1
|
Kahkesh S, Hedayati N, Rahimzadeh P, Farahani N, Khoozani MF, Abedi M, Nabavi N, Naeimi B, Khoshnazar SM, Alimohammadi M, Alaei E, Mahmoodieh B. The function of circular RNAs in regulating Wnt/β-catenin signaling: An innovative therapeutic strategy for breast and gynecological cancers. Pathol Res Pract 2025; 270:155944. [PMID: 40228402 DOI: 10.1016/j.prp.2025.155944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025]
Abstract
Breast cancer (BC) and gynecological malignancies, including cervical, ovarian, and uterine cancers, are significant global health challenges due to their high prevalence, complex nature, and elevated mortality rates. Dysregulation of the Wnt/β-catenin signaling pathway is a common feature in gynecological malignancies, contributing to cancer cell growth, progression, migration, and metastasis. Recent studies have highlighted the pivotal role of non-coding RNAs (ncRNAs), particularly circular RNAs (circRNAs), in modulating the Wnt/β-catenin signaling pathway. Acting as sponges for microRNAs (miRNAs), circRNAs regulate key oncogenic and tumor-suppressive processes by influencing Wnt-related components. This research explores the role of circRNAs in breast and gynecological malignancies, focusing on their regulatory effects on the Wnt/β-catenin pathway. The findings reveal that circRNAs modulate critical cellular processes such as proliferation, apoptosis, autophagy, and metastasis, with potential implications for therapeutic interventions. Targeting circRNA-mediated dysregulation of Wnt signaling could offer novel strategies for improving diagnostic precision, treatment efficacy, and survival outcomes in breast and gynecological cancers.
Collapse
Affiliation(s)
- Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Farhadi Khoozani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Bita Naeimi
- Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Yin J, Pei Z, Wu C, Liu J, Huang J, Xia R, Xiang D. M2 Macrophage-Derived Exosomal circ_0088494 Inhibits Ferroptosis via Promoting H3K4me1 Modification of STEAP3 in Cutaneous Squamous Cell Carcinoma. Mol Carcinog 2025; 64:513-525. [PMID: 39692268 DOI: 10.1002/mc.23862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of cutaneous cancer globally. M2 macrophage-derived exosomes (M2 exosomes) facilitate the development of cancer. Ferroptosis, a newly uncovered form of cell death, is linked to cancer progression. The present research planned to study the function and potential mechanism of M2 exosomes on ferroptosis in cSCC. Patients with cSCC were recruited to gather adjacent noncancerous specimens and cSCC tissues. Mononuclear macrophage (THP-1) cells were differentiated into M2 macrophages before exosome extraction, and then the exosomes were added into cSCC cells (A431 and SCL-1). Erastin was applied to induce ferroptosis. Cell viability, mitochondrial superoxide, lipid-ROS, malondialdehyde (MDA), and iron level were detected to validate ferroptosis in cSCC cells. Proteins and RNAs were tested by applying western blot and RT-qPCR. The combination between molecules was validated by ChIP and RIP. Six-transmembrane epithelial antigen of the prostate 3 (STEAP3) was elevated in cSCC specimens, which correlated to reduced ferroptosis. cSCC tissues presented an increase in the number of M2 macrophages. Erastin-elicited ferroptosis was repressed by M2 macrophages, while exosome inhibitor GW4869 neutralized the outcome of M2 macrophages. Furthermore, M2 exosomes repressed ferroptosis of cSCC cells via circ_0088494, which might be related to the upregulation of STEAP3. M2 exosomes-derived circ_0088494 promoted histone 3 lysine 4 monomethylation (H3K4me1) modification of STEAP3 by recruiting histone-lysine N-methyltransferase 2D (KMT2D). The effect of circ_0088494-silenced M2 exosomes on ferroptosis was antagonized by STEAP3 overexpression. M2 exosomes-derived circ_0088494 recruited KMT2D to promote H3K4me1 modification of STEAP3, thereby inhibiting ferroptosis in cSCC. This study might provide a novel target for cSCC treatment.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, jiangjin, P. R. China
| | - Zhigang Pei
- Department of Pathology, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| | - Chunrong Wu
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| | - Jie Liu
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, jiangjin, P. R. China
| | - Jianxiang Huang
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, jiangjin, P. R. China
| | - Rui Xia
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| | - Debing Xiang
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| |
Collapse
|
3
|
Guo Y, Huang Q, Heng Y, Zhou Y, Chen H, Xu C, Wu C, Tao L, Zhou L. Circular RNAs in cancer. MedComm (Beijing) 2025; 6:e70079. [PMID: 39901896 PMCID: PMC11788016 DOI: 10.1002/mco2.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Circular RNA (circRNA), a subtype of noncoding RNA, has emerged as a significant focus in RNA research due to its distinctive covalently closed loop structure. CircRNAs play pivotal roles in diverse physiological and pathological processes, functioning through mechanisms such as miRNAs or proteins sponging, regulation of splicing and gene expression, and serving as translation templates, particularly in the context of various cancers. The hallmarks of cancer comprise functional capabilities acquired during carcinogenesis and tumor progression, providing a conceptual framework that elucidates the nature of the malignant transformation. Although numerous studies have elucidated the role of circRNAs in the hallmarks of cancers, their functions in the development of chemoradiotherapy resistance remain unexplored and the clinical applications of circRNA-based translational therapeutics are still in their infancy. This review provides a comprehensive overview of circRNAs, covering their biogenesis, unique characteristics, functions, and turnover mechanisms. We also summarize the involvement of circRNAs in cancer hallmarks and their clinical relevance as biomarkers and therapeutic targets, especially in thyroid cancer (TC). Considering the potential of circRNAs as biomarkers and the fascination of circRNA-based therapeutics, the "Ying-Yang" dynamic regulations of circRNAs in TC warrant vastly dedicated investigations.
Collapse
Affiliation(s)
- Yang Guo
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Qiang Huang
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yu Heng
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yujuan Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Hui Chen
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chengzhi Xu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chunping Wu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Lei Tao
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Liang Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| |
Collapse
|
4
|
Shahpari M, Hashemi M, Younesirad T, Hasanzadeh A, Mosanne MM, Ahmadifard M. The functional roles of competitive endogenous RNA (ceRNA) networks in apoptosis in human cancers: The circRNA/miRNA/mRNA regulatory axis and cell signaling pathways. Heliyon 2024; 10:e37089. [PMID: 39524849 PMCID: PMC11546195 DOI: 10.1016/j.heliyon.2024.e37089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Circular RNAs are noncoding RNAs with circular conformation mainly due to backsplicing event. CircRNAs can potentially impact cell biological processes by interacting with cell signaling pathways. Numerous circRNAs have been found to be aberrantly expressed in a variety of cancers. These RNAs can act as ceRNA (competitive endogenous RNA) by sponging certain miRNAs to form circRNA/miRNA/mRNA networks. Dysregulation of ceRNA networks may lead to dysfunctions in various cell pathways, which modulate apoptosis-associated genes and ultimately result in cancer progression. Since disruption of apoptosis is one of the leading causes of cancer development, one approach for cancer treatment is to drive cells toward apoptosis. In this review, we present a summary of studies on the role of ceRNA networks in cellular signaling pathways that regulate apoptosis; these networks are suggested to be potential biomarkers for cancer treatment.
Collapse
Affiliation(s)
| | | | - Tayebeh Younesirad
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Aida Hasanzadeh
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad mahdi Mosanne
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohamadreza Ahmadifard
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
5
|
Ma H, Lu Y, Zhu D, Jiang Z, Zhang F, Peng J, Wang L. Gypenoside A Protects Human Myocardial Cells from Ischemia/Reperfusion Injury via the circ_0010729/miR-370-3p/RUNX1 Axis. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:973-986. [PMID: 38880656 DOI: 10.1134/s000629792405016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/23/2023] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
Ischemia/reperfusion (I/R) injury is one of the major causes of cardiovascular disease. Gypenoside A (GP), the main active component of Gynostemma pentaphyllum, alleviates myocardial I/R injury. Circular RNAs (circRNAs) and microRNAs (miRNAs) are involved in the I/R injury. We explored the protective effect of GP on human cardiomyocytes (HCMs) via the circ_0010729/miR-370-3p/RUNX1 axis. Overexpression of circ_0010729 abolished the effects of GP on HMC, such as suppression of apoptosis and increase in cell viability and proliferation. Overexpression of miR-370-3p reversed the effect of circ_0010729 overexpression, resulting in the stimulation of HMC viability and proliferation and inhibition of apoptosis. The knockdown of miR-370-3p suppressed the effects of GP in HCMs. RUNX1 silencing counteracted the effect of miR-370-3p knockdown and maintained GP-induced suppression of apoptosis and stimulation of HMC viability and proliferation. The levels of RUNX1 mRNA and protein were reduced in cells expressing miR-370-3p. In conclusion, this study confirmed that GP alleviated the I/R injury of myocardial cell via the circ_0010729/miR-370-3p/RUNX1 axis.
Collapse
Affiliation(s)
- Hailiang Ma
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, Shaoxing City, Zhejiang Province, 312000, China
| | - Yuanben Lu
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, Shaoxing City, Zhejiang Province, 312000, China
| | - Dewen Zhu
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, Shaoxing City, Zhejiang Province, 312000, China
| | - Zhenhua Jiang
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, Shaoxing City, Zhejiang Province, 312000, China
| | - FanZhi Zhang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jun Peng
- Department of Cardiovascular Medicine, First People's Hospital of Xiaoshan District, Hangzhou, 311200, China.
| | - Li Wang
- Department of Cardiovascular Medicine, Shaoxing Central Hospital, Shaoxing City, Zhejiang Province, 312000, China.
| |
Collapse
|
6
|
Zhou T, Li Z, Jiang Y, Su K, Xu C, Yi H. Emerging roles of circular RNAs in regulating the hallmarks of thyroid cancer. Cancer Gene Ther 2024; 31:507-516. [PMID: 38316961 PMCID: PMC11016468 DOI: 10.1038/s41417-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Thyroid cancer is a prevalent endocrine malignancy with increasing incidence in recent years. Although most thyroid cancers grow slowly, they can become refractory, leading to a high mortality rate once they exhibit recurrence, metastasis, resistance to radioiodine therapy, or a lack of differentiation. However, the mechanisms underlying these malignant characteristics remain unclear. Circular RNAs, a type of closed-loop non-coding RNAs, play multiple roles in cancer. Several studies have demonstrated that circular RNAs significantly influence the development of thyroid cancers. In this review, we summarize the circular RNAs identified in thyroid cancers over the past decade according to the hallmarks of cancer. We found that eight of the 14 hallmarks of thyroid cancers are regulated by circular RNAs, whereas the other six have not been reported to be correlated with circular RNAs. This review is expected to help us better understand the roles of circular RNAs in thyroid cancers and accelerate research on the mechanisms and cure strategies for thyroid cancers.
Collapse
Affiliation(s)
- Tianjiao Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Zheng Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yumeng Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Kaiming Su
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chuan Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hongliang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
7
|
Saleh RO, Al-Hawary SIS, Jasim SA, Bokov DO, Hjazi A, Oudaha KH, Alnajar MJ, Jumaa SS, Alawadi A, Alsalamy A. A therapeutical insight into the correlation between circRNAs and signaling pathways involved in cancer pathogenesis. Med Oncol 2024; 41:69. [PMID: 38311682 DOI: 10.1007/s12032-023-02275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024]
Abstract
Pre-messenger RNA molecules are back-spliced to create circular RNAs, which are non-coding RNA molecules. After a thorough investigation, it was discovered that these circRNAs have critical biological roles. CircRNAs have a variety of biological functions, including their ability to operate as microRNA sponges, interact with proteins to alter their stabilities and activities, and provide templates for the translation of proteins. Evidence supports a link between the emergence of numerous diseases, including various cancer types, and dysregulated circRNA expression. It is commonly known that a significant contributing element to cancer development is the disruption of numerous molecular pathways essential for preserving cellular and tissue homeostasis. The dysregulation of multiple biological processes is one of the hallmarks of cancer, and the molecular pathways linked to these processes are thought to be promising targets for therapeutic intervention. The biological and carcinogenic effects of circRNAs in the context of cancer are thoroughly reviewed in this article. Specifically, we highlight circRNAs' involvement in signal transduction pathways and their possible use as novel biomarkers for the early identification and prognosis of human cancer.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | | | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240, Russian Federation
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Sally Salih Jumaa
- College of Pharmacy/National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah,, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
8
|
Shao Z, Chen X, Qiu H, Xu M, Wen X, Chen Z, Liu Z, Ding X, Zhang L. CircNEK6 promotes the progression of pancreatic ductal adenocarcinoma through targeting miR-503/CCND1 axis. Transl Oncol 2024; 39:101810. [PMID: 37871516 PMCID: PMC10622713 DOI: 10.1016/j.tranon.2023.101810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
PURPOSE The present study aimed to reveal the function and underlying molecular mechanism of circRNA NIMA related kinase 6 (circNEK6) in promoting the progression of pancreatic ductal adenocarcinoma (PDAC). METHODS The differentially expressed circRNAs in three paired PDAC tissues and adjacent tissues were identified by RNA sequencing. CircNEK6 was screened out to further explore its relationship with the prognosis of PDAC patients. The target microRNAs and mRNAs of circNEK6 were analyzed through online databases and detected by quantitative real-time polymerase chain reaction. Cell counting kit-8 assay, clone formation assay, transwell assay, flow cytometry and western blot were used to explore the function of circNEK6 on the biological behaviors of PDAC cells. The in vivo antitumor effect of circNEK6 silencing on PDAC was investigated by nude mouse xenograft models. RESULTS 203 differentially expressed circRNAs including circNEK6 were identified between paired PDAC tissues and adjacent tissues, and the expression level of circNEK6 was negatively correlated with the prognosis of PDAC patients. The results of in vitro experiments showed that knockdown of circNEK6 repressed the proliferation, migration and invasion, but induced the apoptosis of PDAC cells. Moreover, circNEK6 silencing inhibited tumor growth and prolonged the survival time of PDAC-bearing mice. Mechanistically, miR-503/cyclin D1 (CCND1) axis was predicted and confirmed as the target of circNEK6. CONCLUSIONS CircNEK6 serves as a competing endogenous RNA of CCND1 by absorbing miR-503, which might be treated as a novel and potential target for PDAC treatment.
Collapse
Affiliation(s)
- Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xueting Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Hui Qiu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, Jiangsu 221000, China
| | - Muchen Xu
- Department of Radiation Oncology, Dushu Lake Hospital Affilated to Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xin Wen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, Jiangsu 221000, China
| | - Ziqin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Zhengyang Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xin Ding
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, Jiangsu 221000, China.
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
9
|
Tang S, Cai L, Wang Z, Pan D, Wang Q, Shen Y, Zhou Y, Chen Q. Emerging roles of circular RNAs in the invasion and metastasis of head and neck cancer: Possible functions and mechanisms. CANCER INNOVATION 2023; 2:463-487. [PMID: 38125767 PMCID: PMC10730008 DOI: 10.1002/cai2.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2023]
Abstract
Head and neck cancer (HNC) is the seventh most prevalent malignancy worldwide in 2020. Cancer metastasis is the main cause of poor prognosis in HNC patients. Recently, circular RNAs (circRNAs), initially thought to have no biological function, are attracting increasing attention, and their crucial roles in mediating HNC metastasis are being extensively investigated. Existing studies have shown that circRNAs primarily function through miRNA sponges, transcriptional regulation, interacting with RNA-binding proteins (RBPs) and as translation templates. Among these functions, the function of miRNA sponge is the most prominent. In this review, we summarized the reported circRNAs involved in HNC metastasis, aiming to elucidate the regulatory relationship between circRNAs and HNC metastasis. Furthermore, we summarized the latest advances in the epidemiological information of HNC metastasis and the tumor metastasis theories, the biogenesis, characterization and functional mechanisms of circRNAs, and their potential clinical applications. Although the research on circRNAs is still in its infancy, circRNAs are expected to serve as prognostic markers and effective therapeutic targets to inhibit HNC metastasis and significantly improve the prognosis of HNC patients.
Collapse
Affiliation(s)
- Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Luyao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Qing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yingqiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
- State Institute of Drug/Medical Device Clinical TrialWest China Hospital of StomatologyChengduChina
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
10
|
Chen X, Yang M, Tu J, Yuan X. Integrated bioinformatics and validation reveal SOX12 as potential biomarker in colon adenocarcinoma based on an immune infiltration-related ceRNA network. J Cancer Res Clin Oncol 2023; 149:15737-15762. [PMID: 37668799 DOI: 10.1007/s00432-023-05316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE The primary objective of this study was to construct competing endogenous RNA (ceRNA) networks and evaluate the prognostic significance of tumor-infiltrating immune cells (TIICs) and key biomarkers within the ceRNA networks in colon adenocarcinoma (COAD) patients. METHODS Comprehensive bioinformatics tools were used to screen differentially expressed genes (DEGs), miRNAs (DEMs), and lncRNAs (DELs) related to COAD, leading to the creation of ceRNA networks. The CIBERSORT technique was employed to assess the significance of TIICs in COAD, and an immune-related prognosis prediction model was subsequently developed. Co-expression analyses were conducted to determine the relationship between key genes in ceRNA networks and immunologically significant TIICs. The study also utilized 5 GEO datasets and web-based databases to externally validate the findings. RESULTS The study revealed a statistically significant relationship between key hub genes and immune cells, as determined through co-expression analysis. Two hub regulators (SOX12 and H19) demonstrated significant prognostic value in the ceRNA-related prognostic model, and their elevated expression levels were verified across multiple CRC cell lines. Additionally, the knockdown of SOX12 led to a suppression of proliferation, migration, and invasion in colon cancer cells. CONCLUSION Through the construction of ceRNA networks and evaluation of TIICs, the study successfully established two risk score models and nomograms. These models serve as valuable tools for understanding the molecular processes and predicting the prognosis of COAD patients. Further validation of hub regulators SOX12 and H19 substantiates their potential role as key biomarkers in COAD.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Mafi A, Rismanchi H, Malek Mohammadi M, Hedayati N, Ghorbanhosseini SS, Hosseini SA, Gholinezhad Y, Mousavi Dehmordi R, Ghezelbash B, Zarepour F, Taghavi SP, Asemi Z, Alimohammadi M, Mirzaei H. A spotlight on the interplay between Wnt/β-catenin signaling and circular RNAs in hepatocellular carcinoma progression. Front Oncol 2023; 13:1224138. [PMID: 37546393 PMCID: PMC10403753 DOI: 10.3389/fonc.2023.1224138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to multifocal development and distant metastasis resulting from late diagnosis. Consequently, new approaches to HCC diagnosis and treatment are required to reduce mortality rates. A large body of evidence suggests that non-coding RNAs (ncRNAs) are important in cancer initiation and progression. Cancer cells release many of these ncRNAs into the blood or urine, enabling their use as a diagnostic tool. Circular RNAs (CircRNAs) are as a members of the ncRNAs that regulate cancer cell expansion, migration, metastasis, and chemoresistance through different mechanisms such as the Wnt/β-catenin Signaling pathway. The Wnt/β-catenin pathway plays prominent roles in several biological processes including organogenesis, stem cell regeneration, and cell survival. Aberrant signaling of both pathways mentioned above could affect the progression and metastasis of many cancers, including HCC. Based on several studies investigated in the current review, circRNAs have an effect on HCC formation and progression by sponging miRNAs and RNA-binding proteins (RBPs) and regulating the Wnt/β-catenin signaling pathway. Therefore, circRNAs/miRNAs or RBPs/Wnt/β-catenin signaling pathway could be considered promising prognostic and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Hosseini
- Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Macvanin MT, Gluvic ZM, Zaric BL, Essack M, Gao X, Isenovic ER. New biomarkers: prospect for diagnosis and monitoring of thyroid disease. Front Endocrinol (Lausanne) 2023; 14:1218320. [PMID: 37547301 PMCID: PMC10401601 DOI: 10.3389/fendo.2023.1218320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
After the metabolic syndrome and its components, thyroid disorders represent the most common endocrine disorders, with increasing prevalence in the last two decades. Thyroid dysfunctions are distinguished by hyperthyroidism, hypothyroidism, or inflammation (thyroiditis) of the thyroid gland, in addition to the presence of thyroid nodules that can be benign or malignant. Thyroid cancer is typically detected via an ultrasound (US)-guided fine-needle aspiration biopsy (FNAB) and cytological examination of the specimen. This approach has significant limitations due to the small sample size and inability to characterize follicular lesions adequately. Due to the rapid advancement of high-throughput molecular biology techniques, it is now possible to identify new biomarkers for thyroid neoplasms that can supplement traditional imaging modalities in postoperative surveillance and aid in the preoperative cytology examination of indeterminate or follicular lesions. Here, we review current knowledge regarding biomarkers that have been reliable in detecting thyroid neoplasms, making them valuable tools for assessing the efficacy of surgical procedures or adjunctive treatment after surgery. We are particularly interested in providing an up-to-date and systematic review of emerging biomarkers, such as mRNA and non-coding RNAs, that can potentially detect thyroid neoplasms in clinical settings. We discuss evidence for miRNA, lncRNA and circRNA dysregulation in several thyroid neoplasms and assess their potential for use as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M. Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Du Q, Huang L, Guo W. LncRNA ARAP1-AS1 targets miR-516b-5p/PDE5A axis to facilitate the progression of thyroid cancer. Anticancer Drugs 2023; 34:735-746. [PMID: 36730555 DOI: 10.1097/cad.0000000000001438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thyroid cancer (TC) remains a prevalent public health concern. To further study the molecular mechanism of TC development, we explored the regulatory mechanism and function of lncRNA ARAP1-AS1 in TC progression. The verification of ARAP1-AS1, PDE5A and miR-516b-5p expression levels among the TC cell lines and tissues was fulfilled via RT-qPCR and western blot analyses. Cell Counting Kit-8 and colony formation experiments were executed to assess ARAP1-AS1's biological function in vitro. Western blotting was conducted to assess apoptosis through the expressions of apoptotic markers. A tumor xenograft experiment was conducted to evaluate whether ARAP1-AS1 affected TC tumor development in vivo . The interactions of miR-516b-5p with ARAP1-AS1 and PDE5A were explored through a dual-luciferase reporter and RNA Binding Protein Immunoprecipitation assays, as well as through Pearson's correlation analysis. ARAP1-AS1 and PDE5A were evidently upregulated in the TC cell lines and tissues whereas miR-516b-5p was poorly expressed. ARAP1-AS1 silencing in TC cells hampered cell proliferation, reduced their viability and boosted apoptosis. Moreover, it inhibited tumor growth in vivo . ARAP1-AS1 had been revealed to be correlated negatively to miR-516b-5p. Finally, we demonstrated that the miR-516b-5p inhibitor was capable of reversing ARAP1-AS1-knockdown's repressive effects on TC cell development by means of regulating PDE5A expression. ARAP1-AS1 partially facilitated TC cell development and survival through the modulation of miR-516b-5p/PDE5A axis. This contributes a novel biomarker and new perspectives for TC treatment.
Collapse
Affiliation(s)
- Qiuli Du
- Department of Thyroid and Breast Surgery
| | | | - Wei Guo
- Department of Endocrinology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
14
|
Taheriazam A, Bayanzadeh SD, Heydari Farahani M, Mojtabavi S, Zandieh MA, Gholami S, Heydargoy MH, Jamali Hondori M, Kangarloo Z, Behroozaghdam M, Khorrami R, Sheikh Beig Goharrizi MA, Salimimoghadam S, Rashidi M, Hushmandi K, Entezari M, Hashemi M. Non-coding RNA-based therapeutics in cancer therapy: An emphasis on Wnt/β-catenin control. Eur J Pharmacol 2023; 951:175781. [PMID: 37179043 DOI: 10.1016/j.ejphar.2023.175781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Non-coding RNA transcripts are RNA molecules that have mainly regulatory functions and they do not encode proteins. microRNAs (miRNAs), lncRNAs and circRNAs are major types of this family and these epigenetic factors participate in disease pathogenesis, especially cancer that their abnormal expression may lead to cancer progression. miRNAs and lncRNAs possess a linear structure, whereas circRNAs possess ring structures and high stability. Wnt/β-catenin is an important factor in cancer with oncogenic function and it can increase growth, invasion and therapy resistance in tumors. Wnt upregulation occurs upon transfer of β-catenin to nucleus. Interaction of ncRNAs with Wnt/β-catenin signaling can determine tumorigenesis. Wnt upregulation is observed in cancers and miRNAs are able to bind to 3'-UTR of Wnt to reduce its level. LncRNAs can directly/indirectly regulate Wnt and in indirect manner, lncRNAs sponge miRNAs. CircRNAs are new emerging regulators of Wnt and by its stimulation, they increase tumor progression. CircRNA/miRNA axis can affect Wnt and carcinogenesis. Overall, interaction of ncRNAs with Wnt can determine proliferation rate, migration ability and therapy response of cancers. Furthermore, ncRNA/Wnt/β-catenin axis can be utilized as biomarker in cancer and for prognostic applications in patients.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e Kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Heydargoy
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Microbiology, Shahr-e Ghods Branch, Azad Islamic University, Tehran, Iran
| | - Maryam Jamali Hondori
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Kangarloo
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
MicroRNA-370 as a negative regulator of signaling pathways in tumor cells. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
16
|
Ye L, Wang J, Yi K, Wang F, Wang J, Wu H, Yang H, Yang Z, Zhang Q. Recent findings on miR‑370 expression, regulation and functions in cancer (Review). Oncol Rep 2023; 49:79. [PMID: 36866765 PMCID: PMC10018457 DOI: 10.3892/or.2023.8516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2023] [Indexed: 03/04/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are a group of small non‑coding RNAs that serve as post‑transcriptional gene modulators. miRNAs have been demonstrated to serve a pivotal role in carcinogenesis and the dysregulated expression of miRNAs is a well‑understood characteristic of cancer. In recent years, miR‑370 has been established as a key miRNA in various cancers. The expression of miR‑370 is dysregulated in various types of cancer and varies markedly across different tumor types. miR‑370 can regulate multiple biological processes, including cell proliferation, apoptosis, migration, invasion, as well as cell cycle progression and cell stemness. Moreover, it has been reported that miR‑370 affects the response of tumor cells to anticancer treatments. Additionally, the expression of miR‑370 is modulated by multiple factors. The present review summarizes the role and mechanism of miR‑370 in tumors, and demonstrates its potential as a molecular marker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Lingling Ye
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211000, P.R. China
| | - Jinqiu Wang
- Department of Oncology, Dafeng People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Kui Yi
- Department of General Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211000, P.R. China
| | - Fen Wang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211000, P.R. China
| | - Jinyan Wang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211000, P.R. China
| | - Hao Wu
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211000, P.R. China
| | - Hui Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211000, P.R. China
| | - Zhaohui Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211000, P.R. China
| | - Quan'an Zhang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211000, P.R. China
| |
Collapse
|
17
|
Zhou J, Qiu C, Tang X, Wan R, Wu Z, Zou D, Wang W, Luo Y, Liu T. Investigation of the clinicopathological and prognostic role of circMTO1 in multiple cancers. Expert Rev Mol Diagn 2023; 23:159-170. [PMID: 36734331 DOI: 10.1080/14737159.2023.2177102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To observe the prognostic value of circular RNA mitochondrial tRNA translation optimization 1 (circMTO1) in human tumors. METHODS We searched multiple databases for related reports published before November 01, 2021. The OR/HR and 95% CI were extracted to explore the correlation between circMTO1 expression and clinicopathological features in various cancers. The stability of the results from meta-analysis was estimated via sensitivity analysis. We adopted Begg's funnel plots and Egger's test to appraise the potential bias of publication. Subgroup analysis for overall survival (OS) were also performed. RESULTS 11 studies containing 1383 patients and 4 articles including 536 patients were enrolled. We found that low expression status of circMTO1 was significantly related to big tumor size (OR=2.11, 95% CI: 1.26-3.56, P<0.05), poor differentiation tumors (OR=2.09, 95% CI: 1.46-2.98, P<0.05), OS (HR=2.02, 95% CI: 1.63-2.50, P<0.05), disease-free survival (DFS) (HR=1.83, 95% CI: 1.27-2.56, P<0.05) of cancers. Subgroup analysis indicated that low expression status of circMTO1 was correlated with OS, regardless of analysis method, cut-off value, case number and NOS score. CONCLUSIONS The low expression of circMTO1 may predict big tumor size, poor differentiation and worse outcome of cancer, presenting that circMTO1 may be a useful biomarker for prognosis of tumors.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou No. 1 People's Hospital, Xiangnan University, Chenzhou, Hunan, China
| | - Rongjun Wan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Respiratory Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospita, Changsha, Hunan, China
| | - Ziyi Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dazhi Zou
- Department of Spine Surgery, Longhui People's Hospital, Shaoyang, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yingquan Luo
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Panchal NK, Evan Prince S. The NEK family of serine/threonine kinases as a biomarker for cancer. Clin Exp Med 2023; 23:17-30. [PMID: 35037094 DOI: 10.1007/s10238-021-00782-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Cancer is defined by unrestrained cell proliferation due to impaired protein activity. Cell cycle-related proteins are likely to play a role in human cancers, including proliferation, invasion, and therapeutic resistance. The serine/threonine NEK kinases are the part of Never In Mitosis A Kinases (NIMA) family, which are less explored kinase family involved in the cell cycle, checkpoint regulation, and cilia biology. They comprise of eleven members, namely NEK1, NEK2, NEK3, NEK4, NEK5, NEK6, NEK7, NEK8, NEK9, NEK10, and NEK11, located in different cellular regions. Recent research has shown the role of NEK family in various cancers by perversely expressing. Therefore, this review aimed to provide a systematic account of our understanding of NEK kinases; structural details; and its role in the cell cycle regulation. Furthermore, we have comprehensively reviewed the NEK kinases in terms of their expression and regulation in different cancers. Lastly, we have emphasized on some of the potential NEK inhibitors reported so far.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
19
|
Panchal NK, Mohanty S, Prince SE. NIMA-related kinase-6 (NEK6) as an executable target in cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:66-77. [PMID: 36074296 DOI: 10.1007/s12094-022-02926-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 01/07/2023]
Abstract
Cancer is a disease that develops when cells begin to divide uncontrollably and spreads to other parts of the body. Proliferation and invasion of cancerous cells are generally known to be influenced by cell cycle-related proteins in human malignancies. Therefore, in this review, we have emphasized on the serine/threonine kinase named NEK6. NEK6 is been deliberated to play a critical role in mitosis progression that includes mitotic spindle formation, metaphase to anaphase transition, and centrosome separation. Moreover, it has a mechanistic role in DNA repair and can cause apoptosis when inhibited. Past studies have connected NEK6 protein expression to cancer cell senescence. Besides, there are reports relating NEK6 to a range of malignancies including breast, lung, ovarian, prostate, kidney, liver, and others. Given its significance, this review attempts to describe the structural and functional aspects of NEK6 in various cellular processes, as well as how it is linked to different forms of cancer. Lastly, we have accentuated, on some of the plausible inhibitors that have been explored against NEK6 overexpression.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Mohanty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
20
|
Hua T, Luo Y. Circular RNA PVT1 promotes progression of thyroid cancer by competitively binding miR-384. Exp Ther Med 2022; 24:629. [PMID: 36185502 PMCID: PMC9520360 DOI: 10.3892/etm.2022.11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
Plasmacytoma variant translocation 1 circular RNA (circPVT1) is involved in the initiation and development of several types of cancer. However, the underlying molecular role of circPVT1 in tumorigenesis of thyroid cancer remains to be elucidated. In the present study, relative expression of circPVT1 was markedly upregulated in thyroid cancer compared with adjacent normal tissue. circPVT1 expression was associated with clinical stage and lymph node metastasis. Furthermore, Cell Counting Kit-8, colony formation and Transwell chamber assays demonstrated that knockdown of circPVT1 decreased proliferation, migration and invasion of thyroid cancer cells in vitro. Moreover, circPVT1 directly interacted with microRNA (miR)-384, as shown by bioinformatics prediction and dual luciferase and RNA pull-down assay. miR-384 inhibition partially reversed the circPVT1 knockdown-mediated inhibitory effect on proliferation, migration and invasion of thyroid cancer cells. In summary, these findings demonstrated that circPVT1 may be a potential therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Tebo Hua
- Department of Thyroid Breast Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yong Luo
- Department of Thyroid Breast Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
21
|
A Review and In Silico Analysis of Tissue and Exosomal Circular RNAs: Opportunities and Challenges in Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14194728. [PMID: 36230649 PMCID: PMC9564022 DOI: 10.3390/cancers14194728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Thyroid cancer is the most common endocrine neoplasm. Recently, knowledge of the molecular genetic changes of thyroid cancer has dramatically improved. Understanding the roles of these molecular changes in thyroid cancer tumorigenesis and progression is essential in developing a successful treatment strategy and improving disease outcomes. As a family of non-coding RNAs, circular RNAs (circRNAs) have been involved in several aspects of the physiological and pathological processes of the cells. The roles of circRNAs in cancer development and progress are evident. In the current review, we aimed to explore the clinical potential of circRNAs as potential diagnostic, prognostic, and therapeutic targets in thyroid cancer. Furthermore, screening the genome-wide circRNAs and performing functional enrichment analyses for all associated dysregulated circRNAs in thyroid cancer have been done. Given the unique advantages circRNAs have, such as superior stability, higher abundance, and presence in different body fluids, this family of non-coding RNAs could be promising diagnostic and prognostic biomarkers and potential therapeutic targets for thyroid cancer. Abstract Thyroid cancer (TC) is the most common endocrine tumor. The genetic and epigenetic molecular alterations of TC have become more evident in recent years. However, a deeper understanding of the roles these molecular changes play in TC tumorigenesis and progression is essential in developing a successful treatment strategy and improving patients’ prognoses. Circular RNAs (circRNAs), a family of non-coding RNAs, have been implicated in several aspects of carcinogenesis in multiple cancers, including TC. In the current review, we aimed to explore the clinical potential of circRNAs as putative diagnostic, prognostic, and therapeutic targets in TC. The current analyses, including genome-wide circRNA screening and functional enrichment for all deregulated circRNA expression signatures, show that circRNAs display atypical contributions, such as sponging for microRNAs, regulating transcription and translation processes, and decoying for proteins. Given their exceptional clinical advantages, such as higher stability, wider abundance, and occurrence in several body fluids, circRNAs are promising prognostic and theranostic biomarkers for TC.
Collapse
|
22
|
Zheng X, Zhong T, Yu F, Duan J, Tang Y, Liu Y, Li M, Sun D, Yin D. Deficiency of a novel lncRNA-HRAT protects against myocardial ischemia reperfusion injury by targeting miR-370-3p/RNF41 pathway. Front Cardiovasc Med 2022; 9:951463. [PMID: 36172578 PMCID: PMC9510651 DOI: 10.3389/fcvm.2022.951463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) contribute to myocardial ischemia/reperfusion (I/R) injury. However, the underlying mechanisms by which lncRNAs modulate myocardial I/R injury have not been thoroughly examined and require further investigation. A novel lncRNA named lncRNA-hypoxia/reoxygenation (H/R)-associated transcript (lncRNA-HRAT) was identified by RNA sequencing analysis. The expression of lncRNA-HRAT exhibited a significant increase in the I/R mice hearts and cardiomyocytes treated with H/R. LncRNA-HRAT overexpression facilitates H/R-induced cardiomyocyte apoptosis. Furthermore, cardiomyocyte-specific deficiency of lncRNA-HRAT in vivo after I/R decreased creatine kinase (CK) release in the serum, reduced myocardial infarct area, and improved cardiac dysfunction. Molecular mechanistic investigations revealed that lncRNA-HRAT serves as a competing endogenous RNA (ceRNA) of miR-370-3p, thus upregulating the expression of ring finger protein 41 (RNF41), thereby aggravating apoptosis in cardiomyocytes induced by H/R. This study revealed that the lncRNA-HRAT/miR-370-3p/RNF41 pathway regulates cardiomyocyte apoptosis and myocardial injury. These findings suggest that targeted inhibition of lncRNA-HRAT may offer a novel therapeutic method to prevent myocardial I/R injury.
Collapse
Affiliation(s)
- Xinbin Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
| | - Ting Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Fan Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jingsi Duan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yao Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yaxiu Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Mingrui Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Deqiang Sun
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Deling Yin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
- *Correspondence: Deling Yin,
| |
Collapse
|
23
|
Zhou JL, Deng S, Fang HS, Peng H, Hu QJ. CircSPI1_005 ameliorates osteoarthritis by sponging miR-370-3p to regulate the expression of MAP3K9. Int Immunopharmacol 2022; 110:109064. [DOI: 10.1016/j.intimp.2022.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
|
24
|
Li Y, Lin D, Chen M, Huang P, Liu Y, Lin X. Glycyrrhizic Acid’s Effect on the Proliferation and Apoptosis of Thyroid Cancer Cell SW579 via LncRNA RP11-385J1.2-Targeted miR-370-3p. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses glycyrrhizic acid’s effect on thyroid cancer cell SW579. Thyroid cancer cell lines were selected to detect RP11-385J1.2 and miR-370-3p level by QRT-PCR. Cells were treated with glycyrrhizic acid followed by measuring cell apoptosis by flow cytometry and cell
proliferation by MTT assay and protein expression by western blot. Under glycyrrhizic acid (40 μM) treatment, the proliferation of SW579 cells was weakened and apoptosis increased significantly (P < 0.05) along with reduced RP11-385J1.2 and increased miR-370-3p expression
compared to untreated (P < 0.05). miR-370-3p has a targeting relationship with RP11-385J1.2. RP11-385J1.2 overexpression significantly reduced miR-370-3p, which can reverse glycyrrhizic acid’s effect on inhibiting cell proliferation and promoting apoptosis. RP11-385J1.2 overexpression
reversed the effect of glycyrrhizin on cell proliferation and apoptosis, and inhibition of miR-370-3p reversed si-RP11-385J1.2’s effect on inhibiting cell proliferation and promoting apoptosis (P <0.05). In conclusion, glycyrrhizic acid targets miR-370-3p through lncRNA RP11-385J1.2
to inhibit thyroid cancer cell proliferation. It participates in the development of tumor cells, and lncRNA RP11-385J1.2 and miR-370-3p is negatively correlated, providing new experimental data and evidence for treating thyroid cancer.
Collapse
Affiliation(s)
- Yanyan Li
- Department of General Medicine, The First People’s Hospital of Wenling City, Zhejiang Province, Wenling, Zhejiang, 317500, China
| | - Dan Lin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Yueyang, Hunan, 414000, China
| | - Meng Chen
- Department of General Medicine, The First People’s Hospital of Wenling City, Zhejiang Province, Wenling, Zhejiang, 317500, China
| | - Peifeng Huang
- Department of General Medicine, The First People’s Hospital of Wenling City, Zhejiang Province, Wenling, Zhejiang, 317500, China
| | - Ying Liu
- Department of General Medicine, The First People’s Hospital of Wenling City, Zhejiang Province, Wenling, Zhejiang, 317500, China
| | - Xiaoyang Lin
- Department of General Medicine, The First People’s Hospital of Wenling City, Zhejiang Province, Wenling, Zhejiang, 317500, China
| |
Collapse
|
25
|
Zhang Y, Xing Z, Liu T, Tang M, Mi L, Zhu J, Wu W, Wei T. Targeted therapy and drug resistance in thyroid cancer. Eur J Med Chem 2022; 238:114500. [DOI: 10.1016/j.ejmech.2022.114500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022]
|
26
|
Yao X, Zhang Q. Function and Clinical Significance of Circular RNAs in Thyroid Cancer. Front Mol Biosci 2022; 9:925389. [PMID: 35936780 PMCID: PMC9353217 DOI: 10.3389/fmolb.2022.925389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/22/2022] [Indexed: 12/28/2022] Open
Abstract
Thyroid cancer (TC) is the leading cause and mortality of endocrine malignancies worldwide. Tumourigenesis involves multiple molecules including circular RNAs (circRNAs). circRNAs with covalently closed single-stranded structures have been identified as a type of regulatory RNA because of their high stability, abundance, and tissue/developmental stage-specific expression. Accumulating evidence has demonstrated that various circRNAs are aberrantly expressed in thyroid tissues, cells, exosomes, and body fluids in patients with TC. CircRNAs have been identified as either oncogenic or tumour suppressor roles in regulating tumourigenesis, tumour metabolism, metastasis, ferroptosis, and chemoradiation resistance in TC. Importantly, circRNAs exert pivotal effects on TC through various mechanisms, including acting as miRNA sponges or decoys, interacting with RNA-binding proteins, and translating functional peptides. Recent studies have suggested that many different circRNAs are associated with certain clinicopathological features, implying that the altered expression of circRNAs may be characteristic of TC. The purpose of this review is to provide an overview of recent advances on the dysregulation, functions, molecular mechanisms and potential clinical applications of circRNAs in TC. This review also aimes to improve our understanding of the functions of circRNAs in the initiation and progression of cancer, and to discuss the future perspectives on strategies targeting circRNAs in TC.
Collapse
|
27
|
Ma P, Han J. Overexpression of miR-100-5p inhibits papillary thyroid cancer progression via targeting FZD8. Open Med (Wars) 2022; 17:1172-1182. [PMID: 35859793 PMCID: PMC9263890 DOI: 10.1515/med-2022-0490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most prevalent type of TC worldwide; however, its pathological process remains unclear at the molecular level. In the current study, we analyzed the microarray data of PTC tissues and non-neoplastic thyroid tissues, and confirmed miR-100-5p as a downregulated miRNA in PTC. Via bioinformatic approach, western blotting, and TOP/FOP-flash assay, miR-100-5p was observed to be involved in the inactivation of Wnt/β-catenin signaling in TPC-1 and KTC-1. Frizzled Class Receptor 8 (FZD8), the coupled receptor for canonical Wnt/β-catenin signaling, was verified to be targeted and inhibited by miR-100-5p in TPC-1 and KTC-1. In the function assay, miR-100-5p mimic repressed PTC cell proliferation and induced cell apoptosis of TPC-1 and KTC-1; meanwhile, transfection of full-length FZD8 attenuated the effect of miR-100-5p mimic. Moreover, in the collected samples, miR-100-5p was lowly expressed in PTC tissues compared with normal tissues, especially in those of advanced stage (Stage III/IV vs Stage I/II), while FZD8 was highly expressed in PTC tissues, which in PTC tissues was inversely correlated to miR-100-5p. Thus, we suggest that overexpression of miR-100-5p inhibits the development of PTC by targeting FZD8.
Collapse
Affiliation(s)
- Peng Ma
- Department of Thyroid Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi Province, P.R. China
| | - Jianli Han
- Department of Thyroid Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 Longcheng Street, Taiyuan 030032, Shanxi Province, P.R. China
| |
Collapse
|
28
|
Zhang P, Wang W, Li M. Role and mechanism of circular RNA circ_0050486 in regulating oxidized low-density lipoprotein-induced injury in endothelial cells. Clin Hemorheol Microcirc 2022; 82:107-124. [PMID: 35723090 DOI: 10.3233/ch-211259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dysfunction of endothelial cells in the arterial vasculature is an essential contributor to the pathogenesis of atherosclerosis. Circular RNAs (circRNAs) exert important regulatory functions in endothelial cell dysfunction. Here, we explored the precise role and mechanism of circ_0050486 in regulating endothelial cell injury induced by oxidized low-density lipoprotein (ox-LDL). METHODS Circ_0050486, microRNA (miR)-182-5p and myeloid differentiation primary response gene 88 (MyD88) were quantified by quantitative real-time PCR or western blot. Cell viability, proliferation and apoptosis were examined by MTS, 5-Ethynyl-2'-Deoxyuridine (EdU), and flow cytometry assays, respectively. Direct relationship between miR-182-5p and circ_0050486 or MYD88 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS Circ_0050486 was upregulated in atherosclerosis serum and ox-LDL-treated human aortic endothelial cells (HAECs). Silencing of circ_0050486 suppressed HAEC injury induced by ox-LDL. Mechanistically, circ_0050486 targeted miR-182-5p, and the effects of circ_0050486 silencing were partially due to the upregulation of miR-182-5p. MYD88 was a direct target of miR-182-5p, and miR-182-5p-mediated inhibition of MYD88 attenuated ox-LDL-evoked HAEC injury. Circ_0050486 bound to miR-182-5p to regulate MYD88 expression. Additionally, the NF-κB signaling pathway was involved in the regulation of circ_0050486/miR-182-5p/MYD88 axis in ox-LDL-treated HAECs. CONCLUSION Our study identifies the functional role of circ_0050486 in ox-LDL-induced endogenous cell injury and establishes a mechanism of circ_0050486 function by affecting MYD88 through competitively binding to shared miR-182-5p.
Collapse
Affiliation(s)
- Pu Zhang
- Second Department of Cardiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| | - Weiping Wang
- Second Department of Cardiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| | - Meilan Li
- Second Department of Cardiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| |
Collapse
|
29
|
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer 2022; 21:108. [PMID: 35513849 PMCID: PMC9074313 DOI: 10.1186/s12943-022-01582-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023] Open
Abstract
CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.
Collapse
Affiliation(s)
- Chen Xue
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Ganglei Li
- grid.13402.340000 0004 1759 700XDepartment of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Qiuxian Zheng
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Xinyu Gu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Zhengyi Bao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Juan Lu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| |
Collapse
|
30
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
31
|
Shifman BM, Platonova NM, Vasilyev EV, Abdulkhabirova FM, Kachko VA. Circular RNAs and thyroid cancer: closed molecules, open possibilities. Crit Rev Oncol Hematol 2022; 173:103662. [PMID: 35341987 DOI: 10.1016/j.critrevonc.2022.103662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Thyroid neoplasms requiring differential diagnosis between thyroid cancer and benign tumors can be detected in more than half of the healthy population. A generally accepted method that allows assessing the risk of malignant potential and determining the indications for surgical treatment of thyroid tumor is a fine-needle aspiration biopsy followed by a cytological examination. Nevertheless, in patients with indeterminate categories of cytological conclusions according to Bethesda system, the positive predictive value of the cytology result is significantly lower than desired and often leads to unjustified surgical treatment. In this regard, the search for alternative diagnostic solutions continues. Circular RNAs are a group of non-coding RNAs distinguished by a closed structure formed by covalent bonding of the nucleotide chain ends. Recent studies allow us to conclude that many different circular RNAs are involved in processes mediating oncogenesis in the thyroid gland, and their altered expression in tissue, blood, and exosomes of plasma may be a characteristic sign of thyroid cancer and certain clinicopathological features of its course. The purpose of this review is to analyze the accumulated data on the association of various circular RNAs with thyroid cancer and to discuss possible ways to improve the diagnosis and treatment of the disease based on the assessment of the expression of these molecules.
Collapse
|
32
|
Zhang Z, Xia F, Yao L, Jiang B, Li X. circSSU72 Promotes Cell Proliferation, Migration and Invasion of Papillary Thyroid Carcinoma Cells by Targeting miR-451a/S1PR2 Axis. Front Cell Dev Biol 2022; 10:817028. [PMID: 35372340 PMCID: PMC8967131 DOI: 10.3389/fcell.2022.817028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Thyroid cancer is the most common endocrine malignancy with Papillary Thyroid Carcinoma (PTC) as the most common pathological type. Due to low mortality but a high incidence, PTC still causes a relatively heavy burden on financial costs, human health, and quality of life. Emerging researches have indicated that circular RNAs (circRNAs) play a significant regulatory role in various cancers, including PTC. However, the functions and mechanisms of circRNAs derived from SSU72 remain unknown.Method: The expression level of circRNAs derived from the exons of SSU72, miR-361–3p, miR-451a, and S1PR2 was evaluated by qRT-PCR assay or western blot assay. The interactions between circSSU72 (hsa_circ_0009294), miR-451a, and S1PR2 were verified by dual-luciferase reporter assay. Effects of circSSU72, miR-451a, and S1PR2 on cell proliferation, migration, and invasion were confirmed by colony formation assay, cell counting kit-8 (CCK-8), wound healing assay, and Transwell assays in vitro.Results: circSSU72 was upregulated in PTC; circSSU72 knockdown inhibited PTC cell proliferation, migration, and invasion. In addition, circSSU72 could negatively regulate miR-451a by functioning as a sponge. circSSU72 promoted PTC cell proliferation, migration, and invasion by targeting miR-451a in vitro. We further found that miR-451a inhibited PTC cell proliferation, migration, and invasion by regulating S1PR2. Overall, the circSSU72/miR-451a/S1PR2 axis might influence PTC cell proliferation, migration, and invasion.Conclusions: Overall, circSSU72 (hsa_circ_0009294)/miR-451a/S1PR2 axis may promote cell proliferation, migration, and invasion in PTC. Thus, circSSU72 may serve as a potential biomarker and therapeutic target for PTC.
Collapse
|
33
|
CircTRRAP Knockdown Has Cardioprotective Function in Cardiomyocytes via the Signal Regulation of miR-370-3p/PAWR Axis. Cardiovasc Ther 2022; 2022:7125602. [PMID: 35251305 PMCID: PMC8863495 DOI: 10.1155/2022/7125602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022] Open
Abstract
Background Circular RNA Transformation/Transcription Domain Associated Protein (circTRRAP, hsa_circ_0081241) was abnormally upregulated in acute myocardial infarction (AMI) patients. However, its biological role and functional mechanism in AMI remain to be researched. Methods Human cardiomyocyte AC16 was exposed to hypoxia to induce cell injury. Cell viability was detected through Cell Counting Kit-8. CircTRRAP, microRNA-370-3p (miR-370-3p), and Pro-Apoptotic WT1 Regulator (PAWR) levels were assayed by reverse transcription-quantitative polymerase chain reaction. Cell proliferation analysis was performed via 5-ethynyl-2′-deoxyuridine (EdU) assay. Cell apoptosis was assessed using flow cytometry and caspase-3 activity assay. The protein levels were measured through western blot. Enzyme-linked immunosorbent assay was used to examine the release of inflammatory cytokines. Oxidative stress was assessed by the commercial kits. Dual-luciferase reporter assay, RNA immunoprecipitation, and RNA pull-down assays were performed for the validation of target interaction. Results CircTRRAP was highly expressed following hypoxia treatment in AC16 cells. Downregulation of circTRRAP promoted cell growth but inhibited apoptosis, inflammation, and oxidative stress in hypoxic cells. CircTRRAP could target miR-370-3p, and the regulatory effects of circTRRAP on the hypoxic cells were associated with the sponge function of miR-370-3p. PAWR served as the target for miR-370-3p, and it was regulated by circTRRAP/miR-370-3p axis. The protective role of miR-370-3p was achieved by downregulating the PAWR expression in hypoxia-treated AC16 cells. Conclusion These findings demonstrated that silence of circTRRAP exerted the protection against the hypoxia-induced damages in cardiomyocytes through regulating the miR-370-3p and PAWR levels.
Collapse
|
34
|
Liu Y, Khan S, Li L, ten Hagen TL, Falahati M. Molecular mechanisms of thyroid cancer: A competing endogenous RNA (ceRNA) point of view. Biomed Pharmacother 2022; 146:112251. [DOI: 10.1016/j.biopha.2021.112251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022] Open
|
35
|
Chen H, Li Q, Yi R, Li B, Xiong D, Peng H. CircRNA casein kinase 1 gamma 1 (circ-CSNK1G1) plays carcinogenic effects in thyroid cancer by acting as miR-149-5p sponge and relieving the suppression of miR-149-5p on mitogen-activated protein kinase 1 (MAPK1). J Clin Lab Anal 2022; 36:e24188. [PMID: 35023214 PMCID: PMC8841138 DOI: 10.1002/jcla.24188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The initiation and development of thyroid cancer may be associated with the deregulation of circular RNAs (circRNAs). The purpose of this work was to explore the role of circRNA casein kinase 1 gamma 1 (circ-CSNK1G1) in thyroid cancer. METHODS The expression of circ-CSNK1G1, miR-149-5p, and mitogen-activated protein kinase 1 (MAPK1) was concluded using quantitative real-time PCR (qPCR), and the expression of MAPK1 protein was detected by Western blot assay. Cell viability was monitored by CCK-8 assay. Cell proliferation was determined by colony formation assay and EdU assay. Cell apoptosis and cycle were checked by flow cytometry assay. Cell invasion was determined by transwell assay. The predicted binding relationship between miR-149-5p and circ-CSNK1G1 or MAPK1 was verified by dual-luciferase reporter assay. The role of circ-CSNK1G1 in vivo was determined by establishing animal models. RESULTS The present work discovered the upregulation of circ-CSNK1G1 in tumor tissues of thyroid cancer. In function, circ-CSNK1G1 knockdown inhibited proliferation, survival, and invasion in cancer cells, and tumor growth in mouse models. MiR-149-5p was a target of circ-CSNK1G1, and the anti-tumor effects of circ-CSNK1G1 knockdown were abolished by miR-149-5p downregulation. In addition, miR-149-5p directly targeted MAPK1, and miR-149-5p restoration-inhibited cell proliferation and invasion were recovered by MAPK1 overexpression. CONCLUSION Circ-CSNK1G1 acted as miR-149-5p to relieve the inhibition of miR-149-5p on MAPK1, thus promoting the malignant development of thyroid cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| | - Qin Li
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| | - Rong Yi
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| | - Baiyun Li
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| | - Dongling Xiong
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| | - Hui Peng
- Department of Endocrine-metabolic, Yichun People's Hospital, Yichun, China
| |
Collapse
|
36
|
Wang X, Lv J, He B, Zhou D. CircFBXW8 Acts an Oncogenic Role in the Malignant Progression of Non-small Cell Lung Carcinoma by miR-370-3p-Dependent Regulation of TRIM44. Biochem Genet 2022; 60:1313-1332. [PMID: 34988777 DOI: 10.1007/s10528-021-10177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung carcinoma (NSCLC) is an aggressive malignant tumor. Growing evidences have revealed that circular RNA (circRNA) is involved in NSCLC progression. This study aims to investigate the role of circular RNA F-box and WD repeat domain containing 8 (circFBXW8) in NSCLC progression and the underlying mechanism. The expression of circFBXW8, microRNA-370-3p (miR-370-3p) and tripartite motif containing 44 (TRIM44) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was detected by western blot analysis or immunohistochemistry assay. Additionally, cell viability, colony-forming ability, proliferation and apoptosis were investigated by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide, cell colony formation, 5-Ethynyl-29-deoxyuridine and flow cytometry analysis assays, respectively. Cell migratory and invasive abilities were examined by wound-healing and transwell assays. The regulatory relationship between miR-370-3p and circFBXW8 or TRIM44 was identified by dual-luciferase reporter and RNA pull-down assays. Furthermore, xenograft experiment was employed to explain the effect of circFBXW8 silencing on tumor formation. CircFBXW8 and TRIM44 expression were upregulated, while miR-370-3p was downregulated in NSCLC tissues, cells and the exosomes from NSCLC cells compared with respective controls. CircFBXW8 depletion repressed NSCLC cell proliferation, migration and invasion, but promoted cell apoptosis. CircFBXW8 acted as a sponge of miR-370-3p and regulated NSCLC cell malignancy by binding to miR-370-3p. Additionally, miR-370-3p repressed NSCLC cell processes by regulating TRIM44. CircFBXW8 knockdown inhibited tumor formation in vivo. Further, circFBXW8 secretion was mediated by exosomes. CircFBXW8 modulated NSCLC progression by increasing TRIM44 expression through sponging miR-370-3p, which provided a new direction for studying the therapy of NSCLC.
Collapse
Affiliation(s)
- Xia Wang
- Second Department of Oncology, Beibei Traditional Chinese Medical Hospital, No. 93 Beixia Road, Beibei District, Chongqing, 400700, People's Republic of China
| | - Jian Lv
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Bin He
- Second Department of Oncology, Beibei Traditional Chinese Medical Hospital, No. 93 Beixia Road, Beibei District, Chongqing, 400700, People's Republic of China
| | - Deqi Zhou
- Second Department of Oncology, Beibei Traditional Chinese Medical Hospital, No. 93 Beixia Road, Beibei District, Chongqing, 400700, People's Republic of China.
| |
Collapse
|
37
|
Yang ZM, Liao B, Yang SS, Su T, Zhang J, Wang WM. Predictive Role of NEK6 in Prognosis and Immune Infiltration in Head and Neck Squamous Cell Carcinoma. Front Endocrinol (Lausanne) 2022; 13:943686. [PMID: 35898455 PMCID: PMC9309547 DOI: 10.3389/fendo.2022.943686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), as one of the common malignant tumors, seriously threatens human health. NEK6 (Never in Mitosis A (NIMA) related kinases 6), as a cyclin, promotes cancer cell proliferation and cancer progression. However, the prognostic value of NEK6 and its correlation with immune cell infiltration in HNSCC remain unclear. In this study, we comprehensively elucidated the prognostic role and potential function of NEK6 expression in HNSCC. The expression of NEK6 was significantly up-regulated by immunohistochemistry in HNSCC. Upregulation of NEK6 expression in gene expression studies predicts poor prognosis in HNSCC patients. The results of Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene set variation analysis indicated that NEK6 is mainly involved in extracellular matrix metabolism and EMT processes. The expression of NEK6 increased with the level of immune cell infiltration and the expression of various immune checkpoints. In conclusion, NEK6 may serve as a candidate prognostic predictor and may predict the response of HNSCC patients to immunotherapy.
Collapse
Affiliation(s)
- Zhi-Min Yang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
| | - Bing Liao
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
| | - Si-Si Yang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zhang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
| | - Wei-Ming Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- *Correspondence: Wei-Ming Wang,
| |
Collapse
|
38
|
TEAD4 overexpression suppresses thyroid cancer progression and metastasis in vitro by modulating Wnt signaling. J Biosci 2021. [DOI: 10.1007/s12038-021-00238-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
He Y, Qiu X. Suppression of lncRNA HOXA11-AS/miR-124 Axis Inhibits Glioma Progression. Cell Biochem Biophys 2021; 79:815-822. [PMID: 34117619 DOI: 10.1007/s12013-021-01007-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 01/17/2023]
Abstract
Our aim was to clarify the regulations of lncRNA HOXA11-AS (HOXA11-AS) played on the progression of glioma as well as to investigate the mechanisms by which HOXA11-AS modulated development of glioma. This study confirmed the regulations of miR-124 and HOXA11-AS on the progression of glioma. Here, HOXA11-AS was overexpressed and miR-124 was underexpressed in glioma. Expression of miR-124 was negatively related to that of HOXA11-AS. Silencing of HOXA11-AS suppressed cell proliferation, invasion, and promoted apoptosis in glioma cells in vitro. Moreover, inhibition of HOXA11-AS expression repressed glioma xenograft tumor growth. Expression of miR-124 was repressed by HOXA11-AS functioning as sponge. In addition, miR-124 knockdown partially abolished the inhibitory roles of HOXA11-AS downregulation in glioma cells. Conclusively, this study suggested that silencing of HOXA11-AS restrained proliferation, invasion, induced apoptosis of glioma cells, and repressed xenograft growth via modulating miR-124 expression and thus inhibited glioma progression.
Collapse
Affiliation(s)
- Yishan He
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinguang Qiu
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
40
|
Lin Q, Qi Q, Hou S, Chen Z, Jiang N, Zhang L, Lin C. Exosomal circular RNA hsa_circ_007293 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of papillary thyroid carcinoma cells through regulation of the microRNA-653-5p/paired box 6 axis. Bioengineered 2021; 12:10136-10149. [PMID: 34866540 PMCID: PMC8809932 DOI: 10.1080/21655979.2021.2000745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) or exosomes have been reported to exert key regulatory and/or communication functions in human cancer. Nevertheless, current literature on the effects of exosomal circRNAs on tumor invasion and metastasis in thyroid cancer is incomplete. The role of tumor-derived exosomes in driving in vitro papillary thyroid carcinoma (PTC) progression and metastasis requires further investigation. In our study, Exosomes were harvested from PTC patient serum and PTC cell culture medium. Gene expression analysis in PTC cell lines and exosomes was performed with quantitative reverse-transcription polymerase chain reaction. Transwell, wound healing, Western blot assays, and the cell counting kit-8 were applied for functional analysis. Dual-luciferase reporter assay was used to examine the interaction between hsa_circ_007293 (circ007293), microRNA (miR)-653-5p, and paired box 6 (PAX6). Results showed that circ007293 was enriched in exosomes derived from PTC patient serum and cell culture media. Moreover, circ007293 could enter PTC cells through exosomes, and exosomal circ007293 promoted PTC cell epithelial-mesenchymal transition, invasion, migration, and proliferation. circ007293 knockdown reversed the malignant phenotype of PTC cells in vitro. Additionally, circ007293 could competitively bind with miR-653-5p to regulate PAX6 expression. Notably, miR-653-5p overexpression or PAX6 inhibition suppressed the malignant effects of exosomal circ007293. These results evidenced that exosomal circ007293 induced EMT and augmented the invasive and migratory abilities of PTC cells via the miR-653-5p/PAX6 axis, suggesting that it may serve as a promising biomarker for cancer progression.
Collapse
Affiliation(s)
- Qiuyu Lin
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, China
| | - Qianle Qi
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, China
| | - Sen Hou
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, China
| | - Zhen Chen
- Chengdu Xinke Pharmaceutical Co., LTD, Chengdu, China
| | - Nan Jiang
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, China
| | - Laney Zhang
- College of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Chenghe Lin
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Mao Y, Huo Y, Li J, Zhao Y, Wang Y, Sun L, Kang Z. circRPS28 (hsa_circ_0049055) is a novel contributor for papillary thyroid carcinoma by regulating cell growth and motility via functioning as ceRNA for miR-345-5p to regulate frizzled family receptor 8 (FZD8). Endocr J 2021; 68:1267-1281. [PMID: 34108309 DOI: 10.1507/endocrj.ej21-0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Circular RNA 40S ribosomal protein S28 (circRPS28; hsa_circ_0049055) is upregulated in papillary thyroid carcinoma (PTC) patients. However, its role remained uncovered in the progression of PTC. Above all, expression of circRPS28 was determined in PTC samples by real-time quantitative PCR and circRPS28 was highly expressed in tumor tissues and cells. Besides, circRPS28 was predominantly distributed in the cytoplasm. Functional experiments were launched using colony formation assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 5-ethynyl-2-deoxyuridine (EdU) assay, transwell assays, scratch wound assay, and flow cytometry. As a result, blocking circRPS28 restrained PTC cell viability, EdU positive cell rate, colony formation number, wounding healing rate, and numbers of migration and invasion cells, accompanied with apoptosis rate promotion. These effects paralleled with low B-cell lymphoma (Bcl)-2 level and high Bcl-2-associated X protein (Bax), matrix metalloproteinase-2 (MMP2), and MMP9 levels, as analyzed by western blotting. Overexpressing microRNA (miR)-345-5p exerted similar roles to circRPS28 silencing. Notably, dual-luciferase reporter assay and RNA immunoprecipitation confirmed the target relationship between circRPS28 and miR-345-5p, miR-345-5p and frizzled family receptor 8 (FZD8). Downregulating miR-345-5p abrogated effects of circRPS28 blockage in PTC cells, and restoring FZD8 counteracted miR-345-5p roles, either. Furthermore, xenograft tumor model was established in mice, and exhausting circRPS28 delayed the growth of PTC cells in vivo by regulating miR-345-5p and FZD8. In conclusion, we demonstrated that blocking circRPS28 and/or promoting miR-345-5p suppressed PTC cell growth and motility via regulating FZD8. This study might suggest a novel circRPS28/miR-345-5p/FZD8 competing endogenous RNA pathway in PTC.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Movement/physiology
- Cell Proliferation/physiology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, Nude
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Yu Mao
- Department of Endocrinology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Yajie Huo
- Department of Endocrinology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Jing Li
- Department of Endocrinology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Yanli Zhao
- Department of Endocrinology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Yuan Wang
- Department of Endocrinology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Ling Sun
- Department of Endocrinology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Zhiqiang Kang
- Department of Endocrinology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| |
Collapse
|
42
|
Xiong H, Yu H, Jia G, Yu J, Su Y, Zhang J, Zhou J. circZFR regulates thyroid cancer progression by the miR-16/MAPK1 axis. ENVIRONMENTAL TOXICOLOGY 2021; 36:2236-2244. [PMID: 34323000 DOI: 10.1002/tox.23337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have identified the dysregulation of various circRNAs in many types of human cancers including thyroid cancer (TC). Circular RNA ZFR (circZFR) serves as an oncogenic circRNA in TC. However, the detailed molecular mechanism of circZFR in TC progression remains to be further explored. CircZFR and miR-16 expressions in TC cells were analyzed through qRT-PCR. Cell viability, invasion, and apoptosis were detected using CCK-8, transwell invasion assay, and flow cytometry analysis, respectively. The relationship between circZFR and miR-16 was explored using luciferase reporter assay, RNA pull-down assay, and qRT-PCR. The relationship between miR-16 and mitogen-activated protein kinase 1 (MAPK1) was explored using luciferase reporter assay and western blot analysis. Results showed that circZFR was upregulated and miR-16 was downregulated in TC cells. CircZFR knockdown inhibited the viability and invasion and induced apoptosis in TC cells. CircZFR inhibited miR-16 expression by sponging miR-16 and miR-16 repressed MAPK1 expression by targeting MAPK1. Moreover, circZFR positively regulated MAPK1 expression in TC cells by serving as a ceRNA of miR-16. Mechanistically, circZFR knockdown-induced inhibition of cell viability and invasion and promotion of apoptosis were overturned after miR-16 downregulation and promotion of MAPK1. Collectively, circZFR knockdown retarded TC progression by sponging miR-16 and modulating MAPK1 expression.
Collapse
Affiliation(s)
- Hui Xiong
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, China
- Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital, Nanyang, China
| | - Huimei Yu
- Department of Endocrinology, Huaiyin Hospital, Huai'an, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, China
| | - Jinsong Yu
- Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital, Nanyang, China
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, China
| | - Yang Su
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, China
| | - Jianliang Zhang
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, China
| | - Jin Zhou
- Department of Ultrasound Imaging, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|
43
|
Circ_0092367 Inhibits EMT and Gemcitabine Resistance in Pancreatic Cancer via Regulating the miR-1206/ESRP1 Axis. Genes (Basel) 2021; 12:genes12111701. [PMID: 34828307 PMCID: PMC8622583 DOI: 10.3390/genes12111701] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Gemcitabine is the first-line treatment for patients with pancreatic cancer (PC), yet most patients develop resistance to gemcitabine. Recent studies showed that circular RNAs (circRNAs) have important regulatory roles in PC progression and chemoresistance. In this study, the ability of circRNA circ_0092367 to enhance gemcitabine efficacy was tested and the underlying molecular mechanism of circ_0092367 was investigated. The expression levels of circ_0092367, miR-1206, and ESRP1 were measured using qRT-PCR experiments. The effects of circ_0092367, miR-1206, and ESRP1 on PC cell lines exposed to gemcitabine were examined by CCK-8 assays. We performed luciferase assays to determine the relationship between circ_0092367 and miR-1206 and between miR-1206 and ESRP1. We demonstrated that circ_0092367 was significantly downregulated in PC tissues and cell lines, and a high expression of circ_0092367 was associated with improved survival in patients with PC. Gain- and loss-of-function assays revealed that circ_0092367 inhibited epithelial-mesenchymal transition (EMT) phenotypes and sensitized PC cells to gemcitabine treatment in vitro and in vivo. Cytoplasmic circ_0092367 could directly repress the levels of miR-1206 and thus upregulate the expression of ESRP1, thereby inhibiting EMT and enhancing the sensitivity of PC cells to gemcitabine treatment. Our findings show that circ_0092367 plays a crucial role in sensitizing PC cells to gemcitabine by modulating the miR-1206/ESRP1 axis, highlighting its potential as a valuable therapeutic target in PC patients.
Collapse
|
44
|
Anuraga G, Wang WJ, Phan NN, An Ton NT, Ta HDK, Berenice Prayugo F, Minh Xuan DT, Ku SC, Wu YF, Andriani V, Athoillah M, Lee KH, Wang CY. Potential Prognostic Biomarkers of NIMA (Never in Mitosis, Gene A)-Related Kinase (NEK) Family Members in Breast Cancer. J Pers Med 2021; 11:1089. [PMID: 34834441 PMCID: PMC8625415 DOI: 10.3390/jpm11111089] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer remains the most common malignant cancer in women, with a staggering incidence of two million cases annually worldwide; therefore, it is crucial to explore novel biomarkers to assess the diagnosis and prognosis of breast cancer patients. NIMA-related kinase (NEK) protein kinase contains 11 family members named NEK1-NEK11, which were discovered from Aspergillus Nidulans; however, the role of NEK family genes for tumor development remains unclear and requires additional study. In the present study, we investigate the prognosis relationships of NEK family genes for breast cancer development, as well as the gene expression signature via the bioinformatics approach. The results of several integrative analyses revealed that most of the NEK family genes are overexpressed in breast cancer. Among these family genes, NEK2/6/8 overexpression had poor prognostic significance in distant metastasis-free survival (DMFS) in breast cancer patients. Meanwhile, NEK2/6 had the highest level of DNA methylation, and the functional enrichment analysis from MetaCore and Gene Set Enrichment Analysis (GSEA) suggested that NEK2 was associated with the cell cycle, G2M checkpoint, DNA repair, E2F, MYC, MTORC1, and interferon-related signaling. Moreover, Tumor Immune Estimation Resource (TIMER) results showed that the transcriptional levels of NEK2 were positively correlated with immune infiltration of B cells and CD4+ T Cell. Collectively, the current study indicated that NEK family genes, especially NEK2 which is involved in immune infiltration, and may serve as prognosis biomarkers for breast cancer progression.
Collapse
Affiliation(s)
- Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Wei-Jan Wang
- Research Center for Cancer Biology, Department of Biological Science and Technology, China Medical University, Taichung 40604, Taiwan;
| | - Nam Nhut Phan
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Nu Thuy An Ton
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Fidelia Berenice Prayugo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Su-Chi Ku
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| |
Collapse
|
45
|
Cao F, Wu X, Shan Y, Zhang B, Wang H, Liu H, Yu H. Circular RNA NEK6 contributes to the development of non-small-cell lung cancer by competitively binding with miR-382-5p to elevate BCAS2 expression at post-transcriptional level. BMC Pulm Med 2021; 21:325. [PMID: 34663267 PMCID: PMC8524891 DOI: 10.1186/s12890-021-01617-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) is the commonest type of lung cancer, which is one of most deadly cancers that possess high morbidity and mortality all over the world. The function of circular RNA NIMA related kinase 6 (circ_NEK6) in NSCLC is still unknown. Therefore, circ_NEK6 is worth studying in detail. Methods RT-qPCR and western blot assays were employed to detect gene expression. Colony formation, EdU, JC-1, flow cytometry, and Transwell assays were implemented to explore the function of circ_NEK6 on biological activities of NSCLC cells. Mechanism experiments were conducted to unveil the relationship among molecules. Results Circ_NEK6 expression was highly expressed in NSCLC tissues and cells. Functionally, the silencing of circ_NEK6 could effectively suppress NSCLC cell proliferation, migration and invasion. Circ_NEK6 sequestered miR-382-5p to fortify the expression of breast carcinoma amplified sequence 2 (BCAS2) in NSCLC. Besides, BCAS2 had tumor-promoting function in NSCLC. Furthermore, the effects of down-regulated circ_NEK6 on the malignant behaviors of NSCLC cells were totally recovered by miR-382-5p inhibition or BCAS2 overexpression. Conclusions Circ_NEK6 served as a competing endogenous RNA (ceRNA) of BCAS2 by absorbing miR-382-5p, which may be treated as a novel promising target for the treatment of NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01617-0.
Collapse
Affiliation(s)
- Fei Cao
- Department of Oncology, Wuxi Fifth People's Hospital, No. 1215 Guangrui Road, Wuxi, 214016, China
| | - Xiaoxia Wu
- Department of Oncology, Wuxi Fifth People's Hospital, No. 1215 Guangrui Road, Wuxi, 214016, China
| | - Yongfeng Shan
- Department of Oncology, Wuxi Fifth People's Hospital, No. 1215 Guangrui Road, Wuxi, 214016, China
| | - Binbin Zhang
- Department of Oncology, Wuxi Fifth People's Hospital, No. 1215 Guangrui Road, Wuxi, 214016, China
| | - Haonan Wang
- Department of Oncology, Wuxi Fifth People's Hospital, No. 1215 Guangrui Road, Wuxi, 214016, China
| | - Hui Liu
- Department of Oncology, Wuxi Fifth People's Hospital, No. 1215 Guangrui Road, Wuxi, 214016, China
| | - Hao Yu
- Department of Oncology, Wuxi Fifth People's Hospital, No. 1215 Guangrui Road, Wuxi, 214016, China.
| |
Collapse
|
46
|
Zhao A, Liu Y. Propofol suppresses colorectal cancer development by the circ-PABPN1/miR-638/SRSF1 axis. Anal Biochem 2021; 631:114354. [PMID: 34453920 DOI: 10.1016/j.ab.2021.114354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Propofol has recently been attracted increasing attention for its anti-tumor property in cancers, including colorectal cancer (CRC). However, the anti-tumor molecular determinants of propofol largely remain to be elucidated. METHODS The levels of circRNA poly(A) binding protein nuclear 1 (circ-PABPN1, hsa_circ_0031288), microRNA (miRNA)-638 and serine and arginine-rich factor 1 (SRSF1) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell viability, colony formation, apoptosis, invasion, and migration were detected by the Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, transwell, and wound-healing assays, respectively. Animal studies were used to evaluate the biological action of circ-PABPN1 in the propofol-mediated anti-CRC effect. Targeted relationships among circ-PABPN1, miR-638 and SRSF1 were validated by dual-luciferase reporter assays. RESULTS Our data showed the anti-tumor activity of propofol in CRC, as evidenced by the repression in cell viability, colony formation, invasion, migration and the promotion in cell apoptosis in vitro, as well as the suppression in tumor growth in vivo. Circ-PABPN1 was overexpressed in CRC tissues and cells, and propofol down-regulated circ-PABPN1 in a dose-dependent manner. Moreover, circ-PABPN1 was a functional effector of propofol in suppressing CRC development in vitro and in vivo. Circ-PABPN1 directly targeted miR-638, and SRSF1 was a direct target of miR-638. Propofol repressed CRC development in vitro by up-regulating miR-638 or down-regulating SRSF1. Furthermore, propofol regulated SRSF1 expression by the circ-PABPN1/miR-638 axis in CRC cells. CONCLUSION Our current findings identified the circ-PABPN1/miR-638/SRSF1 axis as a novel anti-tumor mechanism of propofol in CRC, providing a new rationale for developing propofol as a promising therapeutic agent for CRC.
Collapse
Affiliation(s)
- Aixiang Zhao
- Department of Anesthesiology, Dongying People's Hospital, Dongying City, Shandong Province, China
| | - Yingchun Liu
- Department of Anesthesiology, Dongying People's Hospital, Dongying City, Shandong Province, China.
| |
Collapse
|
47
|
Yuan Z, Zhang Y, Chen P, Liu S, Xin L, Liu C. Long non-coding RNA HLA complex group 18 promotes gastric cancer progression by targeting microRNA-370-3p expression. J Pharm Pharmacol 2021; 74:250-258. [PMID: 34618022 DOI: 10.1093/jpp/rgab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Our research was aimed at investigating the biological character of human leukocyte antigen complex group 18 (HCG18) on gastric cancer (GC) progression and its potential mechanisms. METHODS The expression characteristics and prognostic values of HCG18 in GC were evaluated through the GEPIA database and Kaplan-Meier plotter database. Quantitative real-time PCR and Western blot were used for quantification of messenger RNA expression, microRNA (miRNA) expression and protein expression. Cell proliferation, migration and invasion were detected by cell counting kit-8 assay, 5'-bromo-2'-deoxyuridine assay and Transwell assay, respectively. Dual-luciferase reporter gene assay and RNA immunoprecipitation assay were used for examination of the interactions among HCG18, miR-370-3p and epidermal growth factor receptor (EGFR) 3'UTR. KEY FINDINGS HCG18 expression was up-regulated in GC tissues, and its high expression was closely associated with increased tumour size, advanced TNM stage, poor differentiation of tumour tissues and unfavourable prognosis of patients with GC. Additionally, HCG18 overexpression promoted the proliferation, migration and invasion of GC cells, and its knockdown suppressed the malignant phenotypes of GC cells. Furthermore, HCG18 served as a miRNA sponge to repress miR-370-3p and indirectly up-regulated EGFR expression in GC cells. CONCLUSIONS HCG18 served as a tumour-promoting factor in GC progression by modulating the miR-370-3p/EGFR axis.
Collapse
Affiliation(s)
- Zhi Yuan
- Department of Internal Medicine, Xinglin Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yuan Zhang
- Department of Internal Medicine, Xinglin Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Peng Chen
- Department of Emergency, Xinglin Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuhong Liu
- Department of Radiotherapy, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Li Xin
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong, China
| | - Chengxia Liu
- Department of Pathology, Linyi Cancer Hospital, Linyi, Shandong, China
| |
Collapse
|
48
|
Smith AJ, Sompel KM, Elango A, Tennis MA. Non-Coding RNA and Frizzled Receptors in Cancer. Front Mol Biosci 2021; 8:712546. [PMID: 34671643 PMCID: PMC8521042 DOI: 10.3389/fmolb.2021.712546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Frizzled receptors have been long recognized for their role in Wnt/β-catenin signaling, a pathway known for its tumorigenic effects. More recent studies of frizzled receptors include efforts to understand non-coding RNA (ncRNA) regulation of these receptors in cancer. It has become increasingly clear that ncRNA molecules are important for regulating the expression of both oncogenic and tumor-suppressive proteins. The three most commonly described ncRNA molecules are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Here, we review ncRNA molecules that directly or indirectly affect frizzled protein expression and downstream signaling. Exploring these interactions highlights the potential of incorporating ncRNA molecules into cancer prevention and therapy strategies that target frizzled receptors. Previous investigations of frizzled receptors and ncRNA have established strong promise for a role in cancer progression, but additional studies are needed to provide the substantial pre-clinical evidence required to translate findings to clinical applications.
Collapse
|
49
|
Sun Y, Ma J, Lin J, Sun D, Song P, Shi L, Li H, Wang R, Wang Z, Liu S. Circular RNA circ_ASAP2 regulates drug sensitivity and functional behaviors of cisplatin-resistant gastric cancer cells by the miR-330-3p/NT5E axis. Anticancer Drugs 2021; 32:950-961. [PMID: 34016832 DOI: 10.1097/cad.0000000000001087] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study aims to explore the biological actions of circular RNA (circRNA) ArfGAP with SH3 domain, ankyrin repeat and PH domain 2 (circ_ASAP2, circ_0006089) in cisplatin (DDP) resistance of gastric cancer. Circ_ASAP2, ecto-5'-nucleotidase (NT5E) and miR-330-3p were quantified by quantitative real-time PCR or western blot. The measurements of the IC50 value and cell proliferation were done using 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell colony formation, cell cycle distribution, apoptosis, migration and invasion were evaluated by the colony formation, flow cytometry and transwell assays. Dual-luciferase reporter assay was performed to confirm the targeted relationship between different molecules. The role of circ_ASAP2 in tumor growth was gauged by in vivo animal studies. Circ_ASAP2 and NT5E were overexpressed in DDP-resistant gastric cancer tissues and cells. Knockdown of circ_ASAP2 promoted DDP sensitivity, apoptosis and repressed proliferation, migration and invasion of DDP-resistant gastric cancer cells in vitro and diminished tumor growth in vivo. Moreover, NT5E was a downstream effector of circ_ASAP2 in regulating cell DDP sensitivity and functional behaviors. Mechanistically, circ_ASAP2 directly bound to miR-330-3p to promote NT5E expression. Furthermore, circ_ASAP2 modulated cell DDP sensitivity and functional behaviors by targeting miR-330-3p. Knockdown of circ_ASAP2 promoted DDP sensitivity and suppressed malignant behaviors of DDP-resistant gastric cancer cells through targeting the miR-330-3p/NT5E axis.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang Y, Zhang F, Wu D, Wang Q, Nie L, Yu J. A novel circ_0099999/miR-330-5p/FSCN1 ceRNA crosstalk in pancreatic cancer. Autoimmunity 2021; 54:471-482. [PMID: 34409897 DOI: 10.1080/08916934.2021.1963958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic cancer is a lethal malignancy in both sexes throughout the world. Circular RNAs (circRNAs) have been implicated in the development of pancreatic cancer by operating as competing endogenous RNAs (ceRNAs). Here, we explored circ_0099999-mediated ceRNA activity in regulating pancreatic tumorigenesis. METHODS Ribonuclease R (RNase R) and subcellular localization assays were utilized to characterize circ_0099999. The levels of circ_0099999, microRNA (miR)-330-5p, and fascin actin-bundling protein 1 (FSCN1) were gauged by quantitative real-time PCR (qRT-PCR) and western blot. Cell proliferation, colony formation, apoptosis, migration, and invasion were evaluated by the Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, and transwell assays, respectively. The levels of glucose consumption and lactate production were determined using the assay kits. A direct relationship between miR-330-5p and circ_0099999 or FSCN1 was validated by dual-luciferase reporter assay. Tumour xenograft assays were used to analyse the role of circ_0099999 in vivo. RESULTS Circ_0099999 was highly up-regulated in pancreatic cancer tissues and cells. Knockdown of circ_0099999 impeded cell proliferation, migration, invasion, glycolysis, and promoted apoptosis in vitro, as well as diminished tumour growth in vivo. Circ_0099999 targeted miR-330-5p, and miR-330-5p was a downstream mediator of circ_0099999 function. FSCN1 was a direct and functional target of miR-330-5p. Furthermore, circ_0099999 operated as a ceRNA for miR-330-5p to modulate FSCN1 expression. CONCLUSIONS Our findings established a novel causal mechanism, circ_0099999/miR-330-5p/FSCN1 ceRNA crosstalk, in regulating pancreatic carcinogenesis and provided that inhibition of circ_0099999 might have therapeutic benefits in pancreatic cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Feng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Dongde Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Qun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Lei Nie
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Jing Yu
- Department of Clinical Laboratory, Hubei Cancer Hospital, Wuhan, China
| |
Collapse
|