mechanism remains unclear. This study shows that GSK126 induces cellular senescence in MM, which is characterized by the accumulation of senescence-associated heterochromatin foci (SAHF) and p21, and increased senescence-associated β galactosidase activity. Furthermore, EZH2 is inhibited in ribonucleotide reductase regulatory subunit M2 (RRM2)-overexpressing OCI-MY5 and RPMI-8226 cells. RRM2 overexpression inhibits the methyltransferase function of EZH2 and promotes its degradation through the ubiquitin-proteasome pathway, thereby inducing cellular senescence. In this senescence model, Lamin B1, a key component of the nuclear envelope and a marker of senescence, does not decrease but instead undergoes aberrant accumulation. Meanwhile, phosphorylation of extracellular signal-regulated protein kinase (ERK1/2) is significantly increased. The inhibition of ERK1/2 phosphorylation in turn partially restores Lamin B1 level and alleviates senescence. These findings suggest that EZH2 inhibition increases Lamin B1 level and induces senescence by promoting ERK1/2 phosphorylation. These data indicate that EZH2 plays an important role in MM cellular senescence and provide insights into the relationships among Lamin B1, p-ERK1/2, and cellular senescence.
Collapse
Affiliation(s)
- Shushan Guo
- Shanghai Clinical CollegeAnhui Medical UniversityShanghai200072China
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei230022China
| | - Qiongwei Tang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xuejie Gao
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Liangning Hu
- Department of HematologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310016China
| | - Ke Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Hui Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Qikai Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yue Lai
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yujie Liu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhuning Wang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Shuaikang Chang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yifei Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Huifang Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Dong An
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yu Peng
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Haiyan Cai
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jumei Shi
- Shanghai Clinical CollegeAnhui Medical UniversityShanghai200072China
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei230022China
| |
Collapse
|
6
|
Anestopoulos I, Paraskevaidis I, Kyriakou S, Giova LE, Trafalis DT, Botaitis S, Franco R, Pappa A, Panayiotidis MI. Isothiocyanates Potentiate Tazemetostat-Induced Apoptosis by Modulating the Expression of Apoptotic Genes, Members of Polycomb Repressive Complex 2, and Levels of Tri-Methylating Lysine 27 at Histone 3 in Human Malignant Melanoma Cells. Int J Mol Sci 2024; 25:2745. [PMID: 38473991 DOI: 10.3390/ijms25052745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, we utilized an in vitro model consisting of human malignant melanoma as well as non-tumorigenic immortalized keratinocyte cells with the aim of characterizing the therapeutic effectiveness of the clinical epigenetic drug Tazemetostat alone or in combination with various isothiocyanates. In doing so, we assessed markers of cell viability, apoptotic induction, and expression levels of key proteins capable of mediating the therapeutic response. Our data indicated, for the first time, that Tazemetostat caused a significant decrease in viability levels of malignant melanoma cells in a dose- and time-dependent manner via the induction of apoptosis, while non-malignant keratinocytes were more resistant. Moreover, combinatorial treatment protocols caused a further decrease in cell viability, together with higher apoptotic rates. In addition, a significant reduction in the Polycomb Repressive Complex 2 (PRC2) members [e.g., Enhancer of Zeste Homologue 2 (EZH2), Embryonic Ectoderm Development (EED), and suppressor of zeste 12 (SUZ12)] and tri-methylating lysine 27 at Histone 3 (H3K27me3) protein expression levels was observed, at least partially, under specific combinatorial exposure conditions. Reactivation of major apoptotic gene targets was determined at much higher levels in combinatorial treatment protocols than Tazemetostat alone, known to be involved in the induction of intrinsic and extrinsic apoptosis. Overall, we developed an optimized experimental therapeutic platform aiming to ensure the therapeutic effectiveness of Tazemetostat in malignant melanoma while at the same time minimizing toxicity against neighboring non-tumorigenic keratinocyte cells.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Ioannis Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Lambrini E Giova
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sotiris Botaitis
- Department of Surgery, School of Medicine, University Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Rodrigo Franco
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| |
Collapse
|
7
|
Hosokawa M, Tetsumoto S, Yasui M, Kono Y, Ogawara KI. 3-deazaneplanocin A, a histone methyltransferase inhibitor, improved the chemoresistance induced under hypoxia in melanoma cells. Biochem Biophys Res Commun 2023; 677:26-30. [PMID: 37542772 DOI: 10.1016/j.bbrc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
One of common characteristics of solid tumors is low O2 level, so-called hypoxia, which plays a critical role in chemoresistance. Epigenetic mechanism such as DNA methylation and histone modification is involved in cancer development and progression. There is ample evidence that epigenetic drugs reversed acquired chemoresistance in cancer cells under normal O2 level, normoxia. However, it remains unknown whether epigenetic drugs improve acquired chemoresistance under hypoxia. The aim of our study was to investigate whether epigenetic drugs can improve the chemoresistance induced under hypoxia in cancer cells. In murine melanoma B16-BL6 (B16) cells, the culture under hypoxia, 1%O2 caused the elevated expression of hypoxia-inducible factor-1α (HIF-1α) and its target genes. The chemoresistance to 7-ethyl-10-hydroxycamptothecin (SN-38, the active metabolite of irinotecan) was also acquired under hypoxia in B16 cells. In addition, as epigenetic mechanisms, the protein expression of the enhancer of zeste homolog 2 (EZH2), histone methyltransferase and its target histone H3 trimethylation at lysine 27 (H3K27Me3) level increased under hypoxia. The induction of H3K27Me3 under hypoxia was suppressed by EZH2 siRNA and 3-deazaneplanocin A (DZNep), an EZH2 inhibitor. Furthermore, both EZH2 siRNA and DZNep significantly reduced the cell viability after SN-38 treatment and improved the chemoresistance to SN-38 under hypoxia. These results indicated that the chemoresistance to SN-38 under hypoxia would arise from epigenetic mechanism, H3K27Me3 elevation due to EZH2 induction. In conclusion, a histone methyltransferase EZH2 inhibitor, DZNep was capable of tackling acquired chemoresistance via the suppression of histone methylation induced under hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Mika Hosokawa
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Sekai Tetsumoto
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Mirano Yasui
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yusuke Kono
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Ken-Ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| |
Collapse
|
8
|
Shin Y, Kim S, Liang G, Ulmer TS, An W. VprBP/DCAF1 Triggers Melanomagenic Gene Silencing through Histone H2A Phosphorylation. Biomedicines 2023; 11:2552. [PMID: 37760992 PMCID: PMC10526264 DOI: 10.3390/biomedicines11092552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Vpr binding protein (VprBP), also known as DDB1- and CUL4-associated factor1 (DCAF1), is a recently identified atypical kinase and plays an important role in downregulating the transcription of tumor suppressor genes as well as increasing the risk for colon and prostate cancers. Melanoma is the most aggressive form of skin cancer arising from pigment-producing melanocytes and is often associated with the dysregulation of epigenetic factors targeting histones. Here, we demonstrate that VprBP is highly expressed and phosphorylates threonine 120 (T120) on histone H2A to drive the transcriptional inactivation of growth-regulatory genes in melanoma cells. As is the case for its epigenetic function in other types of cancers, VprBP acts to induce a gene silencing program dependent on H2AT120 phosphorylation (H2AT120p). The significance of VprBP-mediated H2AT120p is further underscored by the fact that VprBP knockdown- or VprBP inhibitor-induced lockage of H2AT120p mitigates melanoma tumor growth in xenograft models. Collectively, our results establish VprBP-mediated H2AT120p as a key epigenetic signal for melanomagenesis and suggest the therapeutic potential of targeting VprBP kinase activity for effective melanoma treatment.
Collapse
Affiliation(s)
- Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (Y.S.); (S.K.)
| | - Sungmin Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (Y.S.); (S.K.)
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA;
| | - Tobias S. Ulmer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA;
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (Y.S.); (S.K.)
| |
Collapse
|
9
|
Shin Y, Kim S, Liang G, Ulmer TS, An W. VprBP/DCAF1 triggers melanomagenic gene silencing through histone H2A phosphorylation. RESEARCH SQUARE 2023:rs.3.rs-3147199. [PMID: 37502858 PMCID: PMC10371079 DOI: 10.21203/rs.3.rs-3147199/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Melanoma is the most aggressive form of skin cancer arising from pigment-producing melanocytes and is often associated with dysregulation of epigenetic factors targeting histones. VprBP, also known as DCAF1, is a recently identified kinase and plays an important role in downregulating the transcription of tumor suppressor genes as well as increasing the risk for colon and prostate cancers. However, it remains unknown whether VprBP is also involved in triggering the pathogenesis of other types of cancer. Results We demonstrate that VprBP is highly expressed and phosphorylates threonine 120 (T120) on histone H2A to drive transcriptional inactivation of growth regulatory genes in melanoma cells. As is the case for its epigenetic function in colon and prostate cancers, VprBP acts to induce gene silencing program dependently of H2AT120 phosphorylation (H2AT120p). The significance of VprBP-mediated H2AT120p is further underscored by the fact that VprBP knockdown- or VprBP inhibitor-induced lockage of H2AT120p mitigates melanoma tumor growth in xenograft models. Moreover, artificial tethering of VprBP wild type, but not VprBP kinase-dead mutant, to its responsive genes is sufficient for achieving an inactive transcriptional state in VprBP-depleted cells, indicating that VprBP drives gene silencing program in an H2AT120p-dependent manner. Conclusions Our results establish VprBP-mediated H2AT120p as a key epigenetic signal for melanomagenesis and suggest the therapeutic potential of targeting VprBP kinase activity for effective melanoma treatment.
Collapse
|
10
|
Shin Y, Kim S, Liang G, Ulmer TS, An W. VprBP/DCAF1 triggers melanomagenic gene silencing through histone H2A phosphorylation. RESEARCH SQUARE 2023:rs.3.rs-2950076. [PMID: 37293029 PMCID: PMC10246234 DOI: 10.21203/rs.3.rs-2950076/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Melanoma is the most aggressive form of skin cancer arising from pigment-producing melanocytes and is often associated with dysregulation of epigenetic factors targeting histones. VprBP, also known as DCAF1, is a recently identified kinase and plays an important role in downregulating the transcription of tumor suppressor genes as well as increasing the risk for colon and prostate cancers. However, it remains unknown whether VprBP is also involved in triggering the pathogenesis of other types of cancer. Results We demonstrate that VprBP is highly expressed and phosphorylates threonine 120 (T120) on histone H2A to drive transcriptional inactivation of growth regulatory genes in melanoma cells. As is the case for its epigenetic function in colon and prostate cancers, VprBP acts to induce gene silencing program dependently of H2AT120 phosphorylation (H2AT120p). The significance of VprBP-mediated H2AT120p is further underscored by the fact that VprBP knockdown- or VprBP inhibitor-induced lockage of H2AT120p mitigates melanoma tumor growth in xenograft models. Moreover, artificial tethering of VprBP wild type, but not VprBP kinase-dead mutant, to its responsive genes is sufficient for achieving an inactive transcriptional state in VprBP-depleted cells, indicating that VprBP drives gene silencing program in an H2AT120p-dependent manner. Conclusions Our results establish VprBP-mediated H2AT120p as a key epigenetic signal for melanomagenesis and suggest the therapeutic potential of targeting VprBP kinase activity for effective melanoma treatment.
Collapse
|
11
|
Wozniak M, Czyz M. lncRNAs-EZH2 interaction as promising therapeutic target in cutaneous melanoma. Front Mol Biosci 2023; 10:1170026. [PMID: 37325482 PMCID: PMC10265524 DOI: 10.3389/fmolb.2023.1170026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Melanoma is the most lethal skin cancer with increasing incidence worldwide. Despite a great improvement of diagnostics and treatment of melanoma patients, this disease is still a serious clinical problem. Therefore, novel druggable targets are in focus of research. EZH2 is a component of the PRC2 protein complex that mediates epigenetic silencing of target genes. Several mutations activating EZH2 have been identified in melanoma, which contributes to aberrant gene silencing during tumor progression. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are molecular "address codes" for EZH2 silencing specificity, and targeting lncRNAs-EZH2 interaction may slow down the progression of many solid cancers, including melanoma. This review summarizes current knowledge regarding the involvement of lncRNAs in EZH2-mediated gene silencing in melanoma. The possibility of blocking lncRNAs-EZH2 interaction in melanoma as a novel therapeutic option and plausible controversies and drawbacks of this approach are also briefly discussed.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
12
|
Zhu Y, Zhang L, Song X, Zhang Q, Wang T, Xiao H, Yu L. Pharmacological inhibition of EZH2 by ZLD1039 suppresses tumor growth and pulmonary metastasis in melanoma cells in vitro and in vivo. Biochem Pharmacol 2023; 210:115493. [PMID: 36898415 DOI: 10.1016/j.bcp.2023.115493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
The incidence and mortality rate of malignant melanoma are increasing worldwide. Metastasis reduces the efficacy of current melanoma therapies and leads to poor prognosis for patients. EZH2 is a methyltransferase that promotes the proliferation, metastasis, and drug resistance of tumor cells by regulating transcriptional activity. EZH2 inhibitors could be effective in melanoma therapies. Herein, we aimed to investigate whether the pharmacological inhibition of EZH2 by ZLD1039, a potent and selective S-adenosyl-l-methionine-EZH2 inhibitor, suppresses tumor growth and pulmonary metastasis in melanoma cells. Results showed that ZLD1039 selectively reduced H3K27 methylation in melanoma cells by inhibiting EZH2 methyltransferase activity. Additionally, ZLD1039 exerted excellent antiproliferative effects on melanoma cells in 2D and 3D culture systems. Administration of ZLD1039 (100 mg/kg) by oral gavage caused antitumor effects in the A375 subcutaneous xenograft mouse model. RNA sequencing and GSEA revealed that the ZLD1039-treated tumors exhibited changes in the gene sets enriched from the "Cell Cycle" and "Oxidative Phosphorylation", whereas the "ECM receptor interaction" gene set had a negative enrichment score. Mechanistically, ZLD1039 induced G0/G1 phase arrest by upregulating p16 and p27 and inhibiting the functions of the cyclin D1/CDK6 and cyclin E/CDK2 complexes. Moreover, ZLD1039 induced apoptosis in melanoma cells via the mitochondrial reactive oxygen species apoptotic pathway, consistent with the changes in transcriptional signatures. ZLD1039 also exhibited excellent antimetastatic effects on melanoma cells in vitro and in vivo. Our data highlight that ZLD1039 may be effective against melanoma growth and pulmonary metastasis and thus could serve as a therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Clinical Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lidan Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuejiao Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ting Wang
- Department of Clinical Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Resistance to BRAF Inhibitors: EZH2 and Its Downstream Targets as Potential Therapeutic Options in Melanoma. Int J Mol Sci 2023; 24:ijms24031963. [PMID: 36768289 PMCID: PMC9916477 DOI: 10.3390/ijms24031963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Activating BRAF mutations occurs in 50-60% of malignant melanomas. Although initially treatable, the development of resistance to BRAF-targeted therapies (BRAFi) is a major challenge and limits their efficacy. We have previously shown that the BRAFV600E signaling pathway mediates the expression of EZH2, an epigenetic regulator related to melanoma progression and worse overall survival. Therefore, we wondered whether inhibition of EZH2 would be a way to overcome resistance to vemurafenib. We found that the addition of an EZH2 inhibitor to vemurafenib improved the response of melanoma cells resistant to BRAFi with regard to decreased viability, cell-cycle arrest and increased apoptosis. By next-generation sequencing, we revealed that the combined inhibition of BRAF and EZH2 dramatically suppresses pathways of mitosis and cell cycle. This effect was linked to the downregulation of Polo-kinase 1 (PLK1), a key regulator of cell cycle and proliferation. Subsequently, when we inhibited PLK1, we found decreased cell viability of melanoma cells resistant to BRAFi. When we inhibited both BRAF and PLK1, we achieved an improved response of BRAFi-resistant melanoma cells, which was comparable to the combined inhibition of BRAF and EZH2. These results thus reveal that targeting EZH2 or its downstream targets, such as PLK1, in combination with BRAF inhibitors are potential novel therapeutic options in melanomas with BRAF mutations.
Collapse
|
14
|
Yu Q, Zhu H, Wang H, Aimaier R, Chung M, Wang Z, Li Q. M6A-Related Bioinformatics Analysis Reveals a New Prognostic Risk Signature in Cutaneous Malignant Melanoma. DISEASE MARKERS 2022; 2022:8114731. [PMID: 35722625 PMCID: PMC9201746 DOI: 10.1155/2022/8114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Cutaneous malignant melanoma (CMM) is the most deadly skin cancer worldwide. Despite advances in the treatments of CMM, its incidence and mortality rates are still increasing. N6-methyladenosine (m6A) is the most common form of RNA modification and has attracted increasing interest in cancer initiation and progression. However, the role of m6A regulators in CMM and their correlation with prognosis remain elusive. Here, we demonstrated that by applying consensus clustering, all CMM patient cases can be divided into two clusters based on overall expression levels of 25 m6A genes. We systematically analyzed the prognostic value of the 25 m6A RNA methylation regulators in CMM and found that ELAVL1, ABCF1, and IGF2BP1 yield the highest scores for predicting the prognosis of CMM. Accordingly, we derived a risk signature consisting of three selected m6A genes as an independent prognostic marker for CMM and validated our findings with data derived from a different CMM cohort. Next, we determined that CNVs in m6A genes had a significant negative impact on patient survival. The mRNA expression levels of m6A genes were correlated with CNV mutation. Moreover, in the selected three risk signature m6A regulators, GSEA analysis showed that they were closely correlated with inflammation and immune pathways. TME analysis proved that m6A gene expressions were negatively correlated with immune cell infiltration. In conclusion, m6A regulators are vital participants in CMM pathology; and ELAVL1, ABCF1, and IGF2BP1 mRNA levels are valuable factors for prognosis prediction and treatment strategy development.
Collapse
Affiliation(s)
- Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Hainan Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Huijing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- Department of Plastic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310017, China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
15
|
Hanly A, Gibson F, Nocco S, Rogers S, Wu M, Alani RM. Drugging the Epigenome: Overcoming Resistance to Targeted and Immunotherapies in Melanoma. JID INNOVATIONS 2022; 2:100090. [PMID: 35199090 PMCID: PMC8844701 DOI: 10.1016/j.xjidi.2021.100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
This past decade has seen tremendous advances in understanding the molecular pathogenesis of melanoma and the development of novel effective therapies for melanoma. Targeted therapies and immunotherapies that extend survival of patients with advanced disease have been developed; however, the vast majority of patients experience relapse and therapeutic resistance over time. Moreover, cellular plasticity has been demonstrated to be a driver of therapeutic resistance mechanisms in melanoma and other cancers, largely functioning through epigenetic mechanisms, suggesting that targeting of the cancer epigenetic landscape may prove a worthwhile endeavor to ensure durable treatment responses and cures. Here, we review the epigenetic alterations that characterize melanoma development, progression, and resistance to targeted therapies as well as epigenetic therapies currently in use and under development for melanoma and other cancers. We further assess the landscape of epigenetic therapies in clinical trials for melanoma and provide a framework for future advances in epigenetic therapies to circumvent the development of therapeutic resistance in melanoma.
Collapse
Key Words
- BRAFi, BRAF inhibitor
- DNMT, DNA methyltransferase
- DNMTi, DNA methyltransferase inhibitor
- EZH2, enhancer of zeste homolog 2
- EZH2i, enhancer of zeste homolog 2 inhibitor
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HDACi, histone deacetylase inhibitor
- MEKi, MAPK/extracellular signal‒regulated kinase inhibitor
- PTM, post-translational modification
- SIRT, sirtuin
- TMZ, temozolomide
- dsRNA, double-stranded RNA
Collapse
Affiliation(s)
- Ailish Hanly
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Frederick Gibson
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Sarah Nocco
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Samantha Rogers
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Muzhou Wu
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Rhoda M. Alani
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
16
|
MMP-9 drives the melanomagenic transcription program through histone H3 tail proteolysis. Oncogene 2022; 41:560-570. [PMID: 34785776 DOI: 10.1038/s41388-021-02109-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022]
Abstract
Melanoma is a type of skin cancer that develops in pigment-producing melanocytes and often spreads to other parts of the body. Aberrant gene expression has been considered as a crucial step for increasing the risk of melanomagenesis, but how chromatin reorganization contributes to this pathogenic process is still not well understood. Here we report that matrix metalloproteinase 9 (MMP-9) localizes to the nucleus of melanoma cells and potentiates gene expression by proteolytically clipping the histone H3 N-terminal tail (H3NT). From genome-wide studies, we discovered that growth-regulatory genes are selectively targeted and activated by MMP-9-dependent H3NT proteolysis in melanoma cells. MMP-9 cooperates functionally with p300/CBP because MMP-9 cleaves H3NT in a manner that is dependent on p300/CBP-mediated acetylation of H3K18. The functional significance of MMP-9-dependent H3NT proteolysis is further underscored by the fact that RNAi knockdown and small-molecule inhibition of MMP-9 and p300/CBP impede melanomagenic gene expression and melanoma tumor growth. Together, our data establish new functions and mechanisms for nuclear MMP-9 in promoting melanomagenesis and demonstrate how MMP-9-dependent H3NT proteolysis can be exploited to prevent and treat melanoma skin cancer.
Collapse
|
17
|
The roles of epigenetics in cancer progression and metastasis. Biochem J 2021; 478:3373-3393. [PMID: 34520519 DOI: 10.1042/bcj20210084] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
Cancer metastasis remains a major clinical challenge for cancer treatment. It is therefore crucial to understand how cancer cells establish and maintain their metastatic traits. However, metastasis-specific genetic mutations have not been identified in most exome or genome sequencing studies. Emerging evidence suggests that key steps of metastasis are controlled by reversible epigenetic mechanisms, which can be targeted to prevent and treat the metastatic disease. A variety of epigenetic mechanisms were identified to regulate metastasis, including the well-studied DNA methylation and histone modifications. In the past few years, large scale chromatin structure alterations including reprogramming of the enhancers and chromatin accessibility to the transcription factors were shown to be potential driving force of cancer metastasis. To dissect the molecular mechanisms and functional output of these epigenetic changes, it is critical to use advanced techniques and alternative animal models for interdisciplinary and translational research on this topic. Here we summarize our current understanding of epigenetic aberrations in cancer progression and metastasis, and their implications in developing new effective metastasis-specific therapies.
Collapse
|
18
|
Li Y, Zhang M, Feng H, Mahati S. The Tumorigenic Properties of EZH2 are Mediated by MiR-26a in Uveal Melanoma. Front Mol Biosci 2021; 8:713542. [PMID: 34381816 PMCID: PMC8350384 DOI: 10.3389/fmolb.2021.713542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The polycomb group protein enhancer of zeste homolog 2 (EZH2) has been found to be highly expressed in various tumors, and microRNA-26a (miR-26a) is often unmodulated in cancers. However, the functions of these two molecules in uveal melanoma (UM) and their relationships have not been reported. Methods: We explored the effects of the miR-26a–EZH2 axis in UM by examining the levels of miR-26a and EZH2. The EZH2 levels in various tumor types and the correlations between EZH2 levels and overall survival and disease-free survival were reanalyzed. The binding of miR-26a to the 3′-untranslated region of EZH2 mRNA was measured using the luciferase reporter assay. The regulation of EZH2 gene expression by miR-26a was also identified, and the effect of elevated EZH2 expression on UM cell function was further examined. Results: miR-26a was downregulated and EZH2 was upregulated in UM cells. Overexpression of miR-26a inhibited cell proliferation, and knockdown of EZH2 suppressed cell growth. EZH2 was a direct target of miR-26a in UM cells. The knockout of EZH2 mimicked the tumor inhibition of miR-26a in UM cells, whereas the reintroduction of EZH2 abolished this effect. In addition, a network of EZH2 and its interacting proteins (UBC, CDK1, HDAC1, SUZ12, EED) was found to participate in miR-26a-mediated tumor progression. Conclusion: The newly identified miR-26a–EZH2 axis may be a potential target for the development of treatment strategies for UM.
Collapse
Affiliation(s)
- Yao Li
- Department of Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| | - Mingmei Zhang
- Department of Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| | - Huayin Feng
- Department of Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| | - Shaya Mahati
- Department of Oncology, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| |
Collapse
|
19
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 790] [Impact Index Per Article: 197.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
20
|
Gebhardt K, Edemir B, Groß E, Nemetschke L, Kewitz-Hempel S, Moritz RKC, Sunderkötter C, Gerloff D. BRAF/EZH2 Signaling Represses miR-129-5p Inhibition of SOX4 Thereby Modulating BRAFi Resistance in Melanoma. Cancers (Basel) 2021; 13:cancers13102393. [PMID: 34063443 PMCID: PMC8155874 DOI: 10.3390/cancers13102393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Approximately 60% of all melanomas are associated with a constitutive activating BRAF mutation. Inhibition of BRAF downstream signaling by targeted therapies significantly improved patient outcomes. However, most patients eventually develop resistance. Here we identified miR-129-5p as a novel tumor suppressor in BRAF mutated melanoma, which expression is increased during response to BRAF inhibition, but repressed in an EZH2 dependent manner during activated BRAF signaling. Overexpression of miR-129-5p decreases melanoma cell proliferation and improves response to BRAF inhibition by targeting SOX4. Taken together our results emphasize SOX4 as a potential therapeutic target in BRAF driven melanoma which could be attacked by pharmaceutically. Abstract Many melanomas are associated with activating BRAF mutation. Targeted therapies by inhibitors of BRAF and MEK (BRAFi, MEKi) show marked antitumor response, but become limited by drug resistance. The mechanisms for this are not fully revealed, but include miRNA. Wishing to improve efficacy of BRAFi and knowing that certain miRNAs are linked to resistance to BRAFi, we wanted to focus on miRNAs exclusively associated with response to BRAFi. We found increased expression of miR-129-5p during BRAFi treatment of BRAF- mutant melanoma cells. Parallel to emergence of resistance we observed mir-129-5p expression to become suppressed by BRAF/EZH2 signaling. In functional analyses we revealed that miR-129-5p acts as a tumor suppressor as its overexpression decreased cell proliferation, improved treatment response and reduced viability of BRAFi resistant melanoma cells. By protein expression analyses and luciferase reporter assays we confirmed SOX4 as a direct target of mir-129-5p. Thus, modulation of the miR-129-5p-SOX4 axis could serve as a promising novel strategy to improve response to BRAFi in melanoma.
Collapse
Affiliation(s)
- Kathleen Gebhardt
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Bayram Edemir
- Department of Internal Medicine IV, Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (B.E.); (E.G.)
| | - Elisabeth Groß
- Department of Internal Medicine IV, Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (B.E.); (E.G.)
| | - Linda Nemetschke
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Stefanie Kewitz-Hempel
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Rose K. C. Moritz
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Cord Sunderkötter
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Dennis Gerloff
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
- Correspondence: ; Tel.: +49-0345-557-5255
| |
Collapse
|
21
|
Ma P, Jia G, Song Z. Monobenzone, a Novel and Potent KDM1A Inhibitor, Suppresses Migration of Gastric Cancer Cells. Front Pharmacol 2021; 12:640949. [PMID: 33935733 PMCID: PMC8084583 DOI: 10.3389/fphar.2021.640949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Lysine-specific demethylase1 (KDM1A) is generally highly expressed in various cancer tissues, and promotes the initiation and development of cancers via diverse cellular signaling pathways. Therefore, KDM1A is a promising drug target in many cancers, and it is crucial to find effective KDM1A inhibitors, while none of them has entered into market. With the help of compound library, monobenzone, a local depigmentor using as a treating over-pigmentation in clinic, was characterized as an effective KDM1A inhibitor (IC50 = 0.4507 μM), which may competitively inhibit KDM1A reversibly. Further cellular study confirmed that monobenzone could inhibit the proliferation of gastric cancer cell lines MGC-803 and BGC-823 with IC50 as 7.82 ± 0.55 μM and 6.99 ± 0.51 μM, respectively, and erase the substrate of KDM1A, H3K4me1/2 and H3K9 me2, and inhibit the migration of gastric cancer cell by reversing epithelial–mesenchymal transition (EMT). As the structure of monobenzone is very simple and small, this study provides a novel backbone for the further optimization of KDM1A inhibitor and gives monobenzone potential new application.
Collapse
Affiliation(s)
- Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gang Jia
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyu Song
- Department of Pharmacy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Khunger A, Piazza E, Warren S, Smith TH, Ren X, White A, Elliott N, Cesano A, Beechem JM, Kirkwood JM, Tarhini AA. CTLA-4 blockade and interferon-α induce proinflammatory transcriptional changes in the tumor immune landscape that correlate with pathologic response in melanoma. PLoS One 2021; 16:e0245287. [PMID: 33428680 PMCID: PMC7799833 DOI: 10.1371/journal.pone.0245287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Patients with locally/regionally advanced melanoma were treated with neoadjuvant combination immunotherapy with high-dose interferon α-2b (HDI) and ipilimumab in a phase I clinical trial. Tumor specimens were obtained prior to the initiation of neoadjuvant therapy, at the time of surgery and progression if available. In this study, gene expression profiles of tumor specimens (N = 27) were investigated using the NanoString nCounter® platform to evaluate associations with clinical outcomes (pathologic response, radiologic response, relapse-free survival (RFS), and overall survival (OS)) and define biomarkers associated with tumor response. The Tumor Inflammation Signature (TIS), an 18-gene signature that enriches for response to Programmed cell death protein 1 (PD-1) checkpoint blockade, was also evaluated for association with clinical response and survival. It was observed that neoadjuvant ipilimumab-HDI therapy demonstrated an upregulation of immune-related genes, chemokines, and transcription regulator genes involved in immune cell activation, function, or cell proliferation. Importantly, increased expression of baseline pro-inflammatory genes CCL19, CD3D, CD8A, CD22, LY9, IL12RB1, C1S, C7, AMICA1, TIAM1, TIGIT, THY1 was associated with longer OS (p < 0.05). In addition, multiple genes that encode a component or a regulator of the extracellular matrix such as MMP2 and COL1A2 were identified post-treatment as being associated with longer RFS and OS. In all baseline tissues, high TIS scores were associated with longer OS (p = 0.0166). Also, downregulated expression of cell proliferation-related genes such as CUL1, CCND1 and AAMP at baseline was associated with pathological and radiological response (unadjusted p < 0.01). In conclusion, we identified numerous genes that play roles in multiple biological pathways involved in immune activation, immune suppression and cell proliferation correlating with pathological/radiological responses following neoadjuvant immunotherapy highlighting the complexity of immune responses modulated by immunotherapy. Our observations suggest that TIS may be a useful biomarker for predicting survival outcomes with combination immunotherapy.
Collapse
Affiliation(s)
- Arjun Khunger
- Department of Internal Medicine, Memorial Hospital West, Pembroke Pines, Florida, United States of America
| | - Erin Piazza
- NanoString® Technologies, Inc., Seattle, Washington, United States of America
| | - Sarah Warren
- NanoString® Technologies, Inc., Seattle, Washington, United States of America
| | - Thomas H. Smith
- NanoString® Technologies, Inc., Seattle, Washington, United States of America
| | - Xing Ren
- NanoString® Technologies, Inc., Seattle, Washington, United States of America
| | - Andrew White
- NanoString® Technologies, Inc., Seattle, Washington, United States of America
| | - Nathan Elliott
- NanoString® Technologies, Inc., Seattle, Washington, United States of America
| | - Alessandra Cesano
- ESSA Pharma, South San Francisco, California, United States of America
| | - Joseph M. Beechem
- NanoString® Technologies, Inc., Seattle, Washington, United States of America
| | - John M. Kirkwood
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Ahmad A. Tarhini
- Department of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Julve M, Clark JJ, Lythgoe MP. Advances in cyclin-dependent kinase inhibitors for the treatment of melanoma. Expert Opin Pharmacother 2020; 22:351-361. [PMID: 33030382 DOI: 10.1080/14656566.2020.1828348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Despite the recent advances in the treatment of malignant melanoma with immunotherapy and BRAF/MEK targeted agents, advanced disease still beholds a poor prognosis for a significant proportion of patients. Cyclin-dependent kinase (CDK) inhibitors have been investigated as novel melanoma therapeutics throughout a range of phase 1 and 2 trials, as single agents and in combination with established treatments. Areas covered: This article summarizes the rationale for, and development of CDK inhibitors in melanoma, with their evolution from pan-CDK inhibitors to highly specific agents, throughout clinical trials and finally their potential future use. Expert opinion: Whilst CDK inhibitors have been practice changing in breast cancer management, their efficacy is yet to be proven in melanoma. Combination with BRAF/MEK inhibitors has been hindered by dose-limiting toxicities, but their role may yet to be found within the spectrum of biomarker-derived personalized melanoma management. The effect that CDK inhibitors can have as an adjunct to immunotherapy also remains to be seen.
Collapse
Affiliation(s)
- Maximilian Julve
- Department of Surgery & Cancer, Imperial College London , London, UK
| | - James J Clark
- Department of Surgery & Cancer, Imperial College London , London, UK
| | - Mark P Lythgoe
- Department of Surgery & Cancer, Imperial College London , London, UK
| |
Collapse
|
24
|
Vanni I, Tanda ET, Dalmasso B, Pastorino L, Andreotti V, Bruno W, Boutros A, Spagnolo F, Ghiorzo P. Non-BRAF Mutant Melanoma: Molecular Features and Therapeutical Implications. Front Mol Biosci 2020; 7:172. [PMID: 32850962 PMCID: PMC7396525 DOI: 10.3389/fmolb.2020.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive tumors of the skin, and its incidence is growing worldwide. Historically considered a drug resistant disease, since 2011 the therapeutic landscape of melanoma has radically changed. Indeed, the improved knowledge of the immune system and its interactions with the tumor, and the ever more thorough molecular characterization of the disease, has allowed the development of immunotherapy on the one hand, and molecular target therapies on the other. The increased availability of more performing technologies like Next-Generation Sequencing (NGS), and the availability of increasingly large genetic panels, allows the identification of several potential therapeutic targets. In light of this, numerous clinical and preclinical trials are ongoing, to identify new molecular targets. Here, we review the landscape of mutated non-BRAF skin melanoma, in light of recent data deriving from Whole-Exome Sequencing (WES) or Whole-Genome Sequencing (WGS) studies on melanoma cohorts for which information on the mutation rate of each gene was available, for a total of 10 NGS studies and 992 samples, focusing on available, or in experimentation, targeted therapies beyond those targeting mutated BRAF. Namely, we describe 33 established and candidate driver genes altered with frequency greater than 1.5%, and the current status of targeted therapy for each gene. Only 1.1% of the samples showed no coding mutations, whereas 30% showed at least one mutation in the RAS genes (mostly NRAS) and 70% showed mutations outside of the RAS genes, suggesting potential new roads for targeted therapy. Ongoing clinical trials are available for 33.3% of the most frequently altered genes.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | | | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
25
|
Kyriakou G, Melachrinou M. Cancer stem cells, epigenetics, tumor microenvironment and future therapeutics in cutaneous malignant melanoma: a review. Future Oncol 2020; 16:1549-1567. [PMID: 32484008 DOI: 10.2217/fon-2020-0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review provides an overview of the current understanding of the ontogeny and biology of melanoma stem cells in cutaneous malignant melanoma. This article also summarizes and evaluates the current knowledge of the underlying epigenetic mechanisms, the regulation of melanoma progress by the tumor microenvironment as well as the therapeutic implications and applications of these novel insights, in the setting of personalized medicine. Unraveling the complex ecosystem of cutaneous malignant melanoma and the interplay between its components, aims to provide novel insights into the establishment of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Georgia Kyriakou
- Department of Dermatology, University General Hospital of Patras, Rion 265 04, Greece
| | - Maria Melachrinou
- Department of Pathology, University General Hospital of Patras, Rion 265 04, Greece
| |
Collapse
|
26
|
A lncRNA coordinates with Ezh2 to inhibit HIF-1α transcription and suppress cancer cell adaption to hypoxia. Oncogene 2019; 39:1860-1874. [PMID: 31784651 DOI: 10.1038/s41388-019-1123-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
Hypoxia is a salient feature of the tumor microenvironment. HIF-1α is a master regulator of hypoxic adaption. The polycomb repressor complex 2 (PRC2) molecule Ezh2 is known to play roles in essential cellular processes of cell fate decisions. However, how PRC2-mediated epigenetic dynamic changes take part in hypoxic adaption is not completely understood. Recently, we identified a long non-coding RNA (lncRNA) named HITT (HIF-1α inhibitor at translation levels) that plays roles in modulating hypoxia-mediated angiogenesis and tumor growth in vivo. In this study, we reveal an important activity of HITT in evading hypoxia-induced apoptosis by coordinating with PRC2 activity to regulate HIF-1α transcription. Genetic or chemical inhibition of PRC2 significantly elevates HIF-1α mRNA levels. The occupancy of Ezh2 and its substrate H3K27me3 on the HIF-1α promoter is detected under normoxia, and is reduced by hypoxia. Restoring hypoxia-inhibited HITT expression rescues the association between Ezh2/H3K27me3 and the HIF-1α promoter, which also simultaneously abrogates hypoxia-induced HIF-1α mRNA transcription. Further mechanistic studies revealed that HITT inhibits HIF-1α transcription by guiding Ezh2 through the formation of an RNA-DNA triplex with the HIF-1α promoter. Importantly, HITT/Ezh2-regulated HIF-1α transcription leads to alerted HIF-1α protein output and elicits a significant effect to evade hypoxia-induced apoptosis. Importantly, a close association between HIF-1α mRNA and HITT was further verified in human colon cancer tissues in vivo. Collectively, these findings suggest a model for the epigenetic regulation of hypoxia-induced HIF-1α transcription modulated by lncRNA HITT, which provides important insights into how tumor cells sense and adapt to hypoxic stress.
Collapse
|
27
|
Reale E, Taverna D, Cantini L, Martignetti L, Osella M, De Pittà C, Virga F, Orso F, Caselle M. Investigating the epi-miRNome: identification of epi-miRNAs using transfection experiments. Epigenomics 2019; 11:1581-1599. [PMID: 31693439 DOI: 10.2217/epi-2019-0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: Growing evidence shows a strong interplay between post-transcriptional regulation, mediated by miRNAs (miRs) and epigenetic regulation. Nevertheless, the number of experimentally validated miRs (called epi-miRs) involved in these regulatory circuitries is still very small. Material & methods: We propose a pipeline to prioritize candidate epi-miRs and to identify potential epigenetic interactors of any given miR starting from miR transfection experiment datasets. Results & conclusion: We identified 34 candidate epi-miRs: 19 of them are known epi-miRs, while 15 are new. Moreover, using an in-house generated gene expression dataset, we experimentally proved that a component of the polycomb-repressive complex 2, the histone methyltransferase enhancer of zeste homolog 2 (EZH2), interacts with miR-214, a well-known prometastatic miR in melanoma and breast cancer, highlighting a miR-214-EZH2 regulatory axis potentially relevant in tumor progression.
Collapse
Affiliation(s)
- Elisa Reale
- Department of Physics & INFN, University of Torino, 10125, Torino, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), 10126, Torino, Italy.,Department of Molecular Biotechnology & Health Sciences, 10126, Torino, Italy.,Center for Complex Systems in Molecular Biology & Medicine, University of Torino, 10123, Torino, Italy
| | - Laura Cantini
- Institut Curie, PSL Research University, INSERM U900, Paris, France.,Computational Systems Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005 Paris, France
| | | | - Matteo Osella
- Department of Physics & INFN, University of Torino, 10125, Torino, Italy
| | | | - Federico Virga
- Molecular Biotechnology Center (MBC), 10126, Torino, Italy.,Department of Molecular Biotechnology & Health Sciences, 10126, Torino, Italy
| | - Francesca Orso
- Molecular Biotechnology Center (MBC), 10126, Torino, Italy.,Department of Molecular Biotechnology & Health Sciences, 10126, Torino, Italy.,Center for Complex Systems in Molecular Biology & Medicine, University of Torino, 10123, Torino, Italy
| | - Michele Caselle
- Department of Physics & INFN, University of Torino, 10125, Torino, Italy
| |
Collapse
|
28
|
Conjunctival Melanoma: Genetic and Epigenetic Insights of a Distinct Type of Melanoma. Int J Mol Sci 2019; 20:ijms20215447. [PMID: 31683701 PMCID: PMC6862213 DOI: 10.3390/ijms20215447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022] Open
Abstract
Conjunctival melanoma (CjM) is a rare, primary cancer of the ocular region. Genetic and epigenetic characteristics of conjunctival melanoma have not been completely elucidated yet. Conjunctival melanoma presents similarities with cutaneous melanoma, with substantial differences in the biological behavior. We reviewed the genetic and epigenetic insights of CjM involved in invasion and metastatic spread. CjM is commonly characterized by mutations of v-raf murine sarcoma viral oncogene homolog B1 (BRAF), neurofibromin 1 (NF1) and telomerase reverse transcriptase (TERT), high expression of mammalian target of rapamycin (mTOR) and heat shock protein 90 (HSP90), frequent phosphatase and tensin homolog (PTEN) loss and upregulation of specific miRNAs. These features should identify CjM as a distinct subset of melanoma with its own profile, which is more similar to cutaneous melanoma than mucosal melanoma and remarkably different from uveal melanoma.
Collapse
|
29
|
Wu M, Ma S. Robust semiparametric gene-environment interaction analysis using sparse boosting. Stat Med 2019; 38:4625-4641. [PMID: 31359454 PMCID: PMC6736719 DOI: 10.1002/sim.8322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 04/02/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022]
Abstract
For the pathogenesis of complex diseases, gene-environment (G-E) interactions have been shown to have important implications. G-E interaction analysis can be challenging with the need to jointly analyze a large number of main effects and interactions and to respect the "main effects, interactions" hierarchical constraint. Extensive methodological developments on G-E interaction analysis have been conducted in recent literature. Despite considerable successes, most of the existing studies are still limited as they cannot accommodate long-tailed distributions/data contamination, make the restricted assumption of linear effects, and cannot effectively accommodate missingness in E variables. To directly tackle these problems, a semiparametric model is assumed to accommodate nonlinear effects, and the Huber loss function and Qn estimator are adopted to accommodate long-tailed distributions/data contamination. A regression-based multiple imputation approach is developed to accommodate missingness in E variables. For model estimation and selection of relevant variables, we adopt an effective sparse boosting approach. The proposed approach is practically well motivated, has intuitive formulations, and can be effectively realized. In extensive simulations, it significantly outperforms multiple direct competitors. The analysis of The Cancer Genome Atlas data on stomach adenocarcinoma and cutaneous melanoma shows that the proposed approach makes sensible discoveries with satisfactory prediction and stability.
Collapse
Affiliation(s)
- Mengyun Wu
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT, USA
| |
Collapse
|
30
|
Feng W, Ding Y, Zong W, Ju S. Non-coding RNAs in regulating gastric cancer metastasis. Clin Chim Acta 2019; 496:125-133. [PMID: 31276633 DOI: 10.1016/j.cca.2019.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Gastric cancer is one of the leading causes of cancer-related deaths worldwide, and mortality remains high, especially in East Asia. At present, the main method to diagnose gastric cancer is pathological biopsy. At the time of diagnosis, most patients have been diagnosed with advanced cancer and metastasis. The treatment of gastric cancer patients is mainly radical surgical resection and chemoradiotherapy, while patients with metastatic tumor have great challenges to radical surgery and are prone to drug resistance. Metastasis is an important factor affecting tumor development. In addition, evidence accumulated in the literature indicates that non-coding RNA plays a key role in tumor metastasis. This article reviews the role of ncRNAs in gastric cancer metastasis and discusses the regulatory mechanism in the development and treatment of gastric cancer.
Collapse
Affiliation(s)
- Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ye Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
31
|
Li B, Xie D, Zhang H. MicroRNA-101-3p advances cisplatin sensitivity in bladder urothelial carcinoma through targeted silencing EZH2. J Cancer 2019; 10:2628-2634. [PMID: 31258770 PMCID: PMC6584933 DOI: 10.7150/jca.33117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: Chemotherapy is a major therapeutic method for bladder urothelial carcinoma (BUC), which can effectively improve the prognosis of BUC patients, but the chemoresistance often leads to chemotherapy failure. This study will research the regulatory roles and molecular mechanism of miR-101-3p in BUC chemoresistance. Materials and Methods: The quantitative real-time PCR was used to detect the expression of miRNA-101-3p and EZH2. The proliferation and chemoresistance were analyzed by CCK8 assay. Luciferase reporter assay was used to verify the combination between miR-101-3p and EZH2. Protein expression was detected by Western blotting. Flow cytometry was used to examine apoptosis rate. Results: The miR-101-3p expression was down-regulated in cisplatin (CDDP) resistant BUC cell line (T24/CDDP) and tissues, and was positively related to sensitivity of BUC to CDDP. In T24/CDDP cells, the up-regulation of miR-101-3p decreased the half maximal inhibitory concentration (IC50) to CDDP, depressed the expression of MRP1 protein, promote the CDDP-induced cytotoxicity, and advanced CDDP sensitivity. A series of in vitro experiments certified the EZH2 gene was a target gene of miR-101-3p, including luciferase reporter assay, western blotting and so on. Up-regulation of EZH2 largely reversed the regulatory effects of miR-101-3p enhancement on CDDP sensitivity in T24/CDDP cells. Conclusion: The expression of miR-101-3p is positively related to CDDP sensitivity of BUC, miR-101-3p advances sensitivity of BUC to CDDP through targeted silencing EZH2.
Collapse
Affiliation(s)
- Bo Li
- Department of Urinary surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Dalong Xie
- Department of Anatomy, College of Basic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Hui Zhang
- Department of Urinary surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Flørenes VA, Flem-Karlsen K, McFadden E, Bergheim IR, Nygaard V, Nygård V, Farstad IN, Øy GF, Emilsen E, Giller-Fleten K, Ree AH, Flatmark K, Gullestad HP, Hermann R, Ryder T, Wernhoff P, Mælandsmo GM. A Three-dimensional Ex Vivo Viability Assay Reveals a Strong Correlation Between Response to Targeted Inhibitors and Mutation Status in Melanoma Lymph Node Metastases. Transl Oncol 2019; 12:951-958. [PMID: 31096111 PMCID: PMC6520638 DOI: 10.1016/j.tranon.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Although clinical management of melanoma has changed considerably in recent years, intrinsic treatment resistance remains a severe problem and strategies to design personal treatment regimens are highly warranted. We have applied a three-dimensional (3D) ex vivo drug efficacy assay, exposing disaggregated cells from 38 freshly harvested melanoma lymph node metastases and 21 patient derived xenografts (PDXs) to clinical relevant drugs for 7 days, and examined its potential to evaluate therapy response. A strong association between Vemurafenib response and BRAF mutation status was achieved (P < .0001), while enhanced viability was seen in some NRAS mutated tumors. BRAF and NRAS mutated tumors responded comparably to the MEK inhibitor Cobimetinib. Based on the ex vivo results, two tumors diagnosed as BRAF wild-type by routine pathology examinations had to be re-evaluated; one was subsequently found to have a complex V600E mutation, the other a double BRAF mutation (V600E/K601 N). No BRAF inhibitor resistance mechanisms were identified, but PIK3CA and NF1 mutations were identified in two highly responsive tumors. Concordance between ex vivo drug responses using tissue from PDXs and corresponding patient tumors demonstrate that PDX models represent an indefinite source of tumor material that may allow ex vivo evaluation of numerous drugs and combinations, as well as studies of underlying molecular mechanisms. In conclusion, we have established a rapid and low cost ex vivo drug efficacy assay applicable on tumor tissue from patient biopsies. The 3D/spheroid format, limiting the influence from normal adjacent cells and allowing assessment of drug sensitivity to numerous drugs in one week, confirms its potential as a supplement to guide clinical decision, in particular in identifying non-responding patients.
Collapse
Affiliation(s)
- Vivi Ann Flørenes
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Karine Flem-Karlsen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Erin McFadden
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Inger Riise Bergheim
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Vigdis Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Vegard Nygård
- Department of Core Facilities, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Inger Nina Farstad
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Elisabeth Emilsen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Karianne Giller-Fleten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, N-1478 Lørenskog, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Kjersti Flatmark
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Hans Petter Gullestad
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Robert Hermann
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Truls Ryder
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Patrik Wernhoff
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
33
|
Kollmann K, Briand C, Bellutti F, Schicher N, Blunder S, Zojer M, Hoeller C. The interplay of CDK4 and CDK6 in melanoma. Oncotarget 2019; 10:1346-1359. [PMID: 30858922 PMCID: PMC6402717 DOI: 10.18632/oncotarget.26515] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 11/25/2022] Open
Abstract
The cyclin-dependent kinases CDK4 and CDK6 promote progression through the cell cycle, where their functions are considered to be redundant. Recent studies have identified an additional role for CDK6 in the transcriptional regulation of cancer-relevant genes such as VEGF-A and EGR1 in hematopoietic malignancies. We show that the CDK4/6 inhibitor PD0332991 causes a significant decrease in tumor growth in a xenotransplantation mouse model of human melanoma. shRNA knockdown of either CDK4 or CDK6 significantly reduces cell proliferation and impedes their migratory capacity in vitro, which translates into a strong inhibition of tumor growth in xenotransplantation experiments. CDK4/6 inhibition results not only in the pronounced reduction of cell proliferation but also in an impaired tumor angiogenesis. CDK6 knockdown in melanoma cell lines impairs VEGF-A expression and reduces the potential stimulation of endothelial cell growth. The knockdown of CDK4 ends in similar results. The effect is caused by changes of CDK6 localization, less CDK6 is detected on the VEGF-A promoter. Bioinformatic analysis of human melanoma patient data verifies the key role of CDK6 in tumor angiogenesis in melanoma. The results highlight the importance of the delicate balance between CDK4 and CDK6 in regulating the cell cycle and transcription.
Collapse
Affiliation(s)
- Karoline Kollmann
- Institute of Pharmacology and Toxicology, Veterinary University of Vienna, Vienna, Austria
| | - Coralie Briand
- Department of Dermatology, Division of General Dermatology, Medical University Vienna, Vienna, Austria
| | - Florian Bellutti
- Institute of Pharmacology and Toxicology, Veterinary University of Vienna, Vienna, Austria
| | - Nikolaus Schicher
- Department of Dermatology, Division of General Dermatology, Medical University Vienna, Vienna, Austria
| | - Stefan Blunder
- Department of Dermatology, Division of General Dermatology, Medical University Vienna, Vienna, Austria
| | - Markus Zojer
- Institute of Pharmacology and Toxicology, Veterinary University of Vienna, Vienna, Austria
| | - Christoph Hoeller
- Department of Dermatology, Division of General Dermatology, Medical University Vienna, Vienna, Austria
| |
Collapse
|
34
|
Perotti V, Baldassari P, Molla A, Nicolini G, Bersani I, Grazia G, Benigni F, Maurichi A, Santinami M, Anichini A, Mortarini R. An actionable axis linking NFATc2 to EZH2 controls the EMT-like program of melanoma cells. Oncogene 2019; 38:4384-4396. [PMID: 30710146 PMCID: PMC6756060 DOI: 10.1038/s41388-019-0729-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/03/2018] [Accepted: 01/21/2019] [Indexed: 01/30/2023]
Abstract
Discovery of new actionable targets and functional networks in melanoma is an urgent need as only a fraction of metastatic patients achieves durable clinical benefit by targeted therapy or immunotherapy approaches. Here we show that NFATc2 expression is associated with an EMT-like transcriptional program and with an invasive melanoma phenotype, as shown by analysis of melanoma cell lines at the mRNA and protein levels, interrogation of the TCGA melanoma dataset and characterization of melanoma lesions by immunohistochemistry. Gene silencing or pharmacological inhibition of NFATc2 downregulated EMT-related genes and AXL, and suppressed c-Myc, FOXM1, and EZH2. Targeting of c-Myc suppressed FOXM1 and EZH2, while targeting of FOXM1 suppressed EZH2. Inhibition of c-Myc, or FOXM1, or EZH2 downregulated EMT-related gene expression, upregulated MITF and suppressed migratory and invasive activity of neoplastic cells. Stable silencing of NFATc2 impaired melanoma cell proliferation in vitro and tumor growth in vivo in SCID mice. In NFATc2+ EZH2+ melanoma cell lines pharmacological co-targeting of NFATc2 and EZH2 exerted strong anti-proliferative and pro-apoptotic activity, irrespective of BRAF or NRAS mutations and of BRAF inhibitor resistance. These results provide preclinical evidence for a role of NFATc2 in shaping the EMT-like melanoma phenotype and reveal a targetable vulnerability associated with NFATc2 and EZH2 expression in melanoma cells belonging to different mutational subsets.
Collapse
Affiliation(s)
- Valentina Perotti
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Paola Baldassari
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Alessandra Molla
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | | | - Ilaria Bersani
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Giulia Grazia
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Fabio Benigni
- HuMabs Biomed, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Andrea Maurichi
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Santinami
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Anichini
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Roberta Mortarini
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy.
| |
Collapse
|
35
|
Yu H, Ma M, Yan J, Xu L, Yu J, Dai J, Xu T, Tang H, Wu X, Li S, Lian B, Mao L, Chi Z, Cui C, Guo J, Kong Y. Identification of coexistence of BRAF V600E mutation and EZH2 gain specifically in melanoma as a promising target for combination therapy. J Transl Med 2017; 15:243. [PMID: 29202777 PMCID: PMC5716227 DOI: 10.1186/s12967-017-1344-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/12/2017] [Indexed: 12/21/2022] Open
Abstract
Background Coexistence of enhancer of zeste homolog 2 (EZH2) and BRAF gene aberrations has been described in many cancer types. In this study, we aim to explore the coexistence status of BRAF V600E mutation and the copy number variation of EZH2 and explore the potential of this combination as a therapeutic target. Methods A total of 138 cases of melanoma samples harboring BRAF V600E mutation were included, and EZH2 copy numbers were examined by QuantiGenePlex DNA Assays. Clinical pathological distinction between patient groups with or without EZH2 amplification (hereafter referred to as EZH2 gain) was statistically analyzed. The sensitivity of melanoma cell lines and patient-derived xenograft (PDX) models containing BRAF V600E mutation with or without EZH2 gain to vemurafenib (BRAF inhibitor), GSK2816126 (EZH2 inhibitor) and a combination of both agents was evaluated. Results In our cohort, the coexistence rate of BRAF V600E mutation and EZH2 gain was up to 29.0%, and significant differences in overall survival and disease-free survival were found between no EZH2 copy number gain and gain groups (P = 0.038, P = 0.030), gain and high EZH2 copy number gain groups (P = 0.006, P = 0.010). Combination with BRAF and EZH2 inhibition showed better inhibitory efficacy in melanoma prevention compared with vemurafenib monotherapy. More importantly, this improved therapeutic effect was observed especially in melanoma cell lines and PDX models containing concurrently BRAF V600E mutation and EZH2 gain. Conclusions Coexistence of BRAF V600E mutation and EZH2 gain is rather prevalent in melanoma. Our findings provided evidence for the feasibility of combination therapy with EZH2 and BRAF inhibitors in melanoma with concurrent BRAF V600E mutation and EZH2 gain. Electronic supplementary material The online version of this article (10.1186/s12967-017-1344-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan Yu
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng Ma
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Junya Yan
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Longwen Xu
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiayi Yu
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Dai
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tianxiao Xu
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Tang
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaowen Wu
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Siming Li
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Lian
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lili Mao
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Guo
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Yan Kong
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
36
|
EZH2 Single Nucleotide Variants (SNVs): Diagnostic and Prognostic Role in 10 Solid Tumor Types. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1030018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Shi X, Tasdogan A, Huang F, Hu Z, Morrison SJ, DeBerardinis RJ. The abundance of metabolites related to protein methylation correlates with the metastatic capacity of human melanoma xenografts. SCIENCE ADVANCES 2017; 3:eaao5268. [PMID: 29109980 PMCID: PMC5665593 DOI: 10.1126/sciadv.aao5268] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/06/2017] [Indexed: 05/27/2023]
Abstract
Metabolic reprogramming is a major factor in transformation, and particular metabolic phenotypes correlate with oncogenotype, tumor progression, and metastasis. By profiling metabolites in 17 patient-derived xenograft melanoma models, we identified durable metabolomic signatures that correlate with biological features of the tumors. BRAF mutant tumors had metabolomic and metabolic flux features of enhanced glycolysis compared to BRAF wild-type tumors. Tumors that metastasized efficiently from their primary sites had elevated levels of metabolites related to protein methylation, including trimethyllysine (TML). TML levels correlated with histone H3 trimethylation at Lys9 and Lys27, and methylation at these sites was also enhanced in efficiently metastasizing tumors. Erasing either of these marks by genetically or pharmacologically silencing the histone methyltransferase SETDB1 or EZH2 had no effect on primary tumor growth but reduced cellular invasiveness and metastatic spread. Thus, metabolite profiling can uncover targetable epigenetic requirements for the metastasis of human melanoma cells.
Collapse
Affiliation(s)
- Xiaolei Shi
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alpaslan Tasdogan
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fang Huang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zeping Hu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J. Morrison
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics and Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
38
|
Zhou Z, Zhang H, Liu Y, Zhang Z, Du G, Li H, Yu X, Huang Y. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3‐mediated down‐regulation of E‐cadherin. J Cell Physiol 2017; 233:1359-1369. [DOI: 10.1002/jcp.26012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Zhen Zhou
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Hong‐Sheng Zhang
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Yang Liu
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Zhong‐Guo Zhang
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Guang‐Yuan Du
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Hu Li
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Xiao‐Ying Yu
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Ying‐Hui Huang
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| |
Collapse
|
39
|
Mahmoud F, Shields B, Makhoul I, Avaritt N, Wong HK, Hutchins LF, Shalin S, Tackett AJ. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther 2017; 18:451-469. [PMID: 28513269 DOI: 10.1080/15384047.2017.1323596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacologic inhibition of the cytotoxic T lymphocyte antigen 4 (CTLA4) and the programmed death receptor-1 (PD1) has resulted in unprecedented durable responses in metastatic melanoma. However, resistance to immunotherapy remains a major challenge. Effective immune surveillance against melanoma requires 4 essential steps: activation of the T lymphocytes, homing of the activated T lymphocytes to the melanoma microenvironment, identification and episode of melanoma cells by activated T lymphocytes, and the sensitivity of melanoma cells to apoptosis. At each of these steps, there are multiple factors that may interfere with the immune surveillance machinery, thus allowing melanoma cells to escape immune attack and develop resistance to immunotherapy. We provide a comprehensive review of the complex immune surveillance mechanisms at play in melanoma, and a detailed discussion of how these mechanisms may allow for the development of intrinsic or acquired resistance to immunotherapeutic modalities, and potential avenues for overcoming this resistance.
Collapse
Affiliation(s)
- Fade Mahmoud
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Bradley Shields
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Issam Makhoul
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Nathan Avaritt
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Henry K Wong
- c Department of Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Laura F Hutchins
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Sara Shalin
- d Departments of Pathology and Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Alan J Tackett
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| |
Collapse
|