1
|
Karimi B, Mokhtari K, Rozbahani H, Peymani M, Nabavi N, Entezari M, Rashidi M, Taheriazam A, Ghaedi K, Hashemi M. Pathological roles of miRNAs and pseudogene-derived lncRNAs in human cancers, and their comparison as prognosis/diagnosis biomarkers. Pathol Res Pract 2024; 253:155014. [PMID: 38128189 DOI: 10.1016/j.prp.2023.155014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
This review examines and compares the diagnostic and prognostic capabilities of miRNAs and lncRNAs derived from pseudogenes in cancer patients. Additionally, it delves into their roles in cancer pathogenesis. Both miRNAs and pseudogene-derived lncRNAs have undergone thorough investigation as remarkably sensitive and specific cancer biomarkers, offering significant potential for cancer detection and monitoring. . Extensive research is essential to gain a complete understanding of the precise roles these non-coding RNAs play in cancer, allowing the development of novel targeted therapies and biomarkers for improved cancer detection and treatment approaches.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Rozbahani
- Department of Psychology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Psychology, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Li J, Shaikh SN, Uqaili AA, Nasir H, Zia R, Akram MA, Jawad FA, Sohail S, AbdelGawwad MR, Almutairi SM, Elshikh MS, Jamil M, Rasheed RA. A pan-cancer analysis of pituitary tumor-transforming 3, pseudogene. Am J Transl Res 2023; 15:5408-5424. [PMID: 37692950 PMCID: PMC10492052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Although evidence regarding pituitary tumor-transforming 3, pseudogene (PTTG3P) involvement in human cancers has been acquired via human and animal model-based molecular studies, there is a lack of pan-cancer analysis of this gene in human tumors. METHODS Tumor-causing effects of PTTG3P in 24 human tumors were explored using The Cancer Genome Atlas (TCGA) datasets from different bioinformatics databases and applying in silico tools such as The University of ALabama at Birmingham CANcer (UALCAN), Human Protein Atlas (HPA), Kaplan Meier (KM) plotter, cBioPortal, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Cytoscape, Database for Annotation, Visualization, and Integrated Discovery (DAVID), Tumor IMmune Estimation Resource (TIMER), and Comparative Toxicogenomics Database (CTD). Then, via in vitro experiments, including RNA sequencing (RNA-seq) and targeted bisulfite sequencing (bisulfite-seq), expression and promoter methylation levels of PTTG3P were verified in cell lines. RESULTS The PTTG3P expression was overexpressed across 23 malignancies and its overexpression was further found significantly effecting the overall survival (OS) durations of the esophageal carcinoma (ESCA) and head and neck cancer (HNSC) patients. This important information helps us to understand that PTTG3P plays a significant role in the development and progression of ESCA and HNSC. As for PTTG3P functional mechanisms, this gene along with its other binding partners was significantly concentrated in "Oocyte meiosis", "Cell cycle", "Ubiquitin mediated proteolysis", and "Progesterone-mediated oocyte maturation". Moreover, ESCA and HNSC tissues having the higher expression of PTTG3P were found to have lower promoter methylation levels of PTTG3P and higher CD8+ T immune cells level. Additionally, PTTG3P expression-regulatory drugs were also explored in the current manuscript for designing appropriate treatment strategies for ESCA and HNSC with respect to PTTG3P expression. CONCLUSION Our pan-cancer based findings provided a comprehensive account of the oncogenic role and utilization of PTTG3P as a novel molecular biomarker of ESCA and HNSC.
Collapse
Affiliation(s)
- Jie Li
- The Second Affiliated Hospital of Hainan Medical University Health Management CenterHaikou 570311, Hainan, China
| | - Saima Naz Shaikh
- Department of Physiology, Liaquat University of Medical and Health SciencesJamshoro, Sindh 76090, Pakistan
| | - Arsalan Ahmed Uqaili
- Department of Physiology, Liaquat University of Medical and Health SciencesJamshoro, Sindh 76090, Pakistan
| | - Hilal Nasir
- Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples Federico II UniversityNapoli 80138, Italy
| | - Rabeea Zia
- Pakistan Kidney and Liver Institute and ResearchLahore, Punjab 54000, Pakistan
| | - Muhammad Aitzaz Akram
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture UniversityRawalpindi 46000, Pakistan
| | - Fahim Ali Jawad
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture FaisalabadFaisalabad 38000, Pakistan
| | - Salman Sohail
- Registrar Ophthalmology, Al Shifa Trust Eye HospitalRawalpindi 46000, Pakistan
| | - Mohamed Ragab AbdelGawwad
- Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of SarajevoSarajevo 71210, Bosnia and Herzegovina
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Rabab Ahmed Rasheed
- Histology & Cell Biology Department, Faculty of Medicine, King Salman International UniversitySouth Sinai, Egypt
| |
Collapse
|
3
|
Wang L, Zhang J, Xia M, Liu C, Zu X, Zhong J. High Mobility Group A1 (HMGA1): Structure, Biological Function, and Therapeutic Potential. Int J Biol Sci 2022; 18:4414-4431. [PMID: 35864955 PMCID: PMC9295051 DOI: 10.7150/ijbs.72952] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
High mobility group A1 (HMGA1) is a nonhistone chromatin structural protein characterized by no transcriptional activity. It mainly plays a regulatory role by modifying the structure of DNA. A large number of studies have confirmed that HMGA1 regulates genes related to tumours in the reproductive system, digestive system, urinary system and haematopoietic system. HMGA1 is rare in adult cells and increases in highly proliferative cells such as embryos. After being stimulated by external factors, it will produce effects through the Wnt/β-catenin, PI3K/Akt, Hippo and MEK/ERK pathways. In addition, HMGA1 also affects the ageing, apoptosis, autophagy and chemotherapy resistance of cancer cells, which are linked to tumorigenesis. In this review, we summarize the mechanisms of HMGA1 in cancer progression and discuss the potential clinical application of targeted HMGA1 therapy, indicating that targeted HMGA1 is of great significance in the diagnosis and treatment of malignancy.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Ji Zhang
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Chang Liu
- Department of Endocrinology and Metabolism, The First People's Hospital of Chenzhou, First School of Clinical Medicine, University of Southern Medical, Guangzhou 510515, Guangdong, China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| |
Collapse
|
4
|
Nsengimana B, Khan FA, Awan UA, Wang D, Fang N, Wei W, Zhang W, Ji S. Pseudogenes and Liquid Phase Separation in Epigenetic Expression. Front Oncol 2022; 12:912282. [PMID: 35875144 PMCID: PMC9305658 DOI: 10.3389/fonc.2022.912282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudogenes have been considered as non-functional genes. However, peptides and long non-coding RNAs produced by pseudogenes are expressed in different tumors. Moreover, the dysregulation of pseudogenes is associated with cancer, and their expressions are higher in tumors compared to normal tissues. Recent studies show that pseudogenes can influence the liquid phase condensates formation. Liquid phase separation involves regulating different epigenetic stages, including transcription, chromatin organization, 3D DNA structure, splicing, and post-transcription modifications like m6A. Several membrane-less organelles, formed through the liquid phase separate, are also involved in the epigenetic regulation, and their defects are associated with cancer development. However, the association between pseudogenes and liquid phase separation remains unrevealed. The current study sought to investigate the relationship between pseudogenes and liquid phase separation in cancer development, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Usman Ayub Awan
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Pakistan
| | - Dandan Wang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Na Fang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wenqiang Wei
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| | - Weijuan Zhang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| |
Collapse
|
5
|
De Martino M, Esposito F, Fusco A. Critical role of the high mobility group A proteins in hematological malignancies. Hematol Oncol 2021; 40:2-10. [PMID: 34637548 PMCID: PMC9293314 DOI: 10.1002/hon.2934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022]
Abstract
The high mobility group A (HMGA) protein family is composed of three non‐histone chromatin remodeling proteins that act as architectural transcriptional factors. Indeed, although HMGA proteins lack transcriptional activity per se, they bind the minor groove of DNA at AT‐rich sequences, and, interacting with the transcription machinery, are able to modify chromatin modeling, thus regulating the expression of several genes. HMGA proteins have been deeply involved in embryogenesis process, and a large volume of studies has pointed out their key role in human cancer. Here, we review the studies on the role of the HMGA proteins in human hematological malignancies: they are overexpressed in most of the cases and their expression correlates with a reduced survival. In some cases, such as in acute lymphoblastic leukemia and acute myelogenous leukemia, HMGA2 gene rearrangements have been also described. Finally, recent studies evidence a synergism between HMGA and EZH2 in diffuse B‐cell lymphomas, suggesting an innovative therapy for this disease based on the inhibition of the function of both these proteins.
Collapse
Affiliation(s)
- Marco De Martino
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy.,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesco Esposito
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy
| | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy
| |
Collapse
|
6
|
Shomali N, Marofi F, Tarzi S, Tamjdidfar R, Akbari M, Parvari S, Sadeghvand S, Deljavan M, Moridi O, Javadi M, Shotorbani SS. HSP90 inhibitor modulates HMGA1 and HMGB2 expression along with cell viability via NF-KB signaling pathways in melanoma in-vitro. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Abstract
The world of long non-coding RNAs (lncRNAs) has opened up massive new prospects in understanding the regulation of gene expression. Not only are there seemingly almost infinite numbers of lncRNAs in the mammalian cell, but they have highly diverse mechanisms of action. In the nucleus, some are chromatin-associated, transcribed from transcriptional enhancers (eRNAs) and/or direct changes in the epigenetic landscape with profound effects on gene expression. The pituitary gonadotrope is responsible for activation of reproduction through production and secretion of appropriate levels of the gonadotropic hormones. As such, it exemplifies a cell whose function is defined through changes in developmental and temporal patterns of gene expression, including those that are hormonally induced. Roles for diverse distal regulatory elements and eRNAs in gonadotrope biology have only just begun to emerge. Here, we will present an overview of the different kinds of lncRNAs that alter gene expression, and what is known about their roles in regulating some of the key gonadotrope genes. We will also review various screens that have detected differentially expressed pituitary lncRNAs associated with changes in reproductive state and those whose expression is found to play a role in gonadotrope-derived nonfunctioning pituitary adenomas. We hope to shed light on this exciting new field, emphasize the open questions, and encourage research to illuminate the roles of lncRNAs in various endocrine systems.
Collapse
Affiliation(s)
- Tal Refael
- Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: Philippa Melamed, PhD, Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
8
|
De Martino M, Esposito F, Fusco A. The HMGA1-pseudogene7 shows oncogenic activity in vivo. Cell Cycle 2020; 19:2955-2959. [PMID: 33043837 DOI: 10.1080/15384101.2020.1829825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We have recently reported that transgenic mice overexpressing the HMGA1-pseudogene7 develop hematological neoplasia marked by monoclonal B-cell populations, and diagnosed as Diffuse Large B-cell Lymphoma. These findings prove the HMGA1-pseudogene7 oncogenic role in vivo.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR C/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli "Federico II" , Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR C/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli "Federico II" , Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR C/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli "Federico II" , Naples, Italy
| |
Collapse
|
9
|
De Martino M, Palma G, Arra C, Chieffi P, Fusco A, Esposito F. Characterization of HMGA1P6 transgenic mouse embryonic fibroblasts. Cell Cycle 2020; 19:2281-2285. [PMID: 32787507 DOI: 10.1080/15384101.2020.1807080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Latest studies have shown that deregulated pseudogene transcripts contribute to cancer working as competing endogenous RNAs. Our research group has recently demonstrated that the overexpression of two HMGA1 pseudogenes, HMGA1P6 and HMGA1P7, has a critical role in cancer progression. These pseudogenes work sustaining the expression of HMGA1 and other cancer-related genes. We generated a mouse model overexpressing HMGA1P6 to better study the HMGA1-pseudogene function in a more physiological context. Here, we show the proliferation rate and the susceptibility to senescence of mouse embryonic fibroblasts obtained from HMGA1P6-overexpressing mice to better characterize the HMGA1-pseudogene function. Indeed, our study reports that mouse embryonic fibroblasts (MEFs) derived from HMGA1P6 mice express higher HMGA1 mRNA and protein levels. Moreover, these cells grow faster and senesce later than wild-type sustaining the oncogenic role of ceRNA crosstalk mediated by HMGA1Ps.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia Ed Oncologia Sperimentale del CNR C/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi Di Napoli "Federico II" , Naples, Italy.,Department of Psychology, University of Campania "L. Vanvitelli" , Caserta, Italy
| | - Giuseppe Palma
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale dei Tumori, Fondazione Pascale, IRCCS , Naples, Italy
| | - Claudio Arra
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale dei Tumori, Fondazione Pascale, IRCCS , Naples, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli" , Caserta, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia Ed Oncologia Sperimentale del CNR C/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi Di Napoli "Federico II" , Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia Ed Oncologia Sperimentale del CNR C/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi Di Napoli "Federico II" , Naples, Italy
| |
Collapse
|
10
|
De Martino M, Fusco A, Esposito F. HMGA and Cancer: A Review on Patent Literatures. Recent Pat Anticancer Drug Discov 2020; 14:258-267. [PMID: 31538905 DOI: 10.2174/1574892814666190919152001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The high mobility group A proteins modulate the transcription of numerous genes by interacting with transcription factors and/or altering the structure of chromatin. These proteins are involved in both benign and malignant neoplasias as a result of several pathways. A large amount of benign human mesenchymal tumors has rearrangements of HMGA genes. On the contrary, malignant tumors show unarranged HMGA overexpression that is frequently and causally related to neoplastic cell transformation. Here, we review the function of the HMGA proteins in human neoplastic disorders, the pathways by which they contribute to carcinogenesis and the new patents focused on targeting HMGA proteins. OBJECTIVE Current review was conducted to check the involvement of HMGA as a druggable target in cancer treatment. METHODS We reviewed the most recent patents focused on targeting HMGA in cancer treatment analyzing patent literature published during the last years, including the World Intellectual Property Organization (WIPO®), United States Patent Trademark Office (USPTO®), Espacenet®, and Google Patents. RESULTS HMGA proteins are intriguing targets for cancer therapy and are objects of different patents based on the use of DNA aptamers, inhibitors, oncolytic viruses, antisense molecules able to block their oncogenic functions. CONCLUSION Powerful strategies able to selectively interfere with HMGA expression and function could represent a helpful approach in the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy.,Department of Psychology, University of Campania, Caserta 81100, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy
| |
Collapse
|
11
|
Complex Analysis of Retroposed Genes' Contribution to Human Genome, Proteome and Transcriptome. Genes (Basel) 2020; 11:genes11050542. [PMID: 32408516 PMCID: PMC7290577 DOI: 10.3390/genes11050542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Gene duplication is a major driver of organismal evolution. One of the main mechanisms of gene duplications is retroposition, a process in which mRNA is first transcribed into DNA and then reintegrated into the genome. Most gene retrocopies are depleted of the regulatory regions. Nevertheless, examples of functional retrogenes are rapidly increasing. These functions come from the gain of new spatio-temporal expression patterns, imposed by the content of the genomic sequence surrounding inserted cDNA and/or by selectively advantageous mutations, which may lead to the switch from protein coding to regulatory RNA. As recent studies have shown, these genes may lead to new protein domain formation through fusion with other genes, new regulatory RNAs or other regulatory elements. We utilized existing data from high-throughput technologies to create a complex description of retrogenes functionality. Our analysis led to the identification of human retroposed genes that substantially contributed to transcriptome and proteome. These retrocopies demonstrated the potential to encode proteins or short peptides, act as cis- and trans- Natural Antisense Transcripts (NATs), regulate their progenitors’ expression by competing for the same microRNAs, and provide a sequence to lncRNA and novel exons to existing protein-coding genes. Our study also revealed that retrocopies, similarly to retrotransposons, may act as recombination hot spots. To our best knowledge this is the first complex analysis of these functions of retrocopies.
Collapse
|
12
|
HMGA1-pseudogene7 transgenic mice develop B cell lymphomas. Sci Rep 2020; 10:7057. [PMID: 32341372 PMCID: PMC7184748 DOI: 10.1038/s41598-020-62974-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/22/2020] [Indexed: 01/07/2023] Open
Abstract
We have recently identified and characterized two pseudogenes (HMGA1P6 and HMGA1P7) of the HMGA1 gene, which has a critical role in malignant cell transformation and cancer progression. HMGA1P6 and HMGAP17 act as microRNA decoy for HMGA1 and other cancer-related genes upregulating their protein levels. We have previously shown that they are upregulated in several human carcinomas, and their expression positively correlates with a poor prognosis and an advanced cancer stage. To evaluate in vivo oncogenic activity of HMGA1 pseudogenes, we have generated a HMGA1P7 transgenic mouse line overexpressing this pseudogene. By a mean age of 12 months, about 50% of the transgenic mice developed splenomegaly and accumulation of lymphoid cells in several body compartments. For these mice FACS and immunohistochemical analyses suggested the diagnosis of B-cell lymphoma that was further supported by clonality analyses and RNA expression profile of the pathological tissues of the HMGA1P7 transgenic tissues. Therefore, these results clearly demonstrate the oncogenic activity of HMGA1 pseudogenes in vivo.
Collapse
|
13
|
D’Angelo D, Arra C, Fusco A. RPSAP52 lncRNA Inhibits p21Waf1/CIP Expression by Interacting With the RNA Binding Protein HuR. Oncol Res 2020; 28:191-201. [PMID: 31831098 PMCID: PMC7851518 DOI: 10.3727/096504019x15761465603129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNAs have been recently demonstrated to have an important role in fundamental biological processes, and their deregulated expression has been found in several human neoplasias. Our group has recently reported a drastic overexpression of the long noncoding RNA (lncRNA) RPSAP52 (ribosomal protein SA pseudogene 52) in pituitary adenomas. We have shown that this lncRNA increased cell proliferation by upregulating the expression of the chromatinic proteins HMGA1 and HMGA2, functioning as a competing endogenous RNA (ceRNA) through competitively binding to microRNA-15a (miR-15a), miR-15b, and miR-16. The aim of this work was to identify further mechanisms by which RPSAP52 overexpression could contribute to the development of pituitary adenomas. We investigated the involvement of RPSAP52 in the modulation of the expression of cell cycle-related genes, such as p21Waf1/CIP, whose deregulation plays a critical role in pituitary cell transformation. We report that RPSAP52, interacting with the RNA binding protein HuR (human antigen R), favors the delocalization of miR-15a, miR-15b, and miR-16 on the cyclin-dependent kinase inhibitor p21Waf1/CIP1 that, accordingly, results in downregulation in pituitary adenomas. A RNA immunoprecipitation sequencing (RIPseq) analysis performed on cells overexpressing RPSAP52 identified 40 messenger RNAs (mRNAs) enriched in Argonaute 2 (AGO2) immunoprecipitated samples. Among them, we focused on GAS8 (growth arrest-specific protein 8) gene. Consistently, GAS8 expression was downregulated in all the analyzed pituitary adenomas with respect to normal pituitary and in RPSAP52-overepressing cells, supporting the role of RPSAP52 in addressing genes involved in growth inhibition and cell cycle arrest to miRNA-induced degradation. This study unveils another RPSAP52-mediated molecular mechanism in pituitary tumorigenesis.
Collapse
Affiliation(s)
- Daniela D’Angelo
- *Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore,” Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II,”Naples, Italy
| | - Claudio Arra
- †Animal Facility Unit, Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Alfredo Fusco
- *Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore,” Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II,”Naples, Italy
| |
Collapse
|
14
|
Chieffi P, De Martino M, Esposito F. Further insights into testicular germ cell tumor oncogenesis: potential therapeutic targets. Expert Rev Anticancer Ther 2020; 20:189-195. [PMID: 32164473 DOI: 10.1080/14737140.2020.1736566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Testicular germ cell tumors (TGCTs) are the most common neoplasia in the young male population, and the incidence has been constantly increasing in many parts of the world. These tumors are classified into seminomas and non-seminomas, and those divided, in turn, into yolk sac tumors, embryonal cell carcinomas, choriocarcinomas, and teratomas. Although therapeutic approaches have improved, approximately 25% of the patients relapse or, in a small number of cases, show platinum-resistant disease.Areas covered: We review several molecular targets that have recently emerged as powerful tools for both diagnosis and therapy of TGCTs. Moreover, we reviewed the most frequent deregulated pathways involved in TGCT tumorigenesis, reporting drugs that may emerge as novel therapeutic agents.Expert opinion: TGCT treatment is mainly based on platinum-derivative therapy with high cure rates. However, in the refractory patients, there are few alternative treatments. Thus, different pharmacological approaches have to be thoroughly investigated to shed new light on TGCT pathogenesis and treatment.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
| | - Marco De Martino
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli 'Federico II', Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli 'Federico II', Naples, Italy
| |
Collapse
|
15
|
MYC-regulated pseudogene HMGA1P6 promotes ovarian cancer malignancy via augmenting the oncogenic HMGA1/2. Cell Death Dis 2020; 11:167. [PMID: 32127525 PMCID: PMC7054391 DOI: 10.1038/s41419-020-2356-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Pseudogenes have long been considered as nonfunctional genomic sequences. Recent studies have shown that they can potentially regulate the expression of protein-coding genes and are dysregulated in diseases including cancer. However, the potential roles of pseudogenes in ovarian cancer have not been well studied. Here we characterized the pseudogene expression profile in HGSOC (high-grade serous ovarian carcinoma) by microarray. We identified 577 dysregulated pseudogenes and most of them were up-regulated (538 of 577). HMGA1P6 (High mobility group AT-hook 1 pseudogene 6) was one of the overexpressed pseudogenes and its expression was inversely correlated with patient survival. Mechanistically, HMGA1P6 promoted ovarian cancer cell malignancy by acting as a ceRNA (competitive endogenous RNA) that led to enhanced HMGA1 and HMGA2 expression. Importantly, HMGA1P6 was transcriptionally activated by oncogene MYC in ovarian cancer. Our findings reveal that MYC may contribute to oncogenesis through transcriptional regulation of pseudogene HMGA1P6 in ovarian cancer.
Collapse
|
16
|
Lou W, Ding B, Fu P. Pseudogene-Derived lncRNAs and Their miRNA Sponging Mechanism in Human Cancer. Front Cell Dev Biol 2020; 8:85. [PMID: 32185172 PMCID: PMC7058547 DOI: 10.3389/fcell.2020.00085] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudogenes, abundant in the human genome, are traditionally considered as non-functional “junk genes.” However, recent studies have revealed that pseudogenes act as key regulators at DNA, RNA or protein level in diverse human disorders (including cancer), among which pseudogene-derived long non-coding RNA (lncRNA) transcripts are extensively investigated and has been reported to be frequently dysregulated in various types of human cancer. Growing evidence demonstrates that pseudogene-derived lncRNAs play important roles in cancer initiation and progression by serving as competing endogenous RNAs (ceRNAs) through competitively binding to shared microRNAs (miRNAs), thus affecting both their cognate genes and unrelated genes. Herein, we retrospect those current findings about expression, functions and potential ceRNA mechanisms of pseudogene-derived lncRNAs in human cancer, which may provide us with some crucial clues in developing potential targets for cancer therapy in the future.
Collapse
Affiliation(s)
- Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
High Mobility Group A (HMGA): Chromatin Nodes Controlled by a Knotty miRNA Network. Int J Mol Sci 2020; 21:ijms21030717. [PMID: 31979076 PMCID: PMC7038092 DOI: 10.3390/ijms21030717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
High mobility group A (HMGA) proteins are oncofoetal chromatin architectural factors that are widely involved in regulating gene expression. These proteins are unique, because they are highly expressed in embryonic and cancer cells, where they play a relevant role in cell proliferation, stemness, and the acquisition of aggressive tumour traits, i.e., motility, invasiveness, and metastatic properties. The HMGA protein expression levels and activities are controlled by a connected set of events at the transcriptional, post-transcriptional, and post-translational levels. In fact, microRNA (miRNA)-mediated RNA stability is the most-studied mechanism of HMGA protein expression modulation. In this review, we contribute to a comprehensive overview of HMGA-targeting miRNAs; we provide detailed information regarding HMGA gene structural organization and a comprehensive evaluation and description of HMGA-targeting miRNAs, while focusing on those that are widely involved in HMGA regulation; and, we aim to offer insights into HMGA-miRNA mutual cross-talk from a functional and cancer-related perspective, highlighting possible clinical implications.
Collapse
|
18
|
Chen X, Wan L, Wang W, Xi WJ, Yang AG, Wang T. Re-recognition of pseudogenes: From molecular to clinical applications. Theranostics 2020; 10:1479-1499. [PMID: 32042317 PMCID: PMC6993246 DOI: 10.7150/thno.40659] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Pseudogenes were initially regarded as "nonfunctional" genomic elements that did not have protein-coding abilities due to several endogenous inactivating mutations. Although pseudogenes are widely expressed in prokaryotes and eukaryotes, for decades, they have been largely ignored and classified as gene "junk" or "relics". With the widespread availability of high-throughput sequencing analysis, especially omics technologies, knowledge concerning pseudogenes has substantially increased. Pseudogenes are evolutionarily conserved and derive primarily from a mutation or retrotransposon, conferring the pseudogene with a "gene repository" role to store and expand genetic information. In contrast to previous notions, pseudogenes have a variety of functions at the DNA, RNA and protein levels for broadly participating in gene regulation to influence the development and progression of certain diseases, especially cancer. Indeed, some pseudogenes have been proven to encode proteins, strongly contradicting their "trash" identification, and have been confirmed to have tissue-specific and disease subtype-specific expression, indicating their own value in disease diagnosis. Moreover, pseudogenes have been correlated with the life expectancy of patients and exhibit great potential for future use in disease treatment, suggesting that they are promising biomarkers and therapeutic targets for clinical applications. In this review, we summarize the natural properties, functions, disease involvement and clinical value of pseudogenes. Although our knowledge of pseudogenes remains nascent, this field deserves more attention and deeper exploration.
Collapse
|
19
|
The Prominent Role of HMGA Proteins in the Early Management of Gastrointestinal Cancers. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2059516. [PMID: 31737655 PMCID: PMC6815579 DOI: 10.1155/2019/2059516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
GI tumors represent a heterogeneous group of neoplasms concerning their natural history and molecular alterations harbored. Nevertheless, these tumors share very high incidence and mortality rates worldwide and patients' poor prognosis. Therefore, the identification of specific biomarkers could increase the development of personalized medicine, in order to improve GI cancer management. In this sense, HMGA family members (HMGA1 and HMGA2) comprise an important group of genes involved in the genesis and progression of malignant tumors. Additionally, it has also been reported that HMGA1 and HMGA2 display an important role in the detection and progression of GI tumors. In this way, HMGA family members could be used as reliable biomarkers able to efficiently track not only the tumor per se but also the main risk conditions related with their development of GI cancers in the future. Finally, it shall be a promising option to revert the current scenario, once HMGA genes and proteins could represent a convergence point in the complex landscape of GI tumors.
Collapse
|
20
|
D'Angelo D, De Martino M, Arra C, Fusco A. Emerging Role of USP8, HMGA, and Non-Coding RNAs in Pituitary Tumorigenesis. Cancers (Basel) 2019; 11:E1302. [PMID: 31487906 PMCID: PMC6770943 DOI: 10.3390/cancers11091302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/22/2023] Open
Abstract
Two novel molecular mechanisms with a driver role in pituitary tumorigenesis have been recently identified. They are (a) mutations in the Ubiquitin-Specific Protease 8 (USP8) gene in corticotroph tumors and (b) overexpression of the HMGA1 and HMGA2 genes in most of the pituitary tumors. Moreover, deregulated expression of the non-coding RNAs has been very frequently observed in this neoplasia. The aim of this review is to better elucidate the role, the mechanisms, and the possible clinical impact of these novel alterations in the development of pituitary neoplasia.
Collapse
Affiliation(s)
- Daniela D'Angelo
- Istituto di Endocrinologia ed Oncologia Sperimentale-Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale-Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
- Dipartimento di Psicologia, Università della Campania, 81100 Caserta, Italy
| | - Claudio Arra
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale-Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
| |
Collapse
|
21
|
Zhou K, Li S, Du G, Fan Y, Wu P, Sun H, Zhang T. LncRNA XIST depletion prevents cancer progression in invasive pituitary neuroendocrine tumor by inhibiting bFGF via upregulation of microRNA-424-5p. Onco Targets Ther 2019; 12:7095-7109. [PMID: 31564894 PMCID: PMC6730611 DOI: 10.2147/ott.s208329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are vital mediators in human cancers including pituitary neuroendocrine tumor (PitNET) and could function as competing endogenous RNAs (ceRNAs) of microRNAs (miRNAs). The main objective of this study is to identify effect of lncRNA X-inactive specific transcript (XIST) and microRNA-424-5p (miR-424-5p) on PitNET. Methods Microarray analysis was employed to identify the PitNET-related differentially expressed lncRNAs. PitNET tissues, including both invasive and non-invasive subtypes in parallel with normal pituitary tissues were collected for the determination of the expression of XIST, miR-424-5p and basic fibroblast growth factor (bFGF) and the interaction among them. Subsequently, the expression of XIST, miR-424-5p and bFGF in PitNET cells was altered to elucidate their biological significance in the aspects of proliferation, migration, invasion, and the apoptosis. Results Both XIST and bFGF exhibited high expression, but miR-424-5p had a low expression in invasive PitNET tissues as compared to non-invasive PitNET normal pituitary tissues. Additionally, XIST competitively bound to miR-424-5p to elevate the expression of bFGF. Furthermore, depleted XIST or bFGF, or elevated miR-424-5p was revealed to suppress the proliferation, migration, invasion, and promote cell cycle arrest and apoptosis of invasive PitNET cells. miR-424-5p repressed the proliferation, migration, invasion of invasive PitNET cells by targeting bFGF. Conclusion In conclusion, the fundamental findings of the present study suggested that the functional suppression of XIST downregulated bFGF to inhibit the development of PitNET by increasing miR-424-5p expression, proposing XIST as a novel therapeutic target for PitNET.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Shaoshan Li
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Guojia Du
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Yandong Fan
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Hongjie Sun
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Tingrong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| |
Collapse
|
22
|
Portovedo S, Gaido N, de Almeida Nunes B, Nascimento AG, Rocha A, Magalhães M, Nascimento GC, Pires de Carvalho D, Soares P, Takiya C, Faria MDS, Miranda-Alves L. Differential Expression of HMGA1 and HMGA2 in pituitary neuroendocrine tumors. Mol Cell Endocrinol 2019; 490:80-87. [PMID: 30999005 DOI: 10.1016/j.mce.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Defining biomarkers for invasive pituitary neuroendocrine tumors (PitNETs) is highly desirable. The high mobility group A (HMGA) proteins are among the most widely expressed cancer-associated proteins. Indeed, their overexpression is a frequent feature of human malignancies, including PitNETs. We show that nonfunctioning PitNETs (NF-PitNETs) express significantly higher levels of HMGA1 than somatotropinomas (GHs) and corticotropinomas (ACTHs). Furthermore, HMGA2 expression was detected only in NF-PitNETs and was significantly higher in larger tumors than in smaller tumors. HMGA expression analysis generally focuses on nuclear staining. Here, cytoplasmic HMGA staining was also found. PitNETs displayed strong nuclear HMGA1 and strong cytoplasmic HMGA2 immunoreactivity. Interestingly, the HMGA1 and HMGA2 nuclear expression levels were significantly higher in invasive adenomas than in noninvasive adenomas. The highest levels of nuclear HMGA2 were found in GHs. In conclusion, we show that overexpression of nuclear HMGA proteins could be a potential biomarker of invasive PitNETs, particularly HMGA2 for GHs. HMGA2 might be a reliable biomarker for NF-PitNETs.
Collapse
Affiliation(s)
- Sérgio Portovedo
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Nadja Gaido
- Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Bruno de Almeida Nunes
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Ana Giselia Nascimento
- Service of Pathology, President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Allysson Rocha
- Department of Radiology and Diagnostic Imaging, President Dutra Hospital, Federal University of Maranhão, Brazil
| | - Marcelo Magalhães
- Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Gilvan Cortes Nascimento
- Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Denise Pires de Carvalho
- Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil; Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Paula Soares
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil; Institute for Research and Innovation in Health (I3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) - Cancer Signaling & Metabolism, Portugal; Department of Pathology, Faculty of Medicine, University of Porto, Portugal
| | - Christina Takiya
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Manuel Dos Santos Faria
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil; Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Palumbo Júnior A, de Sousa VPL, Esposito F, De Martino M, Forzati F, Moreira FCDB, Simão TDA, Nasciutti LE, Fusco A, Ribeiro Pinto LF, Bessa Pereira Chaves C, Meireles Da Costa N. Overexpression of HMGA1 Figures as a Potential Prognostic Factor in Endometrioid Endometrial Carcinoma (EEC). Genes (Basel) 2019; 10:genes10050372. [PMID: 31096664 PMCID: PMC6562754 DOI: 10.3390/genes10050372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Endometrioid endometrial carcinomas (EEC) are the most common malignant gynecologic tumors. Despite the increase in EEC molecular knowledge, the identification of new biomarkers involved in disease's development and/or progression would represent an improvement in its course. High-mobility group A protein (HMGA) family members are frequently overexpressed in a wide range of malignancies, correlating with a poor prognosis. Thus, the aim of this study was to analyze HMGA1 and HMGA2 expression pattern and their potential role as EEC biomarkers. HMGA1 and HMGA2 expression was initially evaluated in a series of 46 EEC tumors (stages IA to IV), and the findings were then validated in The Cancer Genome Atlas (TCGA) EEC cohort, comprising 381 EEC tumors (stages IA to IV). Our results reveal that HMGA1 and HMGA2 mRNA and protein are overexpressed in ECC, but only HMGA1 expression is associated with increased histological grade and tumor size. Moreover, HMGA1 but not HMGA2 overexpression was identified as a negative prognostic factor to EEC patients. Finally, a positive correlation between expression of HMGA1 pseudogenes-HMGA1-P6 and HMGA1-P7-and HMGA1 itself was detected, suggesting HMGA1 pseudogenes may play a role in HMGA1 expression regulation in EEC. Thus, these results indicate that HMGA1 overexpression possesses a potential role as a prognostic biomarker for EEC.
Collapse
Affiliation(s)
- Antonio Palumbo Júnior
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-bloco F, sala 26, Rio de Janeiro, RJ 21941-902, Brasil.
| | - Vanessa Paiva Leite de Sousa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
| | - Francesco Esposito
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy.
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy.
| | - Floriana Forzati
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy.
| | - Fábio Carvalho de Barros Moreira
- Divisão de Patologia, Instituto Nacional de Câncer-INCA, Rua Cordeiro da Graça, 156-Santo Cristo, Rio de Janeiro, RJ 20220-040, Brazil.
| | - Tatiana de Almeida Simão
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
- Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de setembro, 87-fundos-4º andar, Rio de Janeiro, RJ 20551-030, Brazil.
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-bloco F, sala 26, Rio de Janeiro, RJ 21941-902, Brasil.
| | - Alfredo Fusco
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy.
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
| | - Cláudia Bessa Pereira Chaves
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
- Seção de Ginecologia Oncológica, Hospital de Câncer II, Instituto Nacional de Câncer-INCA, Rua Equador, 835. Santo Cristo, Rio de Janeiro, RJ 20220-410, Brazil.
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
| |
Collapse
|
24
|
RPSAP52 lncRNA is overexpressed in pituitary tumors and promotes cell proliferation by acting as miRNA sponge for HMGA proteins. J Mol Med (Berl) 2019; 97:1019-1032. [DOI: 10.1007/s00109-019-01789-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/28/2022]
|
25
|
Calloni R, Bonatto D. Characteristics of the competition among RNAs for the binding of shared miRNAs. Eur J Cell Biol 2019; 98:94-102. [PMID: 31053368 DOI: 10.1016/j.ejcb.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Competing endogenous RNAs (ceRNAs) are RNAs that share common miRNA binding sites and compete with each other for the miRNA association at these sites. The observation of this phenomenon in the cells altered the view of the miRNA target RNAs from molecules that are passively controlled by miRNAs to molecules that also modulate the miRNAs activity. In this review, we build a general profile of ceRNAS characteristics in order to facilitate ceRNAs identification by researchers. The information summarized here contains an actualized list of previously reported ceRNAs and classes of RNAs that can participate in this type of interaction, the expression behavior and characteristics of ceRNAs and miRNAs in the context of competition, the influence of the shared MREs/miRNAs numbers and the miRNA binding strength on the competition, reports on competition between RNAs in different subcellular localizations and the concept that ceRNAs may form a huge regulatory network in the cell.
Collapse
Affiliation(s)
- Raquel Calloni
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Diego Bonatto
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
26
|
Lou W, Ding B, Fan W. High Expression of Pseudogene PTTG3P Indicates a Poor Prognosis in Human Breast Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:15-26. [PMID: 31011629 PMCID: PMC6463746 DOI: 10.1016/j.omto.2019.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/13/2019] [Indexed: 01/16/2023]
Abstract
Pseudogenes play pivotal roles in tumorigenesis. Previous studies have suggested that pituitary tumor-transforming 3, pseudogene (PTTG3P), serves as an oncogene in human cancers. However, its expression pattern, biological function, and underlying mechanism in breast cancer remain unknown. In this study, we demonstrated an elevated expression of PTTG3P in breast cancer and discovered that PTTG3P expression correlated negatively with estrogen receptor (ER) and progesterone receptor (PR) status, but linked positively to basal-like status, triple-negative breast cancer status, Nottingham prognostic index (NPI), and Scarff-Bloom-Richardson grade. High expression of PTTG3P was also found to be associated with a poor prognosis of breast cancer. To explore the potential mechanisms of PTTG3P, a PTTG3P-microRNA (miRNA)-mRNA regulatory network was established. Co-expressed genes of PTTG3P were also obtained. Enrichment analysis for these co-expressed genes revealed that they were significantly enriched in mitotic nuclear division and cell cycle. Subsequent research on mechanism of PTTG3P indicated that its expression correlated positively with PTTG1 expression. However, no significant expression correlation between PTTG3P and PTTG2 was observed. Taken together, our findings suggest that increased expression of pseudogene PTTG3P may be used as a promising prognostic biomarker and novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
27
|
Chieffi P, De Martino M, Esposito F. New Anti-Cancer Strategies in Testicular Germ Cell Tumors. Recent Pat Anticancer Drug Discov 2019; 14:53-59. [DOI: 10.2174/1574892814666190111120023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022]
Abstract
Background: The most common solid malignancy of young men aged 20 to 34 years is testicular germ cell tumor. In addition, the incidence of these tumors has significantly increased throughout the last years. Testicular germ cell tumors are classified into seminoma and nonseminoma germ cell tumors, which take in yolk sac tumor, embryonal cell carcinoma, choriocarcinoma, and teratoma. There are noteworthy differences about therapy and prognosis of seminomas and nonseminoma germ cell tumors, even though both share characteristics of the primordial germ cells. </P><P> Objectives: The study is focused on different molecular mechanisms strongly involved in testicular germ cell line tumors underlying new strategies to treat this human neoplasia.Methods:Bibliographic data from peer-reviewed research, patent and clinical trial literature, and around eighty papers and patents have been included in this review.Results:Our study reveals that several biomarkers are usefully utilized to discriminate among different histotypes. Moreover, we found new patents regarding testicular germ cell tumor treatments such as the expression of claudin 6, monoclonal antibody (Brentuximab Vedotin), immune checkpoint blockade (ICB) with the FDA-approved drugs pembrolizumab and nivolumab or the oncolytic virus Pelareorep, the combination of selective inhibitors of Aurora kinase.Conclusion:Finally, the pathogenesis of testicular germ cell tumor needs to be deeply understood so that it will improve data on stem cells, tumorigenesis and disease tumor management by more selective treatment.
Collapse
Affiliation(s)
- Paolo Chieffi
- Department of Psychology, University of Campania, 81100 Caserta, Italy
| | - Marco De Martino
- Department of Psychology, University of Campania, 81100 Caserta, Italy
| | - Francesco Esposito
- Institute of Endocrinology and Experimental Oncology of the CNR c / o Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery of Naples, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
28
|
Wang Y, Hu L, Zheng Y, Guo L. HMGA1 in cancer: Cancer classification by location. J Cell Mol Med 2019; 23:2293-2302. [PMID: 30614613 PMCID: PMC6433663 DOI: 10.1111/jcmm.14082] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/19/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
The high mobility group A1 (HMGA1) gene plays an important role in numerous malignant cancers. HMGA1 is an oncofoetal gene, and we have a certain understanding of the biological function of HMGA1 based on its activities in various neoplasms. As an architectural transcription factor, HMGA1 remodels the chromatin structure and promotes the interaction between transcriptional regulatory proteins and DNA in different cancers. Through analysis of the molecular mechanism of HMGA1 and clinical studies, emerging evidence indicates that HMGA1 promotes the occurrence and metastasis of cancer. Within a similar location or the same genetic background, the function and role of HMGA1 may have certain similarities. In this paper, to characterize HMGA1 comprehensively, research on various types of tumours is discussed to further understanding of the function and mechanism of HMGA1. The findings provide a more reliable basis for classifying HMGA1 function according to the tumour location. In this review, we summarize recent studies related to HMGA1, including its structure and oncogenic properties, its major functions in each cancer, its upstream and downstream regulation associated with the tumourigenesis and metastasis of cancer, and its potential as a biomarker for clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Yuhong Wang
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yushuang Zheng
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lingchuan Guo
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| |
Collapse
|
29
|
Hauser BM, Lau A, Gupta S, Bi WL, Dunn IF. The Epigenomics of Pituitary Adenoma. Front Endocrinol (Lausanne) 2019; 10:290. [PMID: 31139150 PMCID: PMC6527758 DOI: 10.3389/fendo.2019.00290] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background: The vast majority of pituitary tumors are benign and behave accordingly; however, a fraction are invasive and are more aggressive, with a very small fraction being frankly malignant. The cellular pathways that drive transformation in pituitary neoplasms are poorly characterized, and current classification methods are not reliable correlates of clinical behavior. Novel techniques in epigenetics, the study of alterations in gene expression without changes to the genetic code, provide a new dimension to characterize tumors, and may hold implications for prognostication and management. Methods: We conducted a review of primary epigenetic studies of pituitary tumors with a focus on histone modification, DNA methylation, and transcript modification. Results: High levels of methylation have been identified in invasive and large pituitary tumors. DNA methyltransferase overexpression has been detected in pituitary tumors, especially in macroadenomas. Methylation differences at CpG sites in promoter regions may distinguish several types of tumors from normal pituitary tissue. Histone modifications have been linked to increased p53 expression and longer progression-free survival in pituitary tumors; sirtuins are expressed at higher values in GH-expressing compared to nonfunctional adenomas and correlate inversely with size in somatotrophs. Upregulation in citrullinating enzymes may be an early pathogenic marker of prolactinomas. Numerous genes involved with cell growth and signaling show altered methylation status for pituitary tumors, including cell cycle regulators, components of signal transduction pathways, apoptotic regulators, and pituitary developmental signals. Conclusions: The limited clinical predictive capacity of the current pituitary tumor classification system suggests that tumor subclasses likely remain to be discovered. Ongoing epigenetic studies could provide a basis for adding methylation and/or acetylation screening to standard pituitary tumor workups. Identifying robust correlations between tumor epigenetics and corresponding histological, radiographic, and clinical course information could ultimately inform clinical decision-making.
Collapse
Affiliation(s)
- Blake M. Hauser
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ashley Lau
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Saksham Gupta
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Wenya Linda Bi
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Ian F. Dunn
| |
Collapse
|
30
|
Niu Y, Zhou H, Liu Y, Wang Y, Xie J, Feng C, An N. miR-16 regulates proliferation and apoptosis of pituitary adenoma cells by inhibiting HMGA2. Oncol Lett 2018; 17:2491-2497. [PMID: 30719118 DOI: 10.3892/ol.2018.9872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
Previous studies have revealed that elevated expression of high mobility group A2 (HMGA2) is closely associated with the occurrence of pituitary adenomas (PAs). The expression of microRNA (miR)-16 is deregulated in PA tissues. Bioinformatics analysis has demonstrated that there is a complementary region between seed region of miR-16 and 3'-untranslated region (3'-UTR) of HMGA2 gene. In the present study, it was investigated whether miR-16 may regulate the expression of HMGA2 and whether it is involved in the pathogenesis of PAs. A total of 52 patients with PAs were recruited. Normal brain tissues obtained from 12 patients with traumatic brain injury were used as controls. The association between miR-16 and HMGA2 was validated using dual-luciferase reporter gene assay. HP75 cells were cultured in vitro and divided into the following groups: miR control, miR-16 mimic, small interfering RNA (si)-negative control, si-HMGA2 and miR-16 mimic+si-HMGA2 groups. The expression of miR-16 and HMGA2 in HP75 cells was determined using qRT-PCR and western blot. Cell proliferation was detected using the Cell Counting Kit-8 assay and apoptosis was detected using the TdT-UTP nick end labeling assay. Compared with normal pituitary tissues, the expression of miR-16 in PA tissues was significantly decreased, while the mRNA and protein levels of HMGA2 were significantly increased. miR-16 targeted the 3'-UTR of HMGA2 gene and regulated the expression of HMGA2. Transfection with siRNAs targeting HMGA2 and/or miR-16 mimics inhibited the expression of HMGA2 and the proliferative ability of HP75 cells, whereas it increased apoptosis of HP75 cells. The downregulation of miR-16 and upregulation of HMGA2 were involved in the pathogenesis of PAs. Thus, it is hypothesized that miR-16 inhibited the proliferation and promoted apoptosis of HP75 cells by inhibiting HMGA2 expression.
Collapse
Affiliation(s)
- Yingying Niu
- Department of Labor and Environmental Hygiene, Public Health School, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Hongbo Zhou
- Department of Oncology, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Yancui Liu
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Yunfeng Wang
- Department of Infectious Disease Prevention and Control, Mudanjiang Center for Disease Control and Prevention, Mudanjiang, Heilongjiang 157021, P.R. China
| | - Jinding Xie
- Department of Orthopedics, Mudanjiang Forestry Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Chong Feng
- Department of Medical Imaging, Hongqi Hospital, MuDanJiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Ning An
- Department of Neurology, Hongqi Hospital, MuDanJiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| |
Collapse
|
31
|
Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly-Bazzaz J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: A new look at hallmarks of breast cancer. J Cell Physiol 2018; 234:10080-10100. [PMID: 30537129 DOI: 10.1002/jcp.27941] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most frequently occurring malignancy in women worldwide. Despite the substantial advancement in understanding the molecular mechanisms and management of BC, it remains the leading cause of cancer death in women. One of the main reasons for this obstacle is that we have not been able to find the Achilles heel for the BC as a highly heterogeneous disease. Accumulating evidence has revealed that noncoding RNAs (ncRNAs), play key roles in the development of BC; however, the involving of complex regulatory interactions between the different varieties of ncRNAs in the development of this cancer has been poorly understood. In the recent years, the newly discovered mechanism in the RNA world is "competing endogenous RNA (ceRNA)" which proposes regulatory dialogues between different RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). In the latest BC research, various studies have revealed that dysregulation of several ceRNA networks (ceRNETs) between these ncRNAs has fundamental roles in establishing the hallmarks of BC development. And it is thought that such a discovery could open a new window for a better understanding of the hidden aspects of breast tumors. Besides, it probably can provide new biomarkers and potential efficient therapeutic targets for BC. This review will discuss the existing body of knowledge regarding the key functions of ceRNETs and then highlights the emerging roles of some recently discovered ceRNETs in several hallmarks of BC. Moreover, we propose for the first time the "ceRnome" as a new term in the present article for RNA research.
Collapse
Affiliation(s)
- Rasoul Abdollahzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoumeh Sepahvand
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Endocrinology and Metabolism Molecular Cellular Sciences Institute, Metabolic Disorders Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
De Biase D, Esposito F, De Martino M, Pirozzi C, Luciano A, Palma G, Raso GM, Iovane V, Marzocco S, Fusco A, Paciello O. Characterization of inflammatory infiltrate of ulcerative dermatitis in C57BL/6NCrl-Tg(HMGA1P6)1Pg mice. Lab Anim 2018; 53:447-458. [PMID: 30522404 DOI: 10.1177/0023677218815718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ulcerative dermatitis (UD) is an idiopathic, spontaneous and progressive disease typically affecting C57BL/6 aged mice with an unknown aetiopathogenesis. For this study, we evaluated 25 cases of UD in C57BL/6NCrl-Tg(HMGA1P6)1Pg mice. Formalin-fixed, paraffin-embedded skin samples were submitted to morphological investigations. Immunohistochemical analysis was performed to characterize and quantify inflammatory cells using CD3, CD45/B220, CD4, CD8 and IL-17 antibodies. Mast cell-bound IgE was investigated by immunofluorescence, whereas serum and cryopreserved skin samples were collected for molecular analysis. Student's t-test (two-tailed) was performed to assess significant differences between the two groups. Affected skin showed extensive areas of ulceration and diffuse, severe and mixed inflammatory infiltrates. No relevant changes were observed in control mice. Immunohistochemical analysis showed a predominant CD3 + CD4 + leukocyte population with fewer CD45/B220 and IL-17 immunolabelled cells and mast cell-bound IgE. Increases in TNFα, IL-1β and Il-6 mRNA expression were observed in the skin of affected animals compared to controls. Serum TNFα and IL-6 did not vary between affected and control mice. Inflammatory infiltrates and cytokine expression were consistent with both Th2/IgE and Th17 differentiation, a typical pattern of a type I hypersensitivity reaction. Overall, our data suggest an allergic-based aetiopathogenesis of UD in C57BL/6NCrl-Tg(HMGA1P6)1Pg mice.
Collapse
Affiliation(s)
- Davide De Biase
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Francesco Esposito
- CNR - Institute of Experimental Endocrinology and Oncology, c/o Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy
| | - Marco De Martino
- CNR - Institute of Experimental Endocrinology and Oncology, c/o Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | | | | | | | - Alfredo Fusco
- CNR - Institute of Experimental Endocrinology and Oncology, c/o Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| |
Collapse
|
33
|
Zhao Y, Zhou X, He Y, Liao C. SLC6A1-miR133a-CDX2 loop regulates SK-OV-3 ovarian cancer cell proliferation, migration and invasion. Oncol Lett 2018; 16:4977-4983. [PMID: 30250563 PMCID: PMC6144910 DOI: 10.3892/ol.2018.9273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/05/2018] [Indexed: 02/07/2023] Open
Abstract
The present study assessed the expression of solute carrier 6 member 1 (SLC6A1) in ovarian cancer (OC) tissues and evaluated the effect of silencing SLC6A1 or caudal type homeobox 2 (CDX2) on the proliferation, migration, and invasion of SK-OV-3 OC cells. The levels of caudal type homeobox 2 (CDX2) and SLC6A1 mRNA were also examined in OC SK-OV-3, OVCAR3 and A2780 cell lines. The mRNA levels of CDX2 and SLC6A1 in SK-OV-3 OC cells were assessed following transection with microRNA (miR) 133a mimics; the mRNA and protein levels of SLC6A1 were determined following the silencing of CDX2, and the mRNA expression of CDX2 was gauged following the silencing of SLC6A1. A luciferase reporter assay was performed to assess the effect of miR133a on the CDX2 and SLC6A1 3′-untranslated regions (3′UTRs). The proliferation, migration and invasion rate of SK-OV-3 cells were then examined following the silencing of CDX2 or SLC6A1. The expression of SLC6A1 was increased in OC compared with adjacent tissue. The expression of CDX2 and SLC6A1 in SK-OV-3 and OVCAR3 cells was increased compared with A2780 cells (P<0.05). The level of CDX2 and SLC6A1 mRNA in SK-OV-3 cells decreased when the cells were transected with the miR133a mimics, compared with a negative control (P<0.05). Transfection with the miR133a mimics significantly reduced the luciferase activity of reporter plasmids with the SLC6A1 or CDX2 3′UTRs (P<0.05). The mRNA level of CDX2 was decreased subsequent to the silencing of SLC6A1; the mRNA and protein level of SLC6A1 were decreased when CDX2 was silenced (P<0.05). The proliferation, migration, and invasion of SK-OV-3 cells were significantly reduced following the silencing of CDX2 or SLC6A1 (P<0.05). CDX2 may therefore be inferred to promote the proliferation, migration and invasion in SK-OV-3 OC cells, acting as a competing endogenous RNA.
Collapse
Affiliation(s)
- Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| | - Xiaokui Zhou
- Department of Gynecology and Obstetrics, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yangyan He
- Department of Gynecology and Obstetrics, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Changjun Liao
- College of Medicine, Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
34
|
High Mobility Group A (HMGA) proteins: Molecular instigators of breast cancer onset and progression. Biochim Biophys Acta Rev Cancer 2018. [DOI: 10.1016/j.bbcan.2018.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Palumbo A, De Martino M, Esposito F, Fraggetta F, Neto PN, Valverde Fernandes P, Santos IC, Dias FL, Nasciutti LE, Meireles Da Costa N, Fusco A, Ribeiro Pinto LF. HMGA2, but not HMGA1, is overexpressed in human larynx carcinomas. Histopathology 2018; 72:1102-1114. [PMID: 29266325 DOI: 10.1111/his.13456] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/11/2017] [Indexed: 12/24/2022]
Abstract
AIMS Malignant tumours from the upper aerodigestive tract are grouped collectively in the class of head and neck squamous cell carcinoma (HNSCC). The head and neck tumours were responsible for more than 500 000 cancer cases in 2012, accounting for the sixth highest incidence rate and mortality worldwide among all tumour types. Laryngeal squamous cell carcinoma (LSCC) possesses the second highest incidence rate among all HNSCC. Despite significant advances in surgery and radiotherapy during the last few decades, no treatment has been shown to achieve a satisfactory therapeutic outcome and the mortality rate of LSCC is still high, with a 5-year survival rate of 64%. Therefore, further investigations are required to identify the pathogenesis of LSCC. METHODS AND RESULTS In order to search for new LSCC biomarkers, we have analysed the expression of the HMGA family members, HMGA1 and HMGA2, by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. HMGA proteins are usually absent in the healthy adult tissues. In contrast, their constitutive expression is a feature of several neoplasias, being associated with a highly malignant phenotype and reduced survival. Here, we report HMGA2 overexpression in larynx carcinomas. Conversely, HMGA1 does not show any differences in its expression between normal and carcinoma tissues. Interestingly, HMGA2 overexpression appears associated with that of two HMGA1-pseudogenes, HMGA1P6 and HMGA1P7, acting as a sponge for HMGA1- and HMGA2-targeting microRNAs and involved in several human cancers. CONCLUSIONS Therefore, HMGA2 overexpression appears to be a strong feature of larynx carcinoma, supporting its detection as a valid tool for the diagnosis of these malignancies.
Collapse
Affiliation(s)
- Antonio Palumbo
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, Brazil.,Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli 'Federico II', Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli 'Federico II', Naples, Italy
| | | | - Pedro N Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, Brazil
| | | | - Izabella C Santos
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer - INCA, Praça da Cruz Vermelha, Rio de Janeiro, RJ, Brazil
| | - Fernando L Dias
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer - INCA, Praça da Cruz Vermelha, Rio de Janeiro, RJ, Brazil
| | - Luiz E Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alfredo Fusco
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, Brazil.,Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli 'Federico II', Naples, Italy
| | | |
Collapse
|
36
|
Zhao C, Li Y, Zhang W, Zhao D, Ma L, Ma P, Yang F, Wang Y, Shu Y, Qiu W. IL‑17 induces NSCLC A549 cell proliferation via the upregulation of HMGA1, resulting in an increased cyclin D1 expression. Int J Oncol 2018; 52:1579-1592. [PMID: 29512693 DOI: 10.3892/ijo.2018.4307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/16/2018] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is considered to be an inflammation-associated carcinoma. Although interleukin‑17 (IL‑17) production contributes to the proliferation and growth of NSCLC, the mechanisms underlying IL‑17-induced NSCLC cell proliferation have not been fully elucidated. In the present study, by using ELISA and immunohistochemical analyses, we first found that the expression levels of IL‑17, IL‑17 receptor (IL‑17R), high-mobility group A1 (HMGA1) and cyclin D1 were elevated in the samples of patients with NSCLC. Subsequently, by RT-qPCR, western blot analysis and cell proliferation assay in vitro, we revealed that stimulation with recombinant human IL‑17 (namely IL‑17A) markedly induced the expression of HMGA1 and cyclin D1 in the A549 cells (a human lung adenocarcinoma cell line) and promoted cell proliferation. Furthermore, luciferase reporter and ChIP assays confirmed that upregulated HMGA1 directly bound to the cyclin D1 gene promoter and activated its transcription. Notably, the response element of HMGA1 binding to the cyclin D1 promoter was disclosed for the first time, at least to the best of our knowledge. Taken together, our findings indicate that the IL‑17/HMGA1/cyclin D1 axis plays an important role in NSCLC cell proliferation and may provide new insight into NSCLC pathogenesis and may thus aid in the development of novel therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yongting Li
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Weiming Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Fengming Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
37
|
Yang C, Wu D, Gao L, Liu X, Jin Y, Wang D, Wang T, Li X. Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives. Oncotarget 2017; 7:13479-90. [PMID: 26872371 PMCID: PMC4924655 DOI: 10.18632/oncotarget.7266] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/31/2016] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNAs represent a majority of the human transcriptome. However, less is known about the functions and regulatory mechanisms of most non-coding species. Moreover, little is known about the potential non-coding functions of coding RNAs. The competing endogenous RNAs (ceRNAs) hypothesis is proposed recently. This hypothesis describes potential communication networks among all transcript RNA species mediated by miRNAs and miRNA-recognizing elements (MREs) within RNA transcripts. Here we review the evolution of the ceRNA hypothesis, summarize the validation experiments and discusses the significance and perspectives of this hypothesis in human cancer.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Di Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Xi Liu
- Department of Cardiovascular Disease, Inner Mongolia People's Hospital, Hohhot, China
| | - Yinji Jin
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
De Martino M, Forzati F, Arra C, Fusco A, Esposito F. HMGA1-pseudogenes and cancer. Oncotarget 2017; 7:28724-35. [PMID: 26895108 PMCID: PMC5053758 DOI: 10.18632/oncotarget.7427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/05/2016] [Indexed: 12/25/2022] Open
Abstract
Pseudogenes are DNA sequences with high homology to the corresponding functional gene, but, because of the accumulation of various mutations, they have lost their initial functions to code for proteins. Consequently, pseudogenes have been considered until few years ago dysfunctional relatives of the corresponding ancestral genes, and then useless in the course of genome evolution. However, several studies have recently established that pseudogenes are owners of key biological functions. Indeed, some pseudogenes control the expression of functional genes by competitively binding to the miRNAs, some of them generate small interference RNAs to negatively modulate the expression of functional genes, and some of them even encode functional mutated proteins. Here, we concentrate our attention on the pseudogenes of the HMGA1 gene, that codes for the HMGA1a and HMGA1b proteins having a critical role in development and cancer progression. In this review, we analyze the family of HMGA1 pseudogenes through three aspects: classification, characterization, and their possible function and involvement in cancer.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| |
Collapse
|
39
|
De Martino M, Palma G, Azzariti A, Arra C, Fusco A, Esposito F. The HMGA1 Pseudogene 7 Induces miR-483 and miR-675 Upregulation by Activating Egr1 through a ceRNA Mechanism. Genes (Basel) 2017; 8:genes8110330. [PMID: 29149041 PMCID: PMC5704243 DOI: 10.3390/genes8110330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
Several studies have established that pseudogene mRNAs can work as competing endogenous RNAs and, when deregulated, play a key role in the onset of human neoplasias. Recently, we have isolated two HMGA1 pseudogenes, HMGA1P6 and HMGA1P7. These pseudogenes have a critical role in cancer progression, acting as micro RNA (miRNA) sponges for HMGA1 and other cancer-related genes. HMGA1 pseudogenes were found overexpressed in several human carcinomas, and their expression levels positively correlate with an advanced cancer stage and a poor prognosis. In order to investigate the molecular alterations following HMGA1 pseudogene 7 overexpression, we carried out miRNA sequencing analysis on HMGA1P7 overexpressing mouse embryonic fibroblasts. Intriguingly, the most upregulated miRNAs were miR-483 and miR-675 that have been described as key regulators in cancer progression. Here, we report that HMGA1P7 upregulates miR-483 and miR-675 through a competing endogenous RNA mechanism with Egr1, a transcriptional factor that positively regulates miR-483 and miR-675 expression.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini, 5, 80131 Naples, Italy.
| | - Giuseppe Palma
- Istituto Nazionale dei Tumori, Fondazione Pascale, via Mariano Semmola, 52, 80131 Naples, Italy.
| | - Amalia Azzariti
- IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari, Italy.
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, via Mariano Semmola, 52, 80131 Naples, Italy.
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini, 5, 80131 Naples, Italy.
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
40
|
Tang L, Chen HY, Hao NB, Tang B, Guo H, Yong X, Dong H, Yang SM. microRNA inhibitors: Natural and artificial sequestration of microRNA. Cancer Lett 2017; 407:139-147. [PMID: 28602827 DOI: 10.1016/j.canlet.2017.05.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNAs) is post-transcriptional regulator of mRNA. However, the prevalence and activity of miRNA are regulated by other regulators. miRNA inhibitors are natural or artificial RNA transcripts that sequestrate miRNAs and decrease or even eliminate miRNA activity. Competing endogenous RNAs (ceRNAs) are natural and intracellular miRNA inhibitors that compete to bind to shared miRNA recognition elements (MREs) to decrease microRNA availability and relieve the repression of target RNAs. In recent years, studies have revealed that ceRNA crosstalk is involved in many pathophysiological processes and adds a new dimension to miRNA regulation. Artificial miRNA inhibitors are RNA transcripts that are synthesized via chemical and genetic methods. Artificial miRNA inhibitors can be used in miRNA loss-of-function research and gene therapies for certain diseases. In this review, we summarize the recent advances in the two different types of miRNA inhibitors.
Collapse
Affiliation(s)
- Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hong-Yan Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ning-Bo Hao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hong Guo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
41
|
An Y, Furber KL, Ji S. Pseudogenes regulate parental gene expression via ceRNA network. J Cell Mol Med 2017; 21:185-192. [PMID: 27561207 PMCID: PMC5192809 DOI: 10.1111/jcmm.12952] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022] Open
Abstract
The concept of competitive endogenous RNA (ceRNA) was first proposed by Salmena and colleagues. Evidence suggests that pseudogene RNAs can act as a 'sponge' through competitive binding of common miRNA, releasing or attenuating repression through sequestering miRNAs away from parental mRNA. In theory, ceRNAs refer to all transcripts such as mRNA, tRNA, rRNA, long non-coding RNA, pseudogene RNA and circular RNA, because all of them may become the targets of miRNA depending on spatiotemporal situation. As binding of miRNA to the target RNA is not 100% complementary, it is possible that one miRNA can bind to multiple target RNAs and vice versa. All RNAs crosstalk through competitively binding to miRNAvia miRNA response elements (MREs) contained within the RNA sequences, thus forming a complex regulatory network. The ratio of a subset of miRNAs to the corresponding number of MREs determines repression strength on a given mRNA translation or stability. An increase in pseudogene RNA level can sequester miRNA and release repression on the parental gene, leading to an increase in parental gene expression. A massive number of transcripts constitute a complicated network that regulates each other through this proposed mechanism, though some regulatory significance may be mild or even undetectable. It is possible that the regulation of gene and pseudogene expression occurring in this manor involves all RNAs bearing common MREs. In this review, we will primarily discuss how pseudogene transcripts regulate expression of parental genes via ceRNA network and biological significance of regulation.
Collapse
Affiliation(s)
- Yang An
- Department of Biochemistry and Molecular BiologyMedical SchoolHenan UniversityHenan ProvinceChina
| | - Kendra L. Furber
- College of Pharmacy and NutritionUniversity of SaskatchewanSaskatchewanSKCanada
| | - Shaoping Ji
- Department of Biochemistry and Molecular BiologyMedical SchoolHenan UniversityHenan ProvinceChina
| |
Collapse
|
42
|
De Martino M, Forzati F, Marfella M, Pellecchia S, Arra C, Terracciano L, Fusco A, Esposito F. HMGA1P7-pseudogene regulates H19 and Igf2 expression by a competitive endogenous RNA mechanism. Sci Rep 2016; 6:37622. [PMID: 27874091 PMCID: PMC5118720 DOI: 10.1038/srep37622] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
Recent studies have revealed that pseudogene transcripts can function as competing endogenous RNAs, and thereby can also contribute to cancer when dysregulated. We have recently identified two pseudogenes, HMGA1P6 and HMGA1P7 for the HMGA1 gene whose overexpression has a critical role in cancer progression. These pseudogenes work as competitive endogenous RNA decoys for HMGA1 and other cancer related genes suggesting their role in carcinogenesis. Looking for new HMGA1 pseudogene ceRNAs, we performed RNA sequencing technology on mouse embryonic fibroblasts deriving from transgenic mice overexpressing HMGA1P7. Here, we report that HMGA1P7 mRNA sustains the H19 and Igf2 overexpression by acting as miRNA decoy. Lastly, the expression of HMGA1P7 was significantly correlated with H19 and IGF2 levels in human breast cancer thereby suggesting a role for HMGA1P7 deregulation in this neoplasia.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Marianna Marfella
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Simona Pellecchia
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, via Mariano Semmola, 80131 Naples, Italy
| | - Luigi Terracciano
- Institute of Pathology, Molecular Pathology Division, University of Basel, Schonbeinstrasse 40, 4003 Basel, Switzerland
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
43
|
Palumbo Júnior A, Da Costa NM, Esposito F, Fusco A, Pinto LFR. High Mobility Group A proteins in esophageal carcinomas. Cell Cycle 2016; 15:2410-3. [PMID: 27484584 PMCID: PMC5026802 DOI: 10.1080/15384101.2016.1215388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022] Open
Abstract
We have recently shown that HMGA2 is overexpressed in esophageal squamous cell carcinoma (ESCC) and its detection allows to discriminate between cancer and normal surrounding tissue proposing HMGA2 as a novel diagnostic marker. Interestingly, esophageal adenocarcinoma shows an opposite behavior with the overexpression of HMGA1 but not HMGA2. Moreover, we show that the suppression of HMGA2 in 2 ESCC cell lines reduces the malignant phenotype. Then, this paper highlights a differential induction of the HMGA proteins, depending on the cancer histological type, and reinforces the perspective of an innovative esophageal cancer therapy based on the suppression of the HMGA protein function and/or expression.
Collapse
Affiliation(s)
- Antonio Palumbo Júnior
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, Rio de Janeiro, RJ, Brazil
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde - Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, Rio de Janeiro, RJ, Brasil
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, Rio de Janeiro, RJ, Brazil
| | - Francesco Esposito
- Istituto di Endocrinologia e Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II” - Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II” - Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
44
|
Kozlov AP. Expression of evolutionarily novel genes in tumors. Infect Agent Cancer 2016; 11:34. [PMID: 27437030 PMCID: PMC4949931 DOI: 10.1186/s13027-016-0077-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023] Open
Abstract
The evolutionarily novel genes originated through different molecular mechanisms are expressed in tumors. Sometimes the expression of evolutionarily novel genes in tumors is highly specific. Moreover positive selection of many human tumor-related genes in primate lineage suggests their involvement in the origin of new functions beneficial to organisms. It is suggested to consider the expression of evolutionarily young or novel genes in tumors as a new biological phenomenon, a phenomenon of TSEEN (tumor specifically expressed, evolutionarily novel) genes.
Collapse
Affiliation(s)
- A. P. Kozlov
- The Biomedical Center and Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
45
|
Han X, Cao Y, Wang K, Zhu G. HMGA1 facilitates tumor progression through regulating Wnt/β-catenin pathway in endometrial cancer. Biomed Pharmacother 2016; 82:312-8. [PMID: 27470368 DOI: 10.1016/j.biopha.2016.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022] Open
Abstract
Recent studies have identified a unique role for high mobility group protein A1 (HMGA1) as a major regulator of tumor progression and in diverse tumor models. Emerging evidences indicate that overexpressed HMGA1 facilitates multiple malignant phenotypes of cancer cells, however, the oncogenic activities of HMGA1 in endometrial cancer (EC) remains elusive. Here we showed that HMGA1 was more frequently expressed in human EC tissues compared to non-tumor tissues. Elevated HMGA1 was significantly associated with advanced clinical stage. Wound-healing assay and transwell assay showed that HMGA1 can positively regulate cell migration and invasion. Mechanistically, luciferase reporter assay and Western blotting assay demonstrated that activation of Wnt/β-catenin pathway contributed to the oncogenic activity of HMGA1. Taken together, our data reveal that HMGA1 may function as an oncogene and modulate EC cell migration and invasion by activating Wnt/β-catenin pathway, implying that suppression of HMGA1 might be a potential therapeutic strategy for EC.
Collapse
Affiliation(s)
- Xiuxia Han
- Department of Gynecology and Obstetrics, The People's Hospital of Dongying, Dongying 257091, PR China.
| | - Yanhua Cao
- Department of Gynecology and Obstetrics, The People's Hospital of Dongying, Dongying 257091, PR China
| | - Kun Wang
- Department of Operating Rooms, The People's Hospital of Dongying, Dongying 257091, PR China
| | - Guiping Zhu
- Department of Gynecology and Obstetrics, Central Hospital of Shengli Oil Field, Dongying 257034, PR China
| |
Collapse
|
46
|
Di Sanzo M, Aversa I, Santamaria G, Gagliardi M, Panebianco M, Biamonte F, Zolea F, Faniello MC, Cuda G, Costanzo F. FTH1P3, a Novel H-Ferritin Pseudogene Transcriptionally Active, Is Ubiquitously Expressed and Regulated during Cell Differentiation. PLoS One 2016; 11:e0151359. [PMID: 26982978 PMCID: PMC4794146 DOI: 10.1371/journal.pone.0151359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/27/2016] [Indexed: 11/18/2022] Open
Abstract
Ferritin, the major iron storage protein, performs its essential functions in the cytoplasm, nucleus and mitochondria. The variable assembly of 24 subunits of the Heavy (H) and Light (L) type composes the cytoplasmic molecule. In humans, two distinct genes code these subunits, both belonging to complex multigene families. Until now, one H gene has been identified with the coding sequence interrupted by three introns and more than 20 intronless copies widely dispersed on different chromosomes. Two of the intronless genes are actively transcribed in a tissue-specific manner. Herein, we report that FTH1P3, another intronless pseudogene, is transcribed. FTH1P3 transcript was detected in several cell lines and tissues, suggesting that its transcription is ubiquitary, as it happens for the parental ferritin H gene. Moreover, FTH1P3 expression is positively regulated during the cell differentiation process.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Ilenia Aversa
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Gianluca Santamaria
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | | | - Mariafranca Panebianco
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Flavia Biamonte
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Fabiana Zolea
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Maria Concetta Faniello
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Giovanni Cuda
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Francesco Costanzo
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
- * E-mail:
| |
Collapse
|
47
|
Poliseno L, Marranci A, Pandolfi PP. Pseudogenes in Human Cancer. Front Med (Lausanne) 2015; 2:68. [PMID: 26442270 PMCID: PMC4585173 DOI: 10.3389/fmed.2015.00068] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/03/2015] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the analysis of RNA sequencing data have shown that pseudogenes are highly specific markers of cell identity and can be used as diagnostic and prognostic markers. Furthermore, genetically engineered mouse models have recently provided compelling support for a causal link between altered pseudogene expression and cancer. In this review, we discuss the most recent milestones reached in the pseudogene field and the use of pseudogenes as cancer classifiers.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori , Pisa , Italy ; Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche , Pisa , Italy
| | - Andrea Marranci
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori , Pisa , Italy ; University of Siena , Siena , Italy
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
48
|
D'Angelo D, Esposito F, Fusco A. Epigenetic Mechanisms Leading to Overexpression of HMGA Proteins in Human Pituitary Adenomas. Front Med (Lausanne) 2015; 2:39. [PMID: 26137461 PMCID: PMC4469109 DOI: 10.3389/fmed.2015.00039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/23/2015] [Indexed: 01/06/2023] Open
Abstract
Overexpression of the high-mobility group A (HMGA)1 and HMGA2 proteins is a feature of all human pituitary adenoma (PAs) subtypes. However, amplification and/or rearrangement of the HMGA2 have been described in human prolactinomas, but rarely in other pituitary subtypes, and no genomic amplification of HMGA1 was detected in PAs. Here, we summarize the functional role of HMGA proteins in pituitary tumorigenesis and the epigenetic mechanisms contributing to HMGA overexpression in these tumors focusing on recent studies indicating a critical role of non-coding RNAs in modulating HMGA protein levels.
Collapse
Affiliation(s)
- Daniela D'Angelo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Francesco Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Alfredo Fusco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy ; Instituto Nacional de Câncer - INCA , Rio de Janeiro, Rio de Janeiro , Brazil
| |
Collapse
|