1
|
Liu Y, Han J, Shioya A, Zhang YX, Dung VA, Oyama T, Guo X, Yang Q, Ito T, Yamada S. The immunohistochemical combination of low SGLT2 expression and high PRDX4 expression independently predicts shortened survival in patients undergoing surgical resection for hepatoblastoma. Diagn Pathol 2025; 20:2. [PMID: 39773476 PMCID: PMC11708186 DOI: 10.1186/s13000-025-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Hepatoblastoma (HB) is the most common malignant solid tumor of the liver in children and is a fatal disease with a poor prognosis. Therefore, indicators that can be used for the early prediction of the HB prognosis are necessary. Sodium glucose cotransporter 2 (SGLT2) is a glucose transporter protein present in the proximal renal tubules. Studies have shown that SGLT2 is associated with the occurrence of tumors and is upregulated in various tumors. Peroxiredoxin 4 (PRDX4) is an antioxidant enzyme with a secretory function and is located in the cytoplasmic endoplasmic reticulum. Recent reports have suggested that it is closely related to the development and prognosis of various cancers. To some degree, this is highly suggestive of the interplay between SGLT2 and PRDX4. METHODS In the present study, clinical data and post-surgical paraffin-embedded specimens from 75 HB patients were collected, and hematoxylin and eosin and immunohistochemical staining of SGLT2 and PRDX4 were used to analyze their expression and correlation with the clinicopathological features and prognosis. RESULTS We found that low SGLT2 and high PRDX4 expression predicted a significantly shorter survival and worse clinical condition in HB patients. Furthermore, when low SGLT2 expression was combined with high PRDX4 expression, the event-free survival and overall survival were significantly reduced. Univariate and multivariate Cox proportional hazards analyses showed that low SGLT2 and high PRDX4 expression in HB were independent prognostic factors for the survival after surgical resection. CONCLUSION The immunohistochemical combination of low SGLT2 and high PRDX4 expression can independently predict a poor prognosis in HB patients.
Collapse
Affiliation(s)
- Yao Liu
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, 920-0293, Japan.
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, 920-0293, Japan.
| | - Jia Han
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, 920-0293, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, 920-0293, Japan
| | - Akihiro Shioya
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, 920-0293, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, 920-0293, Japan
| | - Yang-Xian Zhang
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, 920-0293, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, 920-0293, Japan
- Department of Geriatrics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Vu Anh Dung
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, 920-0293, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, 920-0293, Japan
- Department of Joint Surgery, 103 Military Hospital, Vietnam Military Medical University, Hanoi, 151000, Vietnam
| | - Takeru Oyama
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, 920-0293, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, 920-0293, Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, 920-0293, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, 920-0293, Japan
- Research Center, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Qian Yang
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Tohru Ito
- Department of Gastroenterological Endoscopy, Kanazawa Medical University, Ishikawa, 920-0293, Japan
- Director of Kanazawa Medical University Himi Municipal Hospital, Toyama, 935-8531, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, 920-0293, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, 920-0293, Japan
| |
Collapse
|
2
|
Alzahrani AK, Khan A, Singla N, Hai A, Alzahrani AR, Kamal M, Asdaq SMB, Alsalman AJ, Hawaj MAA, Al Odaini LH, Dzinamarira T, Imran M. From diagnosis to therapy: The critical role of lncRNAs in hepatoblastoma. Pathol Res Pract 2024; 260:155412. [PMID: 38889493 DOI: 10.1016/j.prp.2024.155412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
According to findings, long non-coding RNAs (lncRNAs) serves an integral part in growth and development of a variety of human malignancies, including Hepatoblastoma (HB). HB is a rare kind of carcinoma of the liver that mostly affects kids and babies under the age of three. Its manifestations include digestive swelling, abdominal discomfort, and losing weight. This thorough investigation digs into the many roles that lncRNAs serve in HB, giving views into their varied activities as well as possible therapeutic consequences. The function of lncRNAs in HB cell proliferation, apoptosis, migratory and penetrating capacities, epithelial-mesenchymal transition, and therapy tolerance is discussed. Various lncRNA regulatory roles are investigated in depth, yielding information on their effect on essential cell processes such as angiogenesis, apoptosis, immunity, and growth. Circulating lncRNAs are currently acknowledged as potential indications for the initial stages of identification of cancer, with the ability to diagnose as well as forecast. In addition to their diagnostic utility, lncRNAs provide curative opportunities as locations and actors, contributing to the expanding landscape of cancer research. Several HB-linked lncRNAs have been demonstrated to exhibit abnormal expression and are involved in tumor-like characteristics via DNA, RNA, or protein binding or encoding short peptides. As a result, a better knowledge of lncRNA instability might bring fresh perspectives into HB etiology as well as innovative strategies for HB early diagnosis and therapy. We describe the abnormalities of lncRNA expression in HB and their tumor-suppressive or carcinogenic activities during HB carcinogenesis in this study. Furthermore, we explore lncRNAs' diagnostic and therapeutic possibilities in HB.
Collapse
Affiliation(s)
- A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Abdul Hai
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | | | - Maitham Abdullah Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Lulu Homeed Al Odaini
- Department of Ambulatory Care Pharmacy, King Fahad Medical City, Riyadh 12242, Saudi Arabia
| | - Tafadzwa Dzinamarira
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| |
Collapse
|
3
|
Wang HS, Lao J, Jiang RS, Wang B, Ma XP, Wang JY. Summary of biological research on hepatoblastoma: a scoping review. Front Pediatr 2024; 12:1309693. [PMID: 38390281 PMCID: PMC10881832 DOI: 10.3389/fped.2024.1309693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Background Hepatoblastoma is the most prevalent primary hepatic malignancy in children, comprising 80% of pediatric hepatic malignancies and 1% of all pediatric malignancies. However, traditional treatments have proven inadequate in effectively curing hepatoblastoma, leading to a poor prognosis. Methods A literature search was conducted on multiple electronic databases (PubMed and Google Scholar). A total of 86 articles were eligible for inclusion in this review. Result This review aims to consolidate recent developments in hepatoblastoma research, focusing on the latest advances in cancer-associated genomics, epigenetic studies, transcriptional programs and molecular subtypes. We also discuss the current treatment approaches and forthcoming strategies to address cancer-associated biological challenges. Conclusion To provide a comprehensive summary of the molecular mechanisms associated with hepatoblastoma occurrence, this review highlights three key aspects: genomics, epigenetics, and transcriptomics. Our review aims to facilitate the exploration of novel molecular mechanisms and the development of innovative clinical treatment strategies for hepatoblastoma.
Collapse
Affiliation(s)
- Huan-sheng Wang
- Department of General Surgery, Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Jing Lao
- Department of General Surgery, Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Ren-sen Jiang
- Department of General Surgery, Shenzhen Children’s Hospital of ShanTou University, Shenzhen, Guangdong Province, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| | - Xiao-peng Ma
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| | - Jian-yao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
4
|
Zhang T, Ji C, Zhang Y, Yuan M, Gao H, Yin Q. LncRNA SNHG1 Accelerates Cell Proliferation, Migration, and Invasion of Hepatoblastoma Through Mediating miR-6838-5p/PIM3/RhoA Axis. Biochem Genet 2024; 62:59-76. [PMID: 37248373 DOI: 10.1007/s10528-023-10404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Hepatoblastoma (HB) is a common primary liver malignant tumor in children. Long non-coding RNAs (lncRNAs) are closely engaged in HB progression. The role and regulatory molecule mechanism of lncRNA small nucleolar RNA host gene 1 (SNHG1) in HB remain unclear. Through qRT-PCR or western blot, we found that SNHG1 and proviral integration site for moloney murine leukemia virus 3 (PIM3) were elevated but miR-6838-5p was decreased in HB cells. Cell biology experiments revealed that SNHG1 depletion or miR-6838-5p upregulation suppressed cell proliferation, migration, and invasion of HB cells. Mechanistically, luciferase activity assay validated that miR-6838-5p could interact with SNHG1 or PIM3. SNHG1 up-regulated PIM3 expression via sponging miR-6838-5p. Moreover, miR-6838-5p inhibitor abolished SNHG1 depletion-mediated suppression of malignant behaviors in HB cells. PIM3 overexpression neutralized miR-6838-5p mimics-mediated repression of malignant phenotypes in HB cells. Furthermore, miR-6838-5p overexpression suppressed RhoA activation, which was restored by PIM3 upregulation. What's more, the results at the cellular level were further verified by nude mice tumor formation experiment. In conclusion, SNHG1 regulated miR-6838-5p/PIM3/RhoA axis to promote malignant phenotypes of HB, which might provide novel therapeutic target for HB treatment.
Collapse
Affiliation(s)
- Tian Zhang
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Chunyi Ji
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Yanbing Zhang
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Miaoxian Yuan
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Hongqiang Gao
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Qiang Yin
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China.
| |
Collapse
|
5
|
Hayashi‐Okada M, Sato S, Nakashima K, Sakai T, Tamehisa T, Kajimura T, Tamura I, Sueoka K, Sugino N. Identification of long noncoding RNAs downregulated specifically in ovarian high-grade serous carcinoma. Reprod Med Biol 2024; 23:e12572. [PMID: 38571514 PMCID: PMC10988898 DOI: 10.1002/rmb2.12572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Purpose To investigate whether long noncoding RNAs (lncRNAs) are involved in the development or malignant behavior of ovarian high-grade serous carcinoma (HGSC), we attempted to identify lncRNAs specific to HGSC. Methods Total RNAs were isolated from HGSC, normal ovarian, and fallopian tube tissue samples and were subjected to a PCR array that can analyze 84 cancer-associated lncRNAs. The lncRNAs that were upregulated and downregulated in HGSC in comparison to multiple samples of normal ovary and fallopian tube were validated by real-time RT-PCR. To infer the function, ovarian cancer cell lines that overexpress the identified lncRNAs were established, and the activation of cell proliferation, migration, and invasion was analyzed. Results Eleven lncRNAs (ACTA2-AS1, ADAMTS9-AS2, CBR3-AS1, HAND2-AS1, IPW, LINC00312, LINC00887, MEG3, NBR2, TSIX, and XIST) were downregulated in HGSC samples. We established the cell lines that overexpress ADAMTS9-AS2, CBR3-AS1, or NBR2. In cell lines overexpressing ADAMTS9-AS2, cell proliferation was suppressed, but migration and invasion were promoted. In cell lines overexpressing CBR3-AS1 or NBR2, cell migration tended to be promoted, although cell proliferation and invasion were unchanged. Conclusion We identified eleven lncRNAs that were specifically downregulated in HGSC. Of these, CBR3-AS1, NBR2, and ADAMTS9-AS2 had unique functions in the malignant behaviors of HGSC.
Collapse
Affiliation(s)
- Maki Hayashi‐Okada
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Shun Sato
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Kengo Nakashima
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Takahiro Sakai
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Tetsuro Tamehisa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Takuya Kajimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Kotaro Sueoka
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
6
|
Cui Y, Sun Y, Li D, Zhang Y, Zhang Y, Cao D, Cao X. The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade. Front Cell Dev Biol 2023; 11:1275543. [PMID: 38020920 PMCID: PMC10646288 DOI: 10.3389/fcell.2023.1275543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The occurrence and progression of tumors are inseparable from glucose metabolism. With the development of tumors, the volume increases gradually and the nutritional supply of tumors cannot be fully guaranteed. The tumor microenvironment changes and glucose deficiency becomes the common stress environment of tumors. Here, we discuss the mutual influences between glucose deprivation and other features of the tumor microenvironment, such as hypoxia, immune escape, low pH, and oxidative stress. In the face of a series of stress responses brought by glucose deficiency, different types of tumors have different coping mechanisms. We summarize the tumor studies on glucose deficiency in the last decade and review the genes and pathways that determine the fate of tumors under harsh conditions. It turns out that most of these genes help tumor cells survive in glucose-deprivation conditions. The development of related inhibitors may bring new opportunities for the treatment of tumors.
Collapse
Affiliation(s)
- Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Zhu J, Mao S, Zhen N, Zhu G, Bian Z, Xie Y, Tang X, Ding M, Wu H, Ma J, Zhu Y, Sun F, Pan Q. SNORA14A inhibits hepatoblastoma cell proliferation by regulating SDHB-mediated succinate metabolism. Cell Death Dis 2023; 9:36. [PMID: 36717552 PMCID: PMC9886955 DOI: 10.1038/s41420-023-01325-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
Hepatoblastoma (HB) is the most common paediatric liver malignancy. Dysregulation of small nucleolar RNAs (snoRNAs) is a critical inducer of tumour initiation and progression. However, the association between snoRNAs and HB remains unknown. Here, we conducted snoRNA expression profiling in HB by snoRNA sequencing and identified a decreased level of SNORA14A, a box H/ACA snoRNA, in HB tissues. Low expression of SNORA14A was correlated with PRETEXT stage and metastasis in patients. Functionally, overexpression of SNORA14A suppressed HB cell proliferation and triggered cell apoptosis and G2/M phase arrest. Mechanistically, SNORA14A overexpression promoted the processing and maturation of the 18 S ribosomal RNA (rRNA) precursor to increase succinate dehydrogenase subunit B (SDHB) protein levels. In accordance with SNORA14A downregulation, SDHB protein expression was significantly reduced in HB tissues and cells, accompanied by abnormal accumulation of succinate. Overexpression of SDHB showed antiproliferative and proapoptotic effects and the capacity to induce G2/M phase arrest, while succinate dose-dependently stimulated HB cell growth. Furthermore, the inhibition of SNORA14A in HB malignant phenotypes was mediated by SDHB upregulation-induced reduction of cellular succinate levels. Therefore, the SNORA14A/18 S rRNA/SDHB axis suppresses HB progression by preventing cellular accumulation of the oncometabolite succinate and provides promising prognostic biomarkers and novel therapeutic targets for HB.
Collapse
Affiliation(s)
- Jiabei Zhu
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China ,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127 China
| | - Siwei Mao
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China ,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127 China
| | - Ni Zhen
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Guoqing Zhu
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhixuan Bian
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Yi Xie
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Xiaochen Tang
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Miao Ding
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Han Wu
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ji Ma
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Yizhun Zhu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, 999078 China
| | - Fenyong Sun
- grid.412538.90000 0004 0527 0050Department of Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, 200072 China
| | - Qiuhui Pan
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China ,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127 China ,grid.415626.20000 0004 4903 1529Sanya Women and Children’s Hospital Managed by Shanghai Children’s Medical Center, Sanya, 572000 China
| |
Collapse
|
8
|
Liu F, Xiong QW, Wang JH, Peng WX. Roles of lncRNAs in childhood cancer: Current landscape and future perspectives. Front Oncol 2023; 13:1060107. [PMID: 36923440 PMCID: PMC10008945 DOI: 10.3389/fonc.2023.1060107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
According to World Health Organization (WHO), cancer is the leading cause of death for children and adolescents. Leukemias, brain cancers, lymphomas and solid tumors, such as neuroblastoma, ostesarcoma and Wilms tumors are the most common types of childhood cancers. Approximately 400,000 children and adolescents between the ages of 0 and 19 are diagnosed with cancer each year worldwide. The cancer incidence rates have been rising for the past few decades. Generally, the prognosis of childhood cancers is favorable, but the survival rate for many unresectable or recurring cancers is substantially worse. Although random genetic mutations, persistent infections, and environmental factors may serve as contributing factors for many pediatric malignancies, the underlying mechanisms are yet unknown. Long non-coding RNAs (lncRNAs) are a group of transcripts with longer than 200 nucleotides that lack the coding capacity. However, increasing evidence indicates that lncRNAs play vital regulatory roles in cancer initiation and development in both adults and children. In particular, many lncRNAs are stable in cancer patients' body fluids such as blood and urine, suggesting that they could be used as novel biomarkers. In support of this notion, lncRNAs have been identified in liquid biopsy samples from pediatric cancer patients. In this review, we look at the regulatory functions and underlying processes of lncRNAs in the initiation and progression of children cancer and discuss the potential of lncRNAs as biomarkers for early detection. We hope that this article will help researchers explore lncRNA functions and clinical applications in pediatric cancers.
Collapse
Affiliation(s)
- Fei Liu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian-Wen Xiong
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin-Hu Wang
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Wan-Xin Peng
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Zhu LR, Zheng W, Gao Q, Chen T, Pan ZB, Cui W, Cai M, Fang H. Epigenetics and genetics of hepatoblastoma: Linkage and treatment. Front Genet 2022; 13:1070971. [PMID: 36531231 PMCID: PMC9748487 DOI: 10.3389/fgene.2022.1070971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2024] Open
Abstract
Hepatoblastoma is a malignant embryonal tumor with multiple differentiation modes and is the clearest liver malignancy in children. However, little is known about genetic and epigenetic events in Hepatoblastoma. Increased research has recently demonstrated, unique genetic and epigenetic events in Hepatoblastoma, providing insights into its origin and precise treatment. Some genetic disorders and congenital factors are associated with the risk of Hepatoblastoma development, such as the Beckwith-Wiedemann syndrome, Familial Adenomatous polyposis, and Hemihypertrophy. Epigenetic modifications such as DNA modifications, histone modifications, and non-coding RNA regulation are also essential in the development of Hepatoblastoma. Herein, we reviewed genetic and epigenetic events in Hepatoblastoma, focusing on the relationship between these events and cancer susceptibility, tumor growth, and prognosis. By deciphering the genetic and epigenetic associations in Hepatoblastoma, tumor pathogenesis can be clarified, and guide the development of new anti-cancer drugs and prevention strategies.
Collapse
Affiliation(s)
- Li-ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Wanqun Zheng
- Department of Chinese Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qun Gao
- Department of Pediatric Oncology Surgery, Anhui Provincial Children’s Hospital, Hefei, China
| | - Tianping Chen
- Department of Hematology and Oncology, Anhui Provincial Children’s Hospital, Hefei, China
| | - Zhu-bin Pan
- Department of General Surgery, Anhui Provincial Children’s Hospital, Hefei, China
| | - Wei Cui
- Department of Scientific Research and Education, Anhui Provincial Children’s Hospital, Anhui Institute of Pediatric Research, Hefei, China
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hui Fang
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital, Hefei, China
| |
Collapse
|
10
|
Non-coding RNAs in EMT regulation: Association with tumor progression and therapy response. Eur J Pharmacol 2022; 932:175212. [DOI: 10.1016/j.ejphar.2022.175212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022]
|
11
|
Wu YZ, Chen YH, Cheng CT, Ann DK, Kuo CY. Amino acid restriction induces a long non-coding RNA UBA6-AS1 to regulate GCN2-mediated integrated stress response in breast cancer. FASEB J 2022; 36:e22201. [PMID: 35137449 DOI: 10.1096/fj.202101466r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 01/17/2023]
Abstract
Oncogene activation, massive proliferation, and increased nutrient demands often result in nutrient and oxygen deprivation in solid tumors including breast cancer (BC), leading to the induction of oxidative stress and endoplasmic reticulum (ER) stress, and subsequently triggering integrated stress response (ISR). To elucidate the role of long non-coding RNAs (lncRNAs) in the ISR of BC, we performed transcriptome analyses and identified a lncRNA, UBA6-AS1, which was upregulated upon amino acid deprivation and ER stress. UBA6-AS1 was preferentially induced in triple-negative BC (TNBC) cells deprived of arginine or glutamine, two critical amino acids required for cancer cell growth, or treated with ER stress inducers. Mechanistically, UBA6-AS1 was regulated through the GCN2/eIF2α/ATF4 pathway, one of the major routes mediating ISR in amino acid sensing. In addition, both in vitro and in vivo assays indicated that UBA6-AS1 promoted TNBC cell survival when cells encountered metabolic stress, implicating a regulatory role of UBA6-AS1 in response to intratumoral metabolic stress during tumor progression. Moreover, PARP1 expression and activity were positively regulated by the GCN2/UBA6-AS1 axis upon amino acid deprivation. In conclusion, our data suggest that UBA6-AS1 is a novel lncRNA regulating ISR upon metabolic stress induction to promote TNBC cell survival. Furthermore, the GCN2-ATF4 axis is important for UBA6-AS1 induction to enhance PARP1 activity and could serve as a marker for the susceptibility of PARP inhibitors in TNBC.
Collapse
Affiliation(s)
- Yi-Zhen Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA
| | - Chun-Ting Cheng
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - David K Ann
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA.,Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Jiang W, Ou ZL, Zhu Q, Yao YB, Zai HY. LncRNA OIP5-AS1 aggravates the stemness of hepatoblastoma through recruiting PTBP1 to increase the stability of β-catenin. Pathol Res Pract 2022; 232:153829. [DOI: 10.1016/j.prp.2022.153829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022]
|
13
|
Wang T, Li Z, Yan L, Yan F, Shen H, Tian X. Long Non-Coding RNA Neighbor of BRCA1 Gene 2: A Crucial Regulator in Cancer Biology. Front Oncol 2021; 11:783526. [PMID: 34926299 PMCID: PMC8674783 DOI: 10.3389/fonc.2021.783526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in fundamental biochemical and cellular processes. The neighbor of BRCA1 gene 2 (NBR2) is a long intergenic non-coding RNA (lincRNA) whose gene locus is adjacent to the tumor suppressor gene breast cancer susceptibility gene 1 (BRCA1). In human cancers, NBR2 expression is dysregulated and correlates with clinical outcomes. Moreover, NBR2 is crucial for glucose metabolism and affects the proliferation, survival, metastasis, and therapeutic resistance in different types of cancer. Here, we review the precise molecular mechanisms underlying NBR2-induced changes in cancer. In addition, the potential application of NBR2 in the diagnosis and treatment of cancer is also discussed, as well as the challenges of exploiting NBR2 for cancer intervention.
Collapse
Affiliation(s)
- Ting Wang
- Department of Laboratory Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaosheng Li
- Department of Laboratory Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Liujia Yan
- Department of Laboratory Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Yan
- Department of Laboratory Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xinyu Tian
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|