1
|
Wang X, Wang Z, Qi Z, Zhu Y. Potential therapeutic substances for hand-foot-and-mouth disease in the interplay of enteroviruses and type I interferon. Int J Antimicrob Agents 2025; 65:107464. [PMID: 39956531 DOI: 10.1016/j.ijantimicag.2025.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 12/15/2024] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
OBJECTIVES Hand-foot-and-mouth disease (HFMD) is widespread in the world. Severe HFMD can lead to complications like pneumonia, encephalitis, myocarditis, transverse myelitis and even death. Since HFMD is caused by at least 20 types of enteroviruses, there is an urgent need for broad-spectrum antiviral drugs to help control the spread of HFMD outbreaks. METHODS Type I interferon (IFN), as an indispensable part of the immune response, plays a key role in the inhibition of the enterovirus replication cycle without species specificity, and regulation of the innate immune system by inducing the activation of the IFN-stimulated genes. CONCLUSIONS Here, the interplay of enteroviruses and type I IFN was systematically summarized, including pathways for the activation and evasion of type I IFN. Besides, we proposed promising anti-enterovirus agents with therapeutic potential.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Infectious Diseases, First Hospital of Naval Medical University, Shanghai, China
| | - Ziyuan Wang
- School of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Zhongtian Qi
- Department of Microbiology, Naval Medical University, Shanghai, China.
| | - Yongzhe Zhu
- Department of Microbiology, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Giammona A, Terribile G, Rainone P, Pellizzer C, Porro D, Cerasa A, Sancini G, Rashid AU, Belloli S, Valtorta S, Lo Dico A, Bertoli G. Effects of particulate air pollution exposure on lung-brain axis and related miRNAs modulation in mouse models. Front Cell Dev Biol 2025; 13:1526424. [PMID: 40248351 PMCID: PMC12003928 DOI: 10.3389/fcell.2025.1526424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/27/2025] [Indexed: 04/19/2025] Open
Abstract
Particulate matter exposure is linked to numerous health issues, including respiratory, cardiovascular, and neurodegenerative diseases. This review focuses on the biological mechanisms through which air pollution influences the lung-brain axis, highlighting the role of miRNAs in regulating gene pathways affected by PM. Some microRNAs (miRNAs) are identified as key modulators of cellular processes, including inflammation, epithelial-to-mesenchymal transition (EMT), and blood-brain barrier integrity. Using mice models to study these effects allows for controlled experimentation on the systemic distribution of PM across biological barriers. Among the imaging technologies, Positron Emission Tomography is the best approach to monitor the distribution and effects of PM in vivo. The research underscores the importance of miRNA profiles as potential markers for the health effects of PM exposure, suggesting that specific miRNAs could serve as early indicators of damage to the lung-brain axis.
Collapse
Affiliation(s)
- Alessandro Giammona
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Giulia Terribile
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Earth and Environmental Sciences, POLARIS Research Centre, University of Milano-Bicocca, Milano, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Paolo Rainone
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Chiara Pellizzer
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
| | - Danilo Porro
- PhD Program, Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Milano, Italy
| | - Antonio Cerasa
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
| | - Giulio Sancini
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Earth and Environmental Sciences, POLARIS Research Centre, University of Milano-Bicocca, Milano, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Ameen-Ur Rashid
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
- PhD Program, Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Milano, Italy
| | - Sara Belloli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Silvia Valtorta
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Alessia Lo Dico
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Gloria Bertoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
3
|
Wang M, Deng H, Chen Y, Wang Y, Zhang Y, Liu C, Zhang M, Li T, Dang S, Li Y. Expression and clinical significance of pattern recognition receptor-associated genes in hand, foot and mouth disease. ASIAN PAC J TROP MED 2024; 17:173-183. [DOI: 10.4103/apjtm.apjtm_876_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/20/2024] [Indexed: 11/27/2024] Open
Abstract
Objective:
To explore which pattern recognition receptors (PRRs) play a key role in the development of hand, foot, and mouth disease (HFMD) by analyzing PRR-associated genes.
Methods:
We conducted a comparative analysis of PRR-associated gene expression in human peripheral blood mononuclear cells (PBMCs) infected with enterovirus 71 (EV-A71) which were derived from patients with HFMD of different severities and at different stages. A total of 30 PRR-associated genes were identified as significantly upregulated both over time and across different EV-A71 isolates. Subsequently, ELISA was employed to quantify the expression of the six most prominent genes among these 30 identified genes, specifically, BST2, IRF7, 1FI16, TRIM21, MX1, and DDX58.
Results:
Compared with those at the recovery stage, the expression levels of BST2 (P=0.027), IFI16 (P=0.016), MX1 (P=0.046) and DDX58 (P=0.008) in the acute stage of infection were significantly upregulated, while no significant difference in the expression levels of IRF7 (P=0.495) and TRIM21 (P=0.071) was found between different stages of the disease. The expression levels of BST2, IRF7, IFI16 and MX1 were significantly higher in children infected with single pathogen than those infected with mixed pathogens, and BST2, IRF7, IFI16 and MX1 expression levels were significantly lower in coxsackie B virus (COXB) positive patients than the negative patients. Expression levels of one or more of BST2, IRF7, IFI16, TRIM21, MX1 and DDX58 genes were correlated with PCT levels, various white blood cell counts, and serum antibody levels that reflect disease course of HFMD. Aspartate aminotransferase was correlated with BST2, MX1 and DDX58 expression levels.
Conclusions:
PRR-associated genes likely initiate the immune response in patients at the acute stage of HFMD.
Collapse
Affiliation(s)
- Muqi Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huiling Deng
- Department of Pediatrics, Xi'an Central Hospital, Xi'an 710004, China
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an 710003, China
| | - Yuan Chen
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an 710003, China
| | - Yikai Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yufeng Zhang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an 710003, China
| | - Chenrui Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Meng Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ting Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
4
|
Ramphan S, Chumchanchira C, Sornjai W, Chailangkarn T, Jongkaewwattana A, Assavalapsakul W, Smith DR. Strain Variation Can Significantly Modulate the miRNA Response to Zika Virus Infection. Int J Mol Sci 2023; 24:16216. [PMID: 38003407 PMCID: PMC10671159 DOI: 10.3390/ijms242216216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted virus that has emerged as a major public health concern due to its association with neurological disorders in humans, including microcephaly in fetuses. ZIKV infection has been shown to alter the miRNA profile in host cells, and these changes can contain elements that are proviral, while others can be antiviral in action. In this study, the expression of 22 miRNAs in human A549 cells infected with two different ZIKV isolates was investigated. All of the investigated miRNAs showed significant changes in expression at at least one time point examined. Markedly, 18 of the miRNAs examined showed statistically significant differences in expression between the two strains examined. Four miRNAs (miR-21, miR-34a, miR-128 and miR-155) were subsequently selected for further investigation. These four miRNAs were shown to modulate antiviral effects against ZIKV, as downregulation of their expression through anti-miRNA oligonucleotides resulted in increased virus production, whereas their overexpression through miRNA mimics reduced virus production. However, statistically significant changes were again seen when comparing the two strains investigated. Lastly, candidate targets of the miRNAs miR-34a and miR-128 were examined at the level of the mRNA and protein. HSP70 was identified as a target of miR-34a, but, again, the effects were strain type-specific. The two ZIKV strains used in this study differ by only nine amino acids, and the results highlight that consideration must be given to strain type variation when examining the roles of miRNAs in ZIKV, and probably other virus infections.
Collapse
Affiliation(s)
- Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| | - Chanida Chumchanchira
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| | - Thanathom Chailangkarn
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (T.C.); (A.J.)
| | - Anan Jongkaewwattana
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (T.C.); (A.J.)
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| |
Collapse
|
5
|
Ma W, Huang G, Wang Z, Wang L, Gao Q. IRF7: role and regulation in immunity and autoimmunity. Front Immunol 2023; 14:1236923. [PMID: 37638030 PMCID: PMC10449649 DOI: 10.3389/fimmu.2023.1236923] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Interferon regulatory factor (IRF) 7 was originally identified as master transcriptional factor that produced IFN-I and regulated innate immune response, subsequent studies have revealed that IRF7 performs a multifaceted and versatile functions in multiple biological processes. In this review, we provide a comprehensive overview on the current knowledge of the role of IRF7 in immunity and autoimmunity. We focus on the latest regulatory mechanisms of IRF7 in IFN-I, including signaling pathways, transcription, translation, and post-translational levels, the dimerization and nuclear translocation, and the role of IRF7 in IFN-III and COVID-19. In addition to antiviral immunity, we also discuss the role and mechanism of IRF7 in autoimmunity, and the further research will expand our understanding of IRF7.
Collapse
Affiliation(s)
- Wei Ma
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
6
|
Guo H, Zhu Y, Zou Y, Li C, Wang Y, De G, Lu L. Enterovirus 71 induces pyroptosis of human neuroblastoma SH-SY5Y cells through miR-146a/ CXCR4 axis. Heliyon 2023; 9:e15014. [PMID: 37095967 PMCID: PMC10121780 DOI: 10.1016/j.heliyon.2023.e15014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus 71 (EV71) is a predominant causative pathogen of hand-foot-and-mouth disease (HFMD) in children. Compared with other HFMD-associated viruses, EV71 tends to induce more severe neurological complications and even death. However, the detailed mechanism of EV71 causes nervous system disorder is still unclear. In this study, we found that EV71 induced the GSDMD/NLRP3-mediated pyroptosis of SH-SY5Y cells through up-regulated miR-146a. Through bioinformatic analysis, we identified C-X-C chemokine receptor type 4 (CXCR4) as the potential target of miR-146a. We noticed that the expression of CXCR4 was regulated by miR-146a during EV71 infection. Moreover, our results show that over-expression of CXCR4 attenuated EV71-induced pyroptosis of SY-SY5Y cells. These results reveal a previously unrecognized mechanism in which EV71 induces nervous system cells damage through regulating miR-146a/CXCR4 mediated pyroptosis.
Collapse
Affiliation(s)
- Hengzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
| | - Yangyang Zhu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
| | - Yu Zou
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
| | - Chaozhi Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
| | - Ya Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
| | - Gejing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, 100700, Beijing, PR China
- Corresponding author.
| | - Lili Lu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
- Corresponding author.
| |
Collapse
|
7
|
Chen W, Li J, Li J, Zhang J, Zhang J. Roles of Non-Coding RNAs in Virus-Host Interaction About Pathogenesis of Hand-Foot-Mouth Disease. Curr Microbiol 2022; 79:247. [PMID: 35834056 PMCID: PMC9281230 DOI: 10.1007/s00284-022-02928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Noncoding RNAs (ncRNAs) represent the largest and main transcriptome products and play various roles in the biological activity of cells and pathological processes. Accumulating evidence shows that microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) are important ncRNAs that play vital regulatory roles during viral infection. Hand-foot-mouth disease (HFMD) virus causes hand-foot-mouth disease, and is also associated with various serious complications and high mortality. However, there is currently no effective treatment. In this review, we focus on advances in the understanding of the modulatory role of ncRNAs during HFMD virus infection. Specifically, we discuss the generation, classification, and regulatory mechanisms of miRNA, lncRNA, and circRNA in the interaction between virus and host, with a particular focus on their influence with viral replication and infection. Analysis of these underlying mechanisms can help provide a foundation for the development of ncRNA-based antiviral therapies.
Collapse
Affiliation(s)
- Wei Chen
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Jinwei Li
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jing Li
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jiayu Zhang
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China.
| |
Collapse
|
8
|
Yang F, Zhang N, Chen Y, Yin J, Xu M, Cheng X, Ma R, Meng J, Du Y. Role of Non-Coding RNA in Neurological Complications Associated With Enterovirus 71. Front Cell Infect Microbiol 2022; 12:873304. [PMID: 35548469 PMCID: PMC9081983 DOI: 10.3389/fcimb.2022.873304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogenic virus that causes hand, foot, and mouth disease (HFMD). Studies have reported that EV71-induced infections including aseptic meningitis, acute flaccid paralysis, and even neurogenic pulmonary edema, can progress to severe neurological complications in infants, young children, and the immunosuppressed population. However, the mechanisms through which EV71 causes neurological diseases have not been fully explored. Non-coding RNAs (ncRNAs), are RNAs that do not code for proteins, play a key role in biological processes and disease development associated with EV71. In this review, we summarized recent advances concerning the impacts of ncRNAs on neurological diseases caused by interaction between EV71 and host, revealing the potential role of ncRNAs in pathogenesis, diagnosis and treatment of EV71-induced neurological complications.
Collapse
Affiliation(s)
- Feixiang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jiancai Yin
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Muchen Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Cheng
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ruyi Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| |
Collapse
|
9
|
Abstract
Recognition of viral RNAs by melanoma differentiation associated gene-5 (MDA5) initiates chicken antiviral response by producing type I interferons. Our previous studies showed that chicken microRNA-155-5p (gga-miR-155-5p) enhanced IFN-β expression and suppressed the replication of infectious burse disease virus (IBDV), a double-stranded RNA (dsRNA) virus causing infectious burse disease in chickens. However, the mechanism underlying IBDV-induced gga-miR-155-5p expression in host cells remains elusive. Here, we show that IBDV infection or poly(I:C) treatment of DF-1 cells markedly increased the expression of GATA-binding protein 3 (GATA3), a master regulator for TH2 cell differentiation, and that GATA3 promoted gga-miR-155-5p expression in IBDV-infected or poly(I:C)-treated cells by directly binding to its promoter. Surprisingly, ectopic expression of GATA3 significantly reduced IBDV replication in DF-1 cells, and this reduction could be completely abolished by treatment with gga-miR-155-5p inhibitors, whereas knockdown of GATA3 by RNA interference enhanced IBDV growth, and this enhancement could be blocked with gga-miR-155-5p mimics, indicating that GATA3 suppressed IBDV replication by gga-miR-155-5p. Furthermore, our data show that MDA5 is required for GATA3 expression in host cells with poly(I:C) treatment, so are the adaptor protein TBK1 and transcription factor IRF7, suggesting that induction of GATA3 expression in IBDV-infected cells relies on MDA5-TBK1-IRF7 signaling pathway. These results uncover a novel role for GATA3 as an antivirus transcription factor in innate immune response by promoting miR-155 expression, further our understandings of host response against pathogenic infection, and provide valuable clues to the development of antiviral reagents for public health. IMPORTANCE Gga-miR-155-5p acts as an important antivirus factor against IBDV infection, which causes a severe immunosuppressive disease in chicken. Elucidation of the mechanism regulating gga-miR-155-5p expression in IBDV-infected cells is essential to our understandings of the host response against pathogenic infection. This study shows that transcription factor GATA3 initiated gga-miR-155-5p expression in IBDV-infected cells by directly binding to its promoter, suppressing viral replication. Furthermore, induction of GATA3 expression was attributable to the recognition of dsRNA by MDA5, which initiates signal transduction via TBK1 and IRF7. Thus, it is clear that IBDV induces GATA3 expression via MDA5-TBK1-IRF7 signaling pathway, thereby suppressing IBDV replication by GATA3-mediated gga-miR-155-5p expression. This information remarkably expands our knowledge of the roles for GATA3 as an antivirus transcription factor in host innate immune response particularly at an RNA level and may prove valuable in the development of antiviral drugs for public health.
Collapse
|
10
|
Wu Z, Zhu S, Qian J, Hu Y, Ji W, Li D, Zhu P, Liang R, Jin Y. Analysis of miRNAs Involved in Mouse Heart Injury Upon Coxsackievirus A2 Infection. Front Cell Infect Microbiol 2022; 12:765445. [PMID: 35155276 PMCID: PMC8831793 DOI: 10.3389/fcimb.2022.765445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/03/2022] [Indexed: 12/03/2022] Open
Abstract
Coxsackievirus A2 (CVA2) has recently been constantly detected, and is associated with viral myocarditis in children. Our previous study demonstrated that CVA2 led to heart damage in a neonatal murine model. However, the molecular mechanism of heart injury caused by CVA2 remains largely unknown. Emerging evidence suggests the significant functions of miRNAs in Coxsackievirus infection. To investigate potential miRNAs involved in heart injury caused by CVA2, our study, for the first time, conducted a RNA-seq in vivo employing infected mice hearts. In total, 87, 101 and 76 differentially expressed miRNAs were identified at 3 days post infection (dpi), 7 dpi and 7 dpi vs 3 dpi. Importantly, above 3 comparison strategies shared 34 differentially expressed miRNAs. These results were confirmed by quantitative PCR (qPCR). Next, we did GO, KEGG, and miRNA-mRNA integrated analysis of differential miRNAs. The dual-luciferase reporter assay confirmed the miRNA-mRNA pairs. To further confirm the above enriched pathways and processes, we did Western blotting and immunofluorescence staining. Our results suggest that inflammatory responses, T cell activation, apoptosis, autophagy, antiviral immunity, NK cell infiltration, and the disruption of tight junctions are involved in the pathogenesis of heart injury caused by CVA2. The dysregulated miRNAs and pathways recognized in the current study can improve the understanding of the intricate interactions between CVA2 and the heart injury, opening a novel avenue for the future study of CVA2 pathogenesis.
Collapse
Affiliation(s)
- Zhaoke Wu
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shenshen Zhu
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanfeng Qian
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanmin Hu
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ruonan Liang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuefei Jin,
| |
Collapse
|
11
|
Lu Y, Long M, Gao Z, Liu C, Dong K, Zhang H. Long non-coding RNA ENST00000469812 promotes Enterovirus type 71 replication via targeting the miR-4443/NUPR1 axis in rhabdomyosarcoma cells. Arch Virol 2022; 167:2601-2611. [PMID: 36269411 PMCID: PMC9589540 DOI: 10.1007/s00705-022-05596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
Hand, foot, and mouth disease (HFMD) caused by Enterovirus type 71 (EV71) is a serious threat to children's health. However, the pathogenic mechanism of EV71 is still unclear. Long non-coding RNAs (lncRNAs), some of which bind to miRNA as competitive endogenous RNAs (ceRNA) and weaken the silencing effect on the mRNA of downstream target genes, play a key role in regulating the viral infection process. In this study, through experimental verification, we found miR-4443 to be downregulated in cells infected with EV71. Next, by predicting lncRNAs that potentially regulate miR-4443, we found that EV71 infection induced upregulation of lncRNA ENST00000469812 and then further downregulated miR-4443 expression by direct interaction. We also demonstrated that nuclear protein 1 (NUPR1) is one of the target genes of miR-4443 and is involved in the ENST00000469812/miR-4443/NUPR1 regulatory axis. Finally, the ENST00000469812/miR-4443/NUPR1 regulatory axis exhibited a positive effect on EV71 replication. Here, we lay a foundation for exploring the pathogenic mechanism of EV71 and identify potential targets for HFMD treatment.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China ,Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Min Long
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhaowei Gao
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chong Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ke Dong
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Huizhong Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
12
|
Jafarzadeh A, Naseri A, Shojaie L, Nemati M, Jafarzadeh S, Bannazadeh Baghi H, Hamblin MR, Akhlagh SA, Mirzaei H. MicroRNA-155 and antiviral immune responses. Int Immunopharmacol 2021; 101:108188. [PMID: 34626873 DOI: 10.1016/j.intimp.2021.108188] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
The microRNA, miR-155 regulates both adaptive and innate immune responses. In viral infections, miR-155 can affect both innate immunity (interferon response, natural killer cell activity, and macrophage polarization) and adaptive immunity (including generation of anti-viral antibodies, CD8+ cytotoxic T lymphocytes, Th17, Th2, Th1, Tfh and Treg cells). In many viral infections, the proper and timely regulation of miR-155 expression is critical for the induction of an effective anti-virus immune response and viral clearance without any harmful immunopathologic consequences. MiR-155 may also exert pro-viral effects, mainly through the inhibition of the anti-viral interferon response. Thus, dysregulated expression of miR-155 can result in virus persistence and disruption of the normal response to viral infections. This review provides a thorough discussion of the role of miR-155 in immune responses and immunopathologic reactions during viral infections, and highlights its potential as a therapeutic target.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Alma Naseri
- Department of Immunology, Islamic Azadi university of Zahedan, Zahedan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Pandey N, Rastogi M, Singh SK. Chandipura virus dysregulates the expression of hsa-miR-21-5p to activate NF-κB in human microglial cells. J Biomed Sci 2021; 28:52. [PMID: 34233673 PMCID: PMC8265105 DOI: 10.1186/s12929-021-00748-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Background Chandipura virus (CHPV) is a negative single-stranded RNA virus of the Rhabdoviridae family. CHPV infection has been reported in Central and Western India. CHPV causes acute encephalitis with a case fatality rate of 70 % and mostly affects children below 15 years of age. CHPV infection in brain leads to neuronal apoptosis and activation of the microglial cells. The microRNAs (miRNAs) are small endogenous non-coding RNA that regulate the gene expression. Viral infections perturb the expression pattern of cellular miRNAs, which may in turn affect the expression pattern of downstream genes. This study aims to investigate hsa-miR-21-5p mediated regulation of PTEN, AKT, NF-ĸBp65, IL-6, TNF-α, and IL-1β, in human microglial cells during CHPV infection. Methods To understand the role of hsa-miR-21-5p in CHPV infection, the human microglial cells were infected with CHPV (MOI-0.1). Real-time PCR, western blotting, Luciferase assay, over-expression and knockdown techniques were used to understand the role of hsa-miR-21-5p in the regulation of PTEN, AKT and, NF-ĸBp65, IL-6, TNF-α, and IL-1β in this study. Results The hsa-miR-21-5p was found to be upregulated during CHPV infection in human microglial cells. This led to the downregulation of PTEN which promoted the phosphorylation of AKT and NF-ĸBp65. Over-expression of hsa-miR-21-5p led to the decreased expression of PTEN and promoted further phosphorylation of AKT and NF-ĸBp65 in human microglial cells. However, the inhibition of hsa-miR-21-5p using hsa-miR-21-5p inhibitor restored the expression. Conclusions This study supports the role of hsa-miR-21-5p in the regulation of pro-inflammatory genes in CHPV infected human microglial cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00748-0.
Collapse
Affiliation(s)
- Neha Pandey
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Meghana Rastogi
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
14
|
Huang B, Chen H, Zheng Y. MiR-103/miR-107 inhibits enterovirus 71 replication and facilitates type I interferon response by regulating SOCS3/STAT3 pathway. Biotechnol Lett 2021; 43:1357-1369. [PMID: 33796959 DOI: 10.1007/s10529-021-03115-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Enterovirus71 (EV71), the major cause of hand, foot, and-mouth disease (HFMD), has increasingly become a public health challenge. Type I interferons (IFNs) can regulate innate and adaptive immune responses to pathogens. MicroRNAs (miRNAs) play regulatory roles in host innate immune responses to viral infections. However, the roles of miR-103 and miR-107 in EV71 infection remain unclear. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine the expression of miR-103, miR-107, suppressor of cytokine signaling 3 (SOCS3), VP1, IFN-α, and IFN-β. Virus titers were measured by 50% tissue culture infectious dose (TCID50) assay. Western blot assay was conducted to detect the protein levels of VP1, IFN-α, IFN-β, SOCS3, signal transducer and activator of transcription 3 (STAT3), and phospho-STAT3 (p-STAT3). Immunofluorescence assay was used to detect the protein level of VP1. The concentrations of IFN-α and IFN-β were examined by Enzyme-linked immunosorbent assay (ELISA). The interaction between SOCS3 and miR-103/miR-107 was predicted by starBase and verified by dual-luciferase reporter assay and RNA pull-down assay. RESULTS MiR-103 and miR-107 were downregulated and SOCS3 was upregulated in serum from patients with EV71 and EV71-infected cells. Overexpression of miR-103 and miR-107 repressed EV71 replication by inhibiting EV71 titers and VP1 expression. Moreover, upregulation of miR-103 and miR-107 enhanced EV71-triggered the production of type I IFNs. In addition, miR-103 and miR-107 directly targeted SOCS3, and SOCS3 upregulation reversed the effects of miR-103 and miR-107 on EV71 replication and type I IFN response. Importantly, miR-103 and miR-107 increased STAT3 phosphorylation by targeting SOCS3 after EV71 infection. CONCLUSION MiR-103 and miR-107 suppressed EV71 replication and increased the production of type I IFNs by regulating SOCS3/STAT3 pathway, which might provide a novel strategy for developing effective antiviral therapy.
Collapse
Affiliation(s)
- Baizhi Huang
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, Dongguan, China.
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, No. 111 Humen Avenue, Humen Town, Dongguan City, 523900, Guangdong Province, China.
| | - Haiping Chen
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Yanbing Zheng
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| |
Collapse
|
15
|
Yuan S, He G, Li L. Hsa-miR-155 regulates the cell cycle and barrier function of corneal endothelial cells through E2F2. Am J Transl Res 2021; 13:1505-1515. [PMID: 33841674 PMCID: PMC8014374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed to determine the role of has-miR-155 and E2F2 on corneal endothelial cells. Real-time quantitative PCR and Western blot assays were carried out to determine the levels of has-miR-155 and E2F2, and Flow cytometry assay was conducted to detect cell cycle. In addition, Targetscan7.2 was adopted to analyze the internal connection between hsa-miR-155 and E2F2, and a dual luciferase reporter gene assay to determine predicted site between has-miR-155 and E2F2. Increased hsa-miR-155 resulted in decreased E2F2, while decreased hsa-miR-155 increased the level of E2F2. In addition, both increased hsa-miR-155 and decreased E2F2 led to an increase in S-phase cells and a decrease in G1-phase cells. Also, they induced an increase in the activity of barrier-related proteins MLCK and ZO-1, an up-regulation of Cyclin D1 and Cyclin E1, and a down-regulation of apoptosis proteins (Caspase 3/Bax/Bim/Bid) whereas decreased hsa-miR-155 led to an opposite change in cells, and decreased E2F2 could offset cell changes caused by increased has-miR-155. In conclusion, Has-miR-155 regulates the cell cycle of corneal endothelial cells and improves their barrier function by down regulating E2F2.
Collapse
Affiliation(s)
- Shuyi Yuan
- Department of Optometry Center, Tianjin Eye HospitalTianjin 300022, China
| | - Guanghui He
- Department of Vitreoretinopathy, Tianjin Eye HospitalTianjin 300022, China
| | - Lihua Li
- Department of Optometry Center, Tianjin Eye HospitalTianjin 300022, China
| |
Collapse
|
16
|
Zhu P, Chen S, Zhang W, Duan G, Jin Y. Essential Role of Non-Coding RNAs in Enterovirus Infection: From Basic Mechanisms to Clinical Prospects. Int J Mol Sci 2021; 22:2904. [PMID: 33809362 PMCID: PMC7999384 DOI: 10.3390/ijms22062904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Enteroviruses (EVs) are common RNA viruses that can cause various types of human diseases and conditions such as hand, foot, and mouth disease (HFMD), myocarditis, meningitis, sepsis, and respiratory disorders. Although EV infections in most patients are generally mild and self-limiting, a small number of young children can develop serious complications such as encephalitis, acute flaccid paralysis, myocarditis, and cardiorespiratory failure, resulting in fatalities. Established evidence has suggested that certain non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the occurrence and progression of many human diseases. Recently, the involvement of ncRNAs in the course of EV infection has been reported. Herein, the authors focus on recent advances in the understanding of ncRNAs in EV infection from basic viral pathogenesis to clinical prospects, providing a reference basis and new ideas for disease prevention and research directions.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| |
Collapse
|
17
|
Kim SE, Mori R, Shimokawa I. Does Calorie Restriction Modulate Inflammaging via FoxO Transcription Factors? Nutrients 2020; 12:nu12071959. [PMID: 32630045 PMCID: PMC7399912 DOI: 10.3390/nu12071959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Calorie restriction (CR) has been shown to extend lifespan and retard aging-related functional decline in animals. Previously, we found that the anti-neoplastic and lifespan-extending effects of CR in mice are regulated by forkhead box O transcription factors (FoxO1 and FoxO3), located downstream of growth hormone (GH)–insulin-like growth factor (IGF)-1 signaling, in an isoform-specific manner. Inflammaging is a term coined to represent that persistent low-level of inflammation underlies the progression of aging and related diseases. Attenuation of inflammaging in the body may underlie the effects of CR. Recent studies have also identified cellular senescence and activation of the nucleotide-binding domain, leucine-rich-containing family, pyrin-domain-containing-3 (NLRP3) inflammasome as causative factors of inflammaging. In this paper, we reviewed the current knowledge of the molecular mechanisms linking the effects of CR with the formation of inflammasomes, particularly focusing on possible relations with FoxO3. Inflammation in the brain that affects adult neurogenesis and lifespan was also reviewed as evidence of inflammaging. A recent progress of microRNA research was described as regulatory circuits of initiation and propagation of inflammaging. Finally, we briefly introduced our preliminary results obtained from the mouse models, in which Foxo1 and Foxo3 genes were conditionally knocked out in the myeloid cell lineage.
Collapse
Affiliation(s)
| | | | - Isao Shimokawa
- Correspondence: ; Tel.: +81-95-819-7050; Fax: +81-95-819-7051
| |
Collapse
|
18
|
Li J, Zheng SJ. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020; 12:E543. [PMID: 32423052 PMCID: PMC7291112 DOI: 10.3390/v12050543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|