1
|
Ma Q, Li J, Yu S, Zhou J, Liu Y, Wang X, Ye D, Wu Y, Gong T, Zhang Q, Wang L, Zou J, Li Y. YkuR functions as a protein deacetylase in Streptococcus mutans. Proc Natl Acad Sci U S A 2024; 121:e2407820121. [PMID: 39356671 PMCID: PMC11474102 DOI: 10.1073/pnas.2407820121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Protein acetylation is a common and reversible posttranslational modification tightly governed by protein acetyltransferases and deacetylases crucial for various biological processes in both eukaryotes and prokaryotes. Although recent studies have characterized many acetyltransferases in diverse bacterial species, only a few protein deacetylases have been identified in prokaryotes, perhaps in part due to their limited sequence homology. In this study, we identified YkuR, encoded by smu_318, as a unique protein deacetylase in Streptococcus mutans. Through protein acetylome analysis, we demonstrated that the deletion of ykuR significantly upregulated protein acetylation levels, affecting key enzymes in translation processes and metabolic pathways, including starch and sucrose metabolism, glycolysis/gluconeogenesis, and biofilm formation. In particular, YkuR modulated extracellular polysaccharide synthesis and biofilm formation through the direct deacetylation of glucosyltransferases (Gtfs) in the presence of NAD+. Intriguingly, YkuR can be acetylated in a nonenzymatic manner, which then negatively regulated its deacetylase activity, suggesting the presence of a self-regulatory mechanism. Moreover, in vivo studies further demonstrated that the deletion of ykuR attenuated the cariogenicity of S. mutans in the rat caries model, substantiating its involvement in the pathogenesis of dental caries. Therefore, our study revealed a unique regulatory mechanism mediated by YkuR through protein deacetylation that regulates the physiology and pathogenicity of S. mutans.
Collapse
Affiliation(s)
- Qizhao Ma
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Jing Li
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Shuxing Yu
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Jing Zhou
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yaqi Liu
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Xinyue Wang
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Dingwei Ye
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yumeng Wu
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Tao Gong
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Qiong Zhang
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Lingyun Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT06510
| | - Jing Zou
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yuqing Li
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Laboratory of Archaeological Repository, Center for Archaeological Science, Sichuan University, Chengdu610041, China
| |
Collapse
|
2
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
3
|
Chen X, Su L, Yang Y, Qv J, Wei T, Cui X, Shao J, Liu S, Xu Z, Zhao B, Miao J. A new activator of esterase D decreases blood cholesterol level through ESD/JAB1/ABCA1 pathway. J Cell Physiol 2020; 236:4750-4763. [PMID: 33615471 DOI: 10.1002/jcp.30196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
Abstract
Excessively high cholesterol content in the blood leads to nonalcohol fatty liver disease (NAFLD) and arteriosclerosis. Although there are increasing publications and patent applications to lower blood cholesterol with small chemical molecules, limited effective drugs can be available in clinic. It is necessary to uncover new targets and drugs to alleviate high cholesterol. Esterase D (ESD) is abundant in liver and it remains unknown about its role in cholesterol metabolism. Here we reported that small chemical molecule fluorescigenic pyrazoline derivative 5 (FPD5), a new ESD activator, could effectively reverse high blood cholesterol level and prevent fatty liver and arteriosclerosis in apoE-/- mice fed the high-fat diet. We also observed that FPD5 could reduce oxidized low density lipoprotein (oxLDL)-induced formation of foam cells. To further investigate the mechanism of FPD5 action on blood cholesterol modulation, we found that ESD trigged by FPD5 was aggregated in lysosome and interacted with Jun activation domain binding protein 1 (JAB1). ESD served as a deacetylase to remove Thr89 acetylation of JAB1 and increased its activity; thus, promoting the ATP-binding cassette transporters A1 (ABCA1) to accelerate cholesterol efflux. Our findings demonstrate that FPD5 decreases blood cholesterol level to ameliorate NAFLD and arteriosclerosis through ESD/JAB1/ABCA1 pathway, and ESD functions as a novel nonclassical deacetylase that hydrolyzes serine/threonine acetyl group. Our findings not only highlight that FPD5 may be a pioneer drug for alleviating blood cholesterol but also indicate that ESD is a potential drug target that promotes cholesterol metabolism.
Collapse
Affiliation(s)
- Xinpeng Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China.,Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, National Demonstration Center for Experimental Biology Education, School of Life Science, Hubei Normal University, Huangshi, P.R. China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China.,State Key Laboratory of Biobased Material and Green Papermaking, School of bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, P.R. China
| | - Yuejun Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Jingyao Qv
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Tiandi Wei
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Xiaoling Cui
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Jing Shao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Shuyan Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Baoxiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P.R. China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, P.R. China
| |
Collapse
|
4
|
Li D, Wang H, Zhang P, Zhang Y, He X, Zhong H, Guan K, Min M, Gao Q, Wei C. Yersinia YopT inhibits RLH-mediated NF-κB and IRF3 signal transduction. Microbiol Immunol 2020; 64:768-777. [PMID: 32902897 DOI: 10.1111/1348-0421.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 11/28/2022]
Abstract
The Gram-negative bacterial pathogen Yersinia delivers six effector proteins into the host cells to block the host innate immune response. One of the effectors, YopT, is a potent cysteine protease that causes the disruption of the actin cytoskeleton to inhibit phagocytosis of the pathogen; however, its molecular mechanism and relevance to pathogenesis need further investigation. In this report, we show that RIG-I is a novel target of the YopT protein. Remarkably, YopT interacts with RIG-I and inhibits rat liver homogenate-mediated nuclear factor-κB and interferon regulatory factor-3 activation. Further studies revealed a YopT-dependent increase in the K48-polymerized ubiquitination of RIG-I. These findings suggest that YopT negatively regulates RIG-I-mediated cellular antibacterial response by targeting RIG-I.
Collapse
Affiliation(s)
- Dongyu Li
- Bioengineering, College of Biological Engineering and Food, Hubei University of Technology, Wuhan, China.,Beijing Institute of Biotechnology, Beijing, China
| | - Haoyong Wang
- Bioengineering, College of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Pingping Zhang
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | - Xiang He
- Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, China
| | - Kai Guan
- Beijing Institute of Biotechnology, Beijing, China
| | - Min Min
- Department of Gastroenterology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qi Gao
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No. BZ0329), Beijing, China.,Beijing Hotgen Biotechnology Inc., Beijing, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
5
|
Li L, Zhao Z, Jiang W, Guo J, Zhang S. Identification and functional characterization of Lys-trimethylation of lactate dehydrogenase A. Onco Targets Ther 2019; 12:5395-5404. [PMID: 31371982 PMCID: PMC6626897 DOI: 10.2147/ott.s208637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Trimethylation of histones has been extensively studied, where histone methyltransferases catalyze the transfer of methyl groups from S-adenosyl methionine. Thus far, there have been no researches on the trimethylation of non-histone proteins. The precise mechanisms by which trimethylation affects cell progress and the related protein functions remain unclear. Purpose: The objective of this study was to identify the Lys-trimethylated proteins in kidney-derived cells and tissues, as well as to better understand the mechanisms underlying Lys-trimethylation-mediated cell metabolism. Methods: The levels of Lys-trimethylation in kidney-derived cells and tissues were assayed by Western blotting. Additionally, high-resolution mass spectrometry was used to analyze kidney-derived cells and tissues, and the eukaryotic expression vectors that led to the mutations of lysine were constructed and transfected into HEK293T cells. The LDHA activity of HEK293T cells was detected under conditions of Lys-trimethylation inhibition, and the proliferation of HEK293T cells was measured using EdU and Western blotting analyses. Results: The different proteins in kidney-derived cells and tissues showed different levels of Lys-trimethylation. In particular, lactate dehydrogenase A (LDHA) was Lys-trimethylated on lysine (K5). Inhibition of the Lys-trimethylation in LDHA increased the LDH activity of HEK293T cells and upregulated their proliferation. Conclusion: We suggested that LDHA affects the metabolism and proliferation of cells via a Lys-trimethylation-mediated mechanism; Lys-trimethylation might be a potential target for therapeutic research or used as a prognostic and treatment biomarker of several diseases.
Collapse
Affiliation(s)
- Lin Li
- Cancer Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China.,Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, People's Republic of China
| | - Zuohui Zhao
- Departments of Urology and Pediatric Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250021, People's Republic of China
| | - Wenguo Jiang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, People's Republic of China
| | - Jisheng Guo
- Cancer Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Shuping Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| |
Collapse
|
6
|
Abstract
Acetylation is a posttranslational modification conserved in all domains of life that is carried out by N-acetyltransferases. While acetylation can occur on Nα-amino groups, this review will focus on Nε-acetylation of lysyl residues and how the posttranslational modification changes the cellular physiology of bacteria. Up until the late 1990s, acetylation was studied in eukaryotes in the context of chromatin maintenance and gene expression. At present, bacterial protein acetylation plays a prominent role in central and secondary metabolism, virulence, transcription, and translation. Given the diversity of niches in the microbial world, it is not surprising that the targets of bacterial protein acetyltransferases are very diverse, making their biochemical characterization challenging. The paradigm for acetylation in bacteria involves the acetylation of acetyl-CoA synthetase, whose activity must be tightly regulated to maintain energy charge homeostasis. While this paradigm has provided much mechanistic detail for acetylation and deacetylation, in this review we discuss advances in the field that are changing our understanding of the physiological role of protein acetylation in bacteria.
Collapse
Affiliation(s)
- Chelsey M VanDrisse
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA;
| | | |
Collapse
|
7
|
Zhou H, Cheng X, Xu X, Jiang T, Zhou H, Sheng Q, Nie Z. Cloning, expression profiling, and acetylation identification of alpha-tubulin N-acetyltransferase 1 from Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21463. [PMID: 29569264 DOI: 10.1002/arch.21463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alpha-tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to α-tubulin and performs important functions in many cellular processes. Bombyx mori is an economic insect and also known as a model lepidoptera insect. In this study, we cloned a B. mori ATAT1 gene (BmATAT1) (Gen Bank accession number: XP_004932777.1). BmATAT1 contained an open reading frame (ORF) of 1,065 bp encoding 355 amino acids (aa). Expression profiling of BmATAT1 protein showed that the expression levels of BmATAT1 at different developmental stages and different tissues in fifth-instar larvae differ. BmATAT1 was highly expressed at the egg stage and in the head of the fifth-instar larvae. Subcellular localization showed that BmATAT1 was distributed in the cytoplasm and nucleus. Furthermore, BmATAT1 may lead to time-dependent induction of cell cycle arrest in the G2/M phase by flow cytometry analysis. Interestingly, using site-specific mutation, immunoprecipitation, and Western blotting, we further found a BmATAT1 acetylated site at K156, suggesting that this acetyltransferase could be regulated by acetylation itself.
Collapse
Affiliation(s)
- Huaixiang Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Xusheng Cheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Xiaoyuan Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Tianlong Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Haimeng Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
MARCH8 is associated with poor prognosis in non-small cell lung cancers patients. Oncotarget 2017; 8:108238-108248. [PMID: 29296237 PMCID: PMC5746139 DOI: 10.18632/oncotarget.22602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022] Open
Abstract
MARCH8 belongs to a family of membrane-associated RING-CH (MARCH) ubiquitin ligases. The functions of MARCH8 have been thoroughly investigated but its mechanism of action remains unknown. In this study, we detected the expression of MARCH8 protein in NSCLC samples and identified MARCH8 mRNA expression through a TCGA database. In addition, we analyzed the correlation between MARCH8 and the clinical characteristics of NSCLC patients and their prognosis.(www.kmplot.com). The roles of MARCH8 in proliferation, migration, and metastasis were further explored through ectopic expression analysis and western blot analysis; its mechanism of expressionwas also explored. We discovered that MARCH8 was downregulated in NSCLC tissues compared to adjacent normal lung tissues. Overexpression of MARCH8 inhibited NSCLC cell proliferation and metastasis via the PI3K and mTOR signaling pathways; this also increased apoptosis of A549 and H1299 cells. Our results indicated that MARCH8 plays crucial roles in NSCLC against carcinogenesis and progression; therefore, MARCH8 might be a predictive factor and an attractive therapeutic target for NSCLC patients.
Collapse
|