1
|
Rafnsdóttir ÓB, Kiuru A, Tebäck M, Friberg N, Revstedt P, Zhu J, Thomasson S, Czopek A, Malakpour-Permlid A, Weber T, Oredsson S. A new animal product free defined medium for 2D and 3D culturing of normal and cancer cells to study cell proliferation and migration as well as dose response to chemical treatment. Toxicol Rep 2023; 10:509-520. [PMID: 37396848 PMCID: PMC10313884 DOI: 10.1016/j.toxrep.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 07/04/2023] Open
Abstract
Cell culturing methods are increasingly used to reduce and replace the use of live animals in biomedical research and chemical toxicity testing. Although live animals are avoided when using cell culturing methods, they often contain animal-derived components of which one of the most commonly used is foetal bovine serum (FBS). FBS is added to cell culture media among other supplements to support cell attachment/spreading and cell proliferation. The safety, batch-to-batch variation, and ethical problems with FBS are acknowledged and therefore world-wide efforts are ongoing to produce FBS free media. Here, we present the composition of a new defined medium with only human proteins either recombinant or derived from human tissues. This defined medium supports long-term culturing/routine culturing of normal cells and of cancer cells, and can be used for freezing and thawing of cells, i.e. for cell banking. Here, we show for our defined medium, growth curves and dose response curves of cells grown in two and three dimensions, and applications such as cell migration. Cell morphology was studied in real time by phase contrast and phase holographic microscopy time-lapse imaging. The cell lines used are human cancer-associated fibroblasts, keratinocytes, breast cancer JIMT-1 and MDA-MB-231 cells, colon cancer CaCo-2 cells, and pancreatic cancer MiaPaCa-2 cells as well as the mouse L929 cell line. In conclusion, we present the composition of a defined medium without animal-derived products which can be used for routine culturing and in experimental settings for normal cells and for cancer cells, i.e. our defined medium provides a leap towards a universal animal product free cell culture medium.
Collapse
Affiliation(s)
- Ólöf Birna Rafnsdóttir
- Department of Biology, Lund University, 22362 Lund, Sweden
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavík, Iceland
| | - Anna Kiuru
- Department of Biology, Lund University, 22362 Lund, Sweden
- Occupational and Environmental Dermatology, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Mattis Tebäck
- Department of Biology, Lund University, 22362 Lund, Sweden
| | | | | | - Johan Zhu
- Department of Biology, Lund University, 22362 Lund, Sweden
- Clinical Microbiology and Infection Prevention and Control, Region Skåne, 221 85 Lund, Sweden
| | - Sofia Thomasson
- Department of Biology, Lund University, 22362 Lund, Sweden
- Atos Medical AB, 242 35 Hörby, Sweden
| | | | - Atena Malakpour-Permlid
- Department of Biology, Lund University, 22362 Lund, Sweden
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Tilo Weber
- Animal Welfare Academy of the German Animal Welfare Federation, 85579 Neubiberg, Germany
| | - Stina Oredsson
- Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
2
|
Ulatowski K, Wierzchowski K, Fiuk J, Sobieszuk P. Effect of Nanobubble Presence on Murine Fibroblasts and Human Leukemia Cell Cultures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8575-8584. [PMID: 35776689 PMCID: PMC9301908 DOI: 10.1021/acs.langmuir.2c00819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanobubbles can enhance both the proliferation and metabolic activity of microorganisms (mainly bacteria) and the growth of the whole higher organisms such as mice, fish, or plants. The critical fact is that nanobubbles of different gases can affect given cells differently. As animal cell cultures are used in industry and research studies, investigations of their interactions with nanobubbles should be carried out. This study aims to uncover whether the presence of nanobubbles improves the proliferation rate and metabolic activity of L929 fibroblasts and HL60 leukemia cells as exemplary animal cell lines of adherent and non-adherent cells, respectively. The long-term (8-day) cultures of both L929 and HL-60 cells with nanobubble addition to the appropriate medium were carried out. The medium was not exchanged for the whole duration of the culture. Nanobubbles of two gases - oxygen and nitrogen - were dispersed in the appropriate media and then used to culture cells. The density and viability of cells were assessed microscopically while their metabolic activity was determined using PrestoBlue or XTT assays. Additionally, we have performed the analysis of substrate consumption rate during the growth and activity of lactate dehydrogenase. We have shown that nanodispersion of both gases enhances the proliferation rate and metabolic activity of L929. For HL-60 cultures, reference cultures exhibited better viability, cell density, and metabolic activity than those with either oxygen or nitrogen nanobubbles. Obtained results clearly show that nanobubble dispersions of both oxygen and nitrogen positively affect the cultures of L929 while inhibiting the growth of HL-60 cells. We suspect that a similar positive effect would be visible for other adherent cells, similar to L929. Such results are promising for intensifying the growth of animal or human cells in routine cell cultures.
Collapse
|
3
|
Molecularly Imprinted Polymers Exhibit Low Cytotoxic and Inflammatory Properties in Macrophages In Vitro. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecularly imprinted polymers (MIPs) against sialic acid (SA) have been developed as a detection tool to target cancer cells. Before proceeding to in vivo studies, a better knowledge of the overall effects of MIPs on the innate immune system is needed. The aim of this study thus was to exemplarily assess whether SA-MIPs lead to inflammatory and/or cytotoxic responses when administered to phagocytosing cells in the innate immune system. The response of monocytic/macrophage cell lines to two different reference particles, Alhydrogel and PLGA, was compared to their response to SA-MIPs. In vitro culture showed a cellular association of SA-MIPs and Alhydrogel, as analyzed by flow cytometry. The reference particle Alhydrogel induced secretion of IL-1β from the monocytic cell line THP-1, whereas almost no secretion was provoked for SA-MIPs. A reduced number of both THP-1 and RAW 264.7 cells were observed after incubation with SA-MIPs and this was not caused by cytotoxicity. Digital holographic cytometry showed that SA-MIP treatment affected cell division, with much fewer cells dividing. Thus, the reduced number of cells after SA-MIP treatment was not linked to SA-MIPs cytotoxicity. In conclusion, SA-MIPs have a low degree of inflammatory properties, are not cytotoxic, and can be applicable for future in vivo studies.
Collapse
|
4
|
Eder KM, Marzi A, Barroso Á, Ketelhut S, Kemper B, Schnekenburger J. Label-Free Digital Holographic Microscopy for In Vitro Cytotoxic Effect Quantification of Organic Nanoparticles. Cells 2022; 11:cells11040644. [PMID: 35203295 PMCID: PMC8870653 DOI: 10.3390/cells11040644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Cytotoxicity quantification of nanoparticles is commonly performed by biochemical assays to evaluate their biocompatibility and safety. We explored quantitative phase imaging (QPI) with digital holographic microscopy (DHM) as a time-resolved in vitro assay to quantify effects caused by three different types of organic nanoparticles in development for medical use. Label-free proliferation quantification of native cell populations facilitates cytotoxicity testing in biomedical nanotechnology. Therefore, DHM quantitative phase images from measurements on nanomaterial and control agent incubated cells were acquired over 24 h, from which the temporal course of the cellular dry mass was calculated within the observed field of view. The impact of LipImage™ 815 lipidots® nanoparticles, as well as empty and cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles on the dry mass development of four different cell lines (RAW 264.7, NIH-3T3, NRK-52E, and RLE-6TN), was observed vs. digitonin as cytotoxicity control and cells in culture medium. The acquired QPI data were compared to a colorimetric cell viability assay (WST-8) to explore the use of the DHM assay with standard biochemical analysis methods downstream. Our results show that QPI with DHM is highly suitable to identify harmful or low-toxic nanomaterials. The presented DHM assay can be implemented with commercial microscopes. The capability for imaging of native cells and the compatibility with common 96-well plates allows high-throughput systems and future embedding into existing experimental routines for in vitro cytotoxicity assessment.
Collapse
|
5
|
Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2021; 42:1037-1063. [PMID: 34786735 PMCID: PMC9298915 DOI: 10.1002/med.21870] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self‐renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti‐CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad‐spectrum activities, including the important anti‐CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor‐specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA
| | - Yunyi Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China.,Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas, USA
| |
Collapse
|
6
|
Sotillo WS, Tarqui S, Huang X, Almanza G, Oredsson S. Breast cancer cell line toxicity of a flavonoid isolated from Baccharis densiflora. BMC Complement Med Ther 2021; 21:188. [PMID: 34215226 PMCID: PMC8254278 DOI: 10.1186/s12906-021-03349-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background Flavonoids are compounds of interest in the search for new anti-cancer therapies. We have previously isolated the methoxyflavones 5,4′-dihydroxy-6,7,8,3′-tetramethoxyflavone (8-methoxycirsilineol), 5,4′-dihydroxy-6,7,8-trimethoxyflavone (xanthomicrol), and 5,4,'3′-trihydroxy-6,7,8-trimethoxyflavone (sideritoflavone) from Baccharis densiflora. Herein, we investigate the toxicity of these methoxyflavones in human breast-derived cell line. Our main aim was to focus on the cancer stem cell (CSC) sub-population of JIMT-1 breast cancer cells. Methods Initially, dose response experiments yielding inhibitory concentration 50 (IC50) values were performed using MCF-7, HCC1937, and JIMT-1 breast cancer, and the MCF-10A normal-like breast cell lines to get an understanding of toxic ranges. Due to a clear difference in the toxicity of the flavones, only sideritoflavone was selected for further studies using the JIMT-1 cell line. Effects on the CSC sub-population was investigated using flow cytometry-based methods. A wound healing assay and digital holographic microscopy were used to investigate effects on cell movement. A reporter assay was used to study effects on signal transduction pathways and Western blot for protein expression. Results The dose response data showed that 8-methoxycirsilineol was non-toxic at concentrations below 100 μM, that the IC50 of xanthomicrol was between 50 and 100 μM, while sideritoflavone was highly toxic with a single digit μM IC50 in all cell lines. Treatment of the JIMT-1 cells with 2 μM sideritoflavone did not selectively effect the CSC sub-population. Instead, sideritoflavone treatment inhibited the proliferation of both the non-CSC and the CSC sub-populations to the same extent. The inhibition of cell proliferation resulted in an accumulation of cells in the G2 phase of the cell cycle and the treated cells showed an increased level of γ-H2A histone family member X indicating DNA double strand breaks. Analysis of the effect of sideritoflavone treatment on signal transduction pathways showed activation of the Wnt, Myc/Max, and transforming growth factor-β pathways. The level of p65/nuclear factor kappa-light-chain-enhancer of activated Β cells was increased in sideritoflavone-treated cells. Cell movement was decreased by sideritoflavone treatment. Conclusions Altogether our data show that the methoxyflavone sideritoflavone has favourable anti-cancer effects that may be exploited for development to be used in combination with CSC specific compounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03349-4.
Collapse
Affiliation(s)
- Wendy Soria Sotillo
- Department of Biology, Lund University, Lund, Sweden.,Molecular Biology and Biotechnology Institute, University Major of San Andres, La Paz, Bolivia
| | - Santiago Tarqui
- Chemical Research Institute, University Major of San Andres, La Paz, Bolivia
| | - Xiaoli Huang
- Department of Biology, Lund University, Lund, Sweden
| | - Giovanna Almanza
- Chemical Research Institute, University Major of San Andres, La Paz, Bolivia
| | | |
Collapse
|
7
|
Wallin H, Hunaiti S, Abrahamson M. Externally added cystatin C reduces growth of A375 melanoma cells by increasing cell cycle time. FEBS Open Bio 2021; 11:1645-1658. [PMID: 33837649 PMCID: PMC8167853 DOI: 10.1002/2211-5463.13162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Some secreted cysteine protease inhibitors of the cystatin family appear to affect intracellular proteolysis and growth of human cells, as a result of internalization. Here, we studied the effects of external addition of the most abundant human cystatin, cystatin C, on viability and proliferation of cancer cells in culture. A dose‐dependent decrease in viable cells was seen for A375 melanoma, MCF‐7 breast cancer, and PC‐3 prostate cancer cells cultured in 1–5 µm cystatin C after 24 h. Real‐time assessment of growth rates in A375 cell cultures for 48 h by digital holographic microscopy showed an increased doubling time for cells cultured in the presence of 5 µm cystatin C (20.1 h) compared with control cells (14.7 h). A prolonged doubling time was already observed during the first 12 h, indicating a rapid general decrease in cell proliferation at the population level. Tracking of individual cells in phase holographic images showed that dividing cells incubated with 5 µm cystatin C underwent fewer mitoses during 48 h than control cells. In addition, the time between cell divisions was longer, especially for the first cell cycle. Incubation with the variant W106F‐cystatin C (with high cellular uptake rate) resulted in a lower number of viable cells and a prolonged doubling time than when cells were incubated with wild‐type cystatin C, but no effect was observed for (R24A,R25A)‐cystatin C (low cellular uptake). Thus, cystatin C causes prolonged cell division leading to decreased proliferation of melanoma cells, and internalization seems to be a prerequisite for this effect.
Collapse
Affiliation(s)
- Hanna Wallin
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Samar Hunaiti
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Magnus Abrahamson
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| |
Collapse
|
8
|
Malakpour-Permlid A, Oredsson S. A novel 3D polycaprolactone high-throughput system for evaluation of toxicity in normoxia and hypoxia. Toxicol Rep 2021; 8:627-635. [PMID: 33854950 PMCID: PMC8024882 DOI: 10.1016/j.toxrep.2021.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
Two-dimensional (2D) culturing of cancer cells has been indispensable for the development of anti-cancer drugs. Drug development, however, is lengthy and costly with a high attrition rate, calling to mind that 2D culturing does not mimic the three-dimensional (3D) tumour microenvironment in vivo. Thus, began the development of 3D culture models for cancer research. We have constructed a 3D 96-well plate using electrospun fibres made of biocompatible polycaprolactone (PCL). Finely-cut PCL fibre pieces in water/ethanol solution was pipetted to the wells of hydrophobic 96-well plates. A fibrous network of approximately 200 μm thickness and high porosity was formed after crosslinking and drying. Human JIMT-1 breast cancer cells or fibroblasts were seeded into the network. Confocal microscopy shows that the cells grow throughout the fibre network. The toxicity of paclitaxel and an experimental salinomycin analogue was assessed and compared in 2D and 3D cultures incubated under conditions of normoxia and hypoxia often found in tumours. The toxicity of both compounds is lower when the cells are cultured in 3D compared to 2D in either normoxia or hypoxia. We conclude that our 96-well assay is a cost-efficient tool that may be used for high-throughput pre-clinical screening of potential anti-cancer compounds.
Collapse
Key Words
- 2D, two-dimensional
- 3D high-throughput screening
- 3D, three-dimensional
- Breast cancer cells
- CSCs, cancer stem cells
- DHHS, donor herd horse serum
- ECM, extracellular matrix
- FBS, fetal bovine serum
- HDFs, human dermal fibroblasts
- HTS, high-throughput
- Hypoxia
- Multi-well plates
- PCL, polycaprolactone
- Paclitaxel
- Polycaprolactone fibre network
- SAEC, salinomycin analogue 20-ethyl carbonate-Na
Collapse
|
9
|
Schnitzler L, Zarzycki J, Gerhard M, Konde S, Rexer KH, Erb TJ, Maier UG, Koch M, Hofmann MR, Moog D. Lensless digital holographic microscopy as an efficient method to monitor enzymatic plastic degradation. MARINE POLLUTION BULLETIN 2021; 163:111950. [PMID: 33444995 DOI: 10.1016/j.marpolbul.2020.111950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
A big challenge of the 21st century is to cope with the huge amounts of plastic waste on Earth. Especially the oceans are heavily polluted with plastics. To counteract this issue, biological (enzymatic) plastic decomposition is increasingly gaining attention. Recently it was shown that polyethylene terephthalate (PET) can be degraded in a saltwater-based environment using bacterial PETase produced by a marine diatom. At moderate temperatures, plastic biodegradation is slow and requires sensitive methods for detection, at least at initial stages. However, conventional methods for verifying the plastic degradation are either complex, expensive, time-consuming or they interfere with the degradation process. Here, we adapt lensless digital holographic microscopy (LDHM) as a new application for efficiently monitoring enzymatic degradation of a PET glycol copolymer (PETG). LDHM is a cost-effective, compact and sensitive optical method. We demonstrate enzymatic PETG degradation over a time course of 43 days employing numerical analysis of LDHM images.
Collapse
Affiliation(s)
- Lena Schnitzler
- Photonics and Terahertz Technology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Jan Zarzycki
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Marina Gerhard
- Department of Physics and Material Sciences Center, University of Marburg, Renthof 5, 35032 Marburg, Germany
| | - Srumika Konde
- Department of Physics and Material Sciences Center, University of Marburg, Renthof 5, 35032 Marburg, Germany
| | - Karl-Heinz Rexer
- Department for Evolutionary Ecology of Plants, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Uwe G Maier
- SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35043 Marburg, Germany; Laboratory for Cell Biology, Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Martin Koch
- Department of Physics and Material Sciences Center, University of Marburg, Renthof 5, 35032 Marburg, Germany
| | - Martin R Hofmann
- Photonics and Terahertz Technology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Daniel Moog
- SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35043 Marburg, Germany; Laboratory for Cell Biology, Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
10
|
Exploiting the potential of commercial digital holographic microscopy by combining it with 3D matrix cell culture assays. Sci Rep 2020; 10:14680. [PMID: 32895419 PMCID: PMC7477226 DOI: 10.1038/s41598-020-71538-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/24/2020] [Indexed: 01/25/2023] Open
Abstract
3D cell culture assays are becoming increasingly popular due to their higher resemblance to tissue environment. These provide an increased complexity compared to the growth on 2D surface and therefore allow studies of advanced cellular properties such as invasion. We report here on the use of 3D Matrigel cell preparations combined with a particular gentle and informative type of live-cell microscopy: quantitative digital holographic microscopy (DHM), here performed by a commercial software-integrated system, currently mostly used for 2D cell culture preparations. By demonstrating this compatibility, we highlight the possible time-efficient quantitative analysis obtained by using a commercial software-integrated DHM system, also for cells in a more advanced 3D culture environment. Further, we demonstrate two very different examples making use of this advantage by performing quantitative DHM analysis of: (1) wound closure cell monolayer Matrigel invasion assay and (2) Matrigel-trapped single and clumps of suspension cells. For both these, we benefited from the autofocus functionality of digital phase holographic imaging to obtain 3D information for cells migrating in a 3D environment. For the latter, we demonstrate that it is possible to quantitatively measure tumourigenic properties like growth of cell clump (or spheroid) over time, as well as single-cell invasion out of cell clump and into the surrounding extracellular matrix. Overall, our findings highlight several possibilities for 3D digital holographic microscopy applications combined with 3D cell preparations, therein studies of drug response or genetic alterations on invasion capacity as well as on tumour growth and metastasis.
Collapse
|
11
|
Salinomycin Treatment Specifically Inhibits Cell Proliferation of Cancer Stem Cells Revealed by Longitudinal Single Cell Tracking in Combination with Fluorescence Microscopy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A cell line derived from a tumor is a heterogeneous mixture of phenotypically different cells. Such cancer cell lines are used extensively in the search for new anticancer drugs and for investigating their mechanisms of action. Most studies today are population-based, implying that small subpopulations of cells, reacting differently to the potential drug go undetected. This is a problem specifically related to the most aggressive single cancer cells in a tumor as they appear to be insensitive to the drugs used today. These cells are not detected in population-based studies when developing new anticancer drugs. Thus, to get a deeper understanding of how all individual cancer cells react to chemotherapeutic drugs, longitudinal tracking of individual cells is needed. Here we have used digital holography for long time imaging and longitudinal tracking of individual JIMT-1 breast cancer cells. To gain further knowledge about the tracked cells, we combined digital holography with fluorescence microscopy. We grouped the JIMT-1 cells into different subpopulations based on expression of CD24 and E-cadherin and analyzed cell proliferation and cell migration for 72 h. We investigated how the cancer stem cell (CSC) targeting drug salinomycin affected the different subpopulations. By uniquely combining digital holography with fluorescence microscopy we show that salinomycin specifically targeted the CD24− subpopulation, i.e., the CSCs, by inhibiting cell proliferation, which was evident already after 24 h of drug treatment. We further found that after salinomycin treatment, the surviving cells were more epithelial-like due to the selection of the CD24+ cells.
Collapse
|
12
|
Digital Holographic Imaging as a Method for Quantitative, Live Cell Imaging of Drug Response to Novel Targeted Cancer Therapies. Methods Mol Biol 2020; 2054:171-183. [PMID: 31482456 DOI: 10.1007/978-1-4939-9769-5_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Digital holographic imaging (DHI) is a noninvasive, live cell imaging technique that enables long-term quantitative visualization of cells in culture. DHI uses phase-shift imaging to monitor and quantify cellular events such as cell division, cell death, cell migration, and drug responses. In recent years, the application of DHI has expanded from its use in the laboratory to the clinical setting, and currently it is being developed for use in theranostics. Here, we describe the use of the DHI platform HoloMonitorM4 to evaluate the effects of novel, targeted cancer therapies on cell viability and proliferation using the HeLa cancer cell line as a model. We present single cell tracking and population-wide analysis of multiple cell morphology parameters.
Collapse
|
13
|
Lam VK, Sharma P, Nguyen T, Nehmetallah G, Raub CB, Chung BM. Morphology, Motility, and Cytoskeletal Architecture of Breast Cancer Cells Depend on Keratin 19 and Substrate. Cytometry A 2020; 97:1145-1155. [PMID: 32286727 DOI: 10.1002/cyto.a.24011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Cancer cells gain motility through events that accompany modulation of cell shape and include altered expression of keratins. However, the role of keratins in change of cancer cell architecture is not well understood. Therefore, we ablated the expression of keratin 19 (K19) in breast cancer cells of the MDA-MB-231 cell line and found that cells lacking K19 become more elongated in culture, with morphological reversion toward the parental phenotype upon transduction of KRT19. Also, the number of actin stress fibers and focal adhesions were significantly reduced in KRT19 knockout (KO) cells. The altered morphology of KRT19 KO cells was then characterized quantitatively using digital holographic microscopy (DHM), which not only confirmed the phenotypic change of KRT19 KO cells but also identified that the K19-dependent morphological change is dependent on the substrate type. A new quantitative method of single cell analysis from DHM, via average phase difference maps, facilitated evaluation of K19-substrate interactive effects on cell morphology. When plated on collagen substrate, KRT19 KO cells were less elongated and resembled parental cells. Assessing single cell motility further showed that while KRT19 KO cells moved faster than parental cells on a rigid surface, this increase in motility became abrogated when cells were plated on collagen. Overall, our study suggests that K19 inhibits cell motility by regulating cell shape in a substrate-dependent manner. Thus, this study provides a potential basis for the altered expression of keratins associated with change in cell shape and motility of cancer cells. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Van K Lam
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, USA
| | - Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Thanh Nguyen
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC, USA
| | - Georges Nehmetallah
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC, USA
| | - Christopher B Raub
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, USA
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC, USA
| |
Collapse
|
14
|
Lam VK, Nguyen T, Phan T, Chung BM, Nehmetallah G, Raub CB. Machine Learning with Optical Phase Signatures for Phenotypic Profiling of Cell Lines. Cytometry A 2019; 95:757-768. [PMID: 31008570 DOI: 10.1002/cyto.a.23774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 12/29/2022]
Abstract
Robust and reproducible profiling of cell lines is essential for phenotypic screening assays. The goals of this study were to determine robust and reproducible optical phase signatures of cell lines for classification with machine learning and to correlate optical phase parameters to motile behavior. Digital holographic microscopy (DHM) reconstructed phase maps of cells from two pairs of cancer and non-cancer cell lines. Seventeen image parameters were extracted from each cell's phase map, used for linear support vector machine learning, and correlated to scratch wound closure and Boyden chamber chemotaxis. The classification accuracy was between 90% and 100% for the six pairwise cell line comparisons. Several phase parameters correlated with wound closure rate and chemotaxis across the four cell lines. The level of cell confluence in culture affected phase parameters in all cell lines tested. Results indicate that optical phase features of cell lines are a robust set of quantitative data of potential utility for phenotypic screening and prediction of motile behavior. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Van K Lam
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC
| | - Thanh Nguyen
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC
| | - Thuc Phan
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC
| | - Byung-Min Chung
- Department of Biology, The Catholic University of America, Washington, DC
| | - George Nehmetallah
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC
| | - Christopher B Raub
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC
| |
Collapse
|
15
|
Wingren AG. Moving into a new dimension: Tracking migrating cells with digital holographic cytometry in 3D. Cytometry A 2018; 95:144-146. [DOI: 10.1002/cyto.a.23679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Anette Gjörloff Wingren
- Department of Biomedical Sciences, Faculty of Health and SocietyMalmö University Malmö Sweden
| |
Collapse
|
16
|
Versini A, Saier L, Sindikubwabo F, Müller S, Cañeque T, Rodriguez R. Chemical biology of salinomycin. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Quantitative Phase Imaging for Label-Free Analysis of Cancer Cells—Focus on Digital Holographic Microscopy. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|